Question 1. Which of the following statements are true about the function $f(z)=z \cdot \bar{z}$?
(a) f is analytic.
(b) f is nowhere analytic.
(c) f is differentiable in $z=0$ and thus also in a neighbourhood of $z=0$.
(d) f is differentiable in $z=0$ and nowhere else.
(e) f is nowhere differentiable.

Solution. Only (b) and (d) are true. $f(z)=z \cdot \bar{z}=|z|^{2}$. Therefore, $f(x+i y)=x^{2}+y^{2}$ is realvalued with component functions $u(x, y)=x^{2}+y^{2}, v(x, y)=0 . F=(u, v)$ is totally differentiable, but satisfies the Cauchy-Riemann equations only at the points $(0,0)$ and nowhere else.

Question 2. Let $v: \mathbb{R}^{2} \rightarrow \mathbb{R}, v(x, y)=e^{x}(x \sin (y)+y \cos (y))$. Determine a holomorphic function f satisfying $\operatorname{Im}(f)(x+i y)=v(x, y)$ with $f(0)=0$. Express the function f in terms of $z \in \mathbb{C}$.

Solution. We begin by checking if v is harmonic. Since

$$
\begin{gathered}
\partial_{x} v=e^{x}(x \sin (y)+y \cos (y)+\sin (y)), \quad \partial_{y} v=e^{x}(x \cos (y)+\cos (y)-y \sin (y)) \\
\partial_{x}^{2} v=e^{x}(x \sin (y)+y \cos (y)+2 \sin (y)),
\end{gathered} \partial_{y}^{2} v=e^{x}(-x \sin (y)-2 \sin (y)-y \cos (y)), ~ \$
$$

we have that $\partial_{x}^{2} v+\partial_{y}^{2} v=0$, i.e., v is harmonic. Hence, there is a corresponding holomorphic function f with $\operatorname{Im}(f)(x+i y)=v(x, y)$. From the Cauchy-Riemann equations, we have that

$$
\partial_{x} u=\partial_{y} v=e^{x}(x \cos (y)+\cos (y)-y \sin (y))
$$

Consider the function $U(x, y)=e^{x}(x \cos (y)-y \sin (y))+\Phi(y)$, for some function Φ, depending only on y. Then $\partial_{x} U=\partial_{y} v$. We now solve for

$$
e^{x}(-x \sin (y)-\sin (y)-y \cos (y))+\Phi^{\prime}(y)=\partial_{y} U=-e^{x}(x \sin (y)+y \cos (y)+\sin (y))
$$

which gives $\Phi^{\prime}(y)=0$ and therefore, $\Phi(y)$ is a constant function. Hence $u(x, y)=e^{x}(x \cos (y)-$ $y \sin (y))+c$ for some $c \in \mathbb{R}$ is a candidate for the corresponding component function of $f=u+i v$. To determine c, we insert $z=0$ to obtain $0=f(0)=c$, i.e., $c=0$. To conclude, we have

$$
\begin{aligned}
f(x+i y) & =e^{x}(x \cos (y)-y \sin (y))+i\left(e^{x}(x \sin (y)+y \cos (y))\right) \\
& =e^{x} x(\cos (y)+i \sin (y))+i e^{x} y(\cos (y)+i \sin (y)) \\
& =(x+i y) e^{x+i y}=z \exp (z)
\end{aligned}
$$

Question 3. Find the points $z \in \mathbb{C}$ for which the function $f(z)=z \operatorname{Im}(z)-\operatorname{Re}(z)$ is complex differentiable and determine its derivative $f^{\prime}(z)$. Where is f holomorphic?
Solution. We write $f(x+i y)=(x+i y) y-x=(y-1) x+i y^{2}=: u(x, y)+i v(x, y)$. Clearly, the real function $F=(u, v)$ is totally differentiable u and v are polynomials in x and y. The Cauchy-Riemann equations read

$$
y-1=\partial_{x} u=\partial_{y} v=2 y, \quad x \partial_{y} u=-\partial_{x} v=0
$$

and therefore $x=0$ and $y=-1$, i.e., $z=-i$. The derivative is given by

$$
f^{\prime}(-i)=\partial_{x} u(0,-1)+i \partial_{x} v(0,-1)=-2 .
$$

The function is nowhere holomorphic.
Question 4. Let f be holomorphic on $B_{1}(0)$. Which of the following statements is/are true:
(a) If $f\left(\frac{1}{n}\right)=\frac{1}{n^{2}}$ for all $n \in \mathbb{N}$, then $f(z)=z^{2}$ on $B_{1}(0)$.
(b) If $f\left(1-\frac{1}{n}\right)=\left(1-\frac{1}{n}\right)^{2}$ for all $n \in \mathbb{N}$, then $f(z)=z^{2}$ on $B_{1}(0)$.

Solution.

(a) We set $g(z):=f(z)-z^{2}$. Then $g(1 / n)=0$ for all $n \in \mathbb{N}$ where the accumulation point of $(1 / n)$ is $0 \in B_{1}(0)$. The identity theorem then gives $g \equiv 0$ on $B_{1}(0)$, i.e., $f(z)=z^{2}$. Hence, the statement is true.
(b) The function $f(z)=z^{2}+\sin \left(\frac{\pi}{1-z}\right)$ is holomorphic in $B_{1}(0)$ and satisfies the condition. Hence, the statement is false.

