Question 1. Use Liouville's theorem to determine the meromorphic function f satisfying
(i) f has a pole of order 3 in $z=0$, simple poles in $z=i$ and $z=-i$, and holomorphic otherwise.
(ii) $z f(z) \rightarrow 1$ as $|z| \rightarrow \infty$.
(iii) f is an odd function, i.e., $f(-z)=-f(z)$ for all $z \in \mathbb{C}$.
(iv) The Laurent series corresponding to f with convergence ring $K=\{z \in \mathbb{C}| | z \mid>1\}$ has coefficients $\left(c_{n}\right)$ satisfying $c_{-3}=-1$ and $c_{-5}=2$.

Question 2. Use Liouville's theorem to determine the meromorphic function f satisfying
(i) f has a simple pole in $z=1$, and a pole of order 2 in $z=0$, and holomorphic otherwise.
(ii) $\operatorname{res}_{0}(f)=0$.
(iii) $f(z) \rightarrow-2$ as $|z| \rightarrow \infty$.
(iv) $f(-1)=0$.
(v) $\int_{|z|=2} z f(z) d z=0$.

Question 3. Use Liouville's theorem to determine the meromorphic function f satisfying
(i) f has a pole of order 3 in $z=0$ and simple poles in $z=-1$ and $z=1$ respectively, and holomorphic otherwise.
(ii) $z f(z)$ is bounded for $|z|>1$.
(iii) f is odd, i.e., $f(-z)=-f(z)$.
(iv) $\operatorname{res}_{0}\left(z^{2} f(z)\right)=-1$.
(v) The Laurent series corresponding to f with convergence ring $K=\{z \in \mathbb{C}|0<|z|<1\}$ has coefficients $\left(c_{n}\right)$ satisfying $c_{-1}=0$ and $c_{1}=-2$.

Question 4. Use the (generalised) Liouville theorem to determine the meromorphic function f satisfying
(i) f has a pole of order 2 in $z=0$ and simple poles in $z=-i$ and $z=i$ respectively, and holomorphic otherwise.
(ii) $z^{2} f(z) \longrightarrow a$ as $|z| \rightarrow \infty$ for some real constant $a>0$.
(iii) $\operatorname{res}_{0}(f(z))=-1$.
(iv) f has a zero of order 2 in $z=1$.

Explain clearly where and to which function you apply the (generalised) Liouville theorem.