Question 5. Let $f(z)=\operatorname{Re}(z)+2 \operatorname{Im}(z)+i(2 \operatorname{Re}(z)-\operatorname{Im}(z))^{2}$.
(a) Determine the points $z \in \mathbb{C}$ for which f is complex differentiable.
(b) Is f in the points found in (a) holomorphic?
(c) Find entire functions g that satisfy $\operatorname{Re}(g(z))=\operatorname{Re}(f(z))$ for all $z \in \mathbb{C}$.

Solution.
(a) Let $u(x, y)=x+2 y$ and $v(x, y)=(2 x-y)^{2}$. Both u and v are polynomials in (x, y) and therefore continuously differentiable on $\mathbb{R} \times \mathbb{R}$. In particular, $f=(u, v) \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is totally differentiable (1p) We now check the Cauchy-Riemann equations: Since $\partial_{x} u=1, \partial_{y} u=2$, $\partial_{x} v=4(2 x-y)$ and $\partial_{y} v=-2(2 x-y)$, this yields

$$
\begin{equation*}
1=\partial_{x} u=\partial_{y} v=-2(2 x-y), \quad 2=\partial_{y} u=-\partial_{x} v=-4(2 x-y) \tag{1p}
\end{equation*}
$$

i.e., the Cauchy-Riemann equations are satisfied in the points z satisfying

$$
\begin{equation*}
4 \operatorname{Re}(z)-2 \operatorname{Im}(z)=-1 \tag{1p}
\end{equation*}
$$

Therefore, f is complex differentiable in these points.
(b) Since the set $\{z \in \mathbb{C}: 4 \operatorname{Re}(z)-2 \operatorname{Im}(z)=-1\}$ is a line and is closed in $\mathbb{C}(1 \mathrm{p}) f$ is not holomorphic in any of these points (1p)
(c) Since $\partial_{x} u=1, \partial_{y} u=2$, we choose $V(x, y)=y+\Phi(x)(1 \mathrm{p})$ for some function Φ satisfying

$$
\begin{equation*}
2=\partial_{y} u=-\partial_{x} V=-\Phi^{\prime}(x) \tag{1p}
\end{equation*}
$$

i.e., $\Phi(x)=-2 x+c$ for some constant $c \in \mathbb{R}(1 \mathrm{p})$ Hence, $V(x, y)=-(2 x-y)+c$. Therefore, entire functions g satisfying $\operatorname{Re}(g(z))=\operatorname{Re}(f(z))$ for all $z \in \mathbb{C}$ are of the form

$$
\begin{align*}
g(z) & =\operatorname{Re}(z)+2 \operatorname{Im}(z)-i(2 \operatorname{Re}(z)-\operatorname{Im}(z))+i c \\
& =\operatorname{Re}(z)+i \operatorname{Im}(z)-2 i(\operatorname{Re}(z)+i \operatorname{Im}(z))+i c=(1-2 i) z+i c \tag{2p}
\end{align*}
$$

Question 6. Determine if the following statements are true or false. In each part, give a brief justification of your answer.
(a) $|\cos (z)| \leq 1$ for all z in the upper half plane, i.e., $z \in\{x+i y: x \in \mathbb{R}, y>0\}$.
(b) The function $f(x+i y)=\left(x^{2}-y^{2}+y\right)+i(2 x y-x)$ is entire.
(c) If f is holomorphic on $B_{1}(0)$, then $f\left(\frac{1}{n}\right)=\frac{1}{n+1}$ for all $n \in \mathbb{N}$ cannot be satisfied.
(d) If f is entire, then $f\left(\frac{1}{n^{2}}\right)=\frac{1}{n}$ for all $n \in \mathbb{N}$ cannot be satisfied.

Hint: Use the identity theorem for (c) and (d).

Solution.

(a) False. Take $x=0, y=2$, which gives

$$
\cos (2 i)=\frac{1}{2}\left(e^{-2}+e^{2}\right)=\frac{e^{2}}{2}\left(1+e^{-4}\right)>\frac{e^{2}}{2}>1 .
$$

(b) True. Set $u(x, y)=x^{2}-y^{2}+y$ and $v(x, y)=2 x y-x$. It is easy to see that $F=(u, v)$ is totally differentiable since u and v are polynomials in x and y. Furthermore,

$$
\partial_{x} u=2 x=\partial_{y} v, \quad \partial_{y} u=-2 y+1=-(2 y-1)=-\partial_{x} v
$$

i.e., the Cauchy-Riemann equations are satisfied for $(x, y) \in \mathbb{R}^{2}$. Hence, f is entire.
(c) False. Set $g(z)=f(z)-\frac{z}{1+z} \cdot g$ is holomorphic on $B_{1}(0)$ since f and $\frac{z}{1+z}$ are holomorphic on $B_{1}(0)$. Furthermore, $g(1 / n)=0$ for all $n \in \mathbb{N}$ and $\frac{1}{n}$ has the accumulation point $0 \in B_{1}(0)$. Therefore, $g \equiv 0$ and $f(z)=z /(1+z)$, which is holomorphic on $B_{1}(0)$, i.e., (c) is false.
(d) True. Suppose there is an entire function f satisfying the property above. Then $g(z)=$ $f\left(z^{2}\right)-z$ is entire due to the chain rule, and g satisfies $g(1 / n)=0$ for all $n \in \mathbb{N}$ with accumulation point $0 \in \mathbb{C}$. Hence, $g \equiv 0$ due to the Identity theorem, i.e., $f\left(z^{2}\right)=z$. However, for $z=-1, f(1)=-1$ and for $z=1, f(1)=1$, which contradicts the assumption that f is a well-defined function. Hence, (d) is true.

