

Question 1. Which of the following statements are true about the function $f(z) = z \cdot \overline{z}$?

- (a) f is analytic.
- (b) f is nowhere analytic.
- (c) f is differentiable in z = 0 and thus also in a neighbourhood of z = 0.
- (d) f is differentiable in z = 0 and nowhere else.
- (e) f is nowhere differentiable.

Solution. Only (b) and (d) are true. $f(z) = z \cdot \overline{z} = |z|^2$. Therefore, $f(x+iy) = x^2 + y^2$ is real-valued with component functions $u(x, y) = x^2 + y^2$, v(x, y) = 0. F = (u, v) is totally differentiable, but satisfies the Cauchy–Riemann equations only at the points (0, 0) and nowhere else.

Question 2. Let $v : \mathbb{R}^2 \to \mathbb{R}$, $v(x, y) = e^x(x \sin(y) + y \cos(y))$. Determine a holomorphic function f satisfying Im(f)(x + iy) = v(x, y) with f(0) = 0. Express the function f in terms of $z \in \mathbb{C}$.

Solution. We begin by checking if v is harmonic. Since

$$\partial_x v = e^x (x \sin(y) + y \cos(y) + \sin(y)), \qquad \partial_y v = e^x (x \cos(y) + \cos(y) - y \sin(y))$$

$$\partial_x^2 v = e^x (x \sin(y) + y \cos(y) + 2 \sin(y)), \qquad \partial_y^2 v = e^x (-x \sin(y) - 2 \sin(y) - y \cos(y)),$$

we have that $\partial_x^2 v + \partial_y^2 v = 0$, i.e., v is harmonic. Hence, there is a corresponding holomorphic function f with Im(f)(x+iy) = v(x,y). From the Cauchy–Riemann equations, we have that

$$\partial_x u = \partial_y v = e^x (x \cos(y) + \cos(y) - y \sin(y)).$$

Consider the function $U(x,y) = e^x(x\cos(y) - y\sin(y)) + \Phi(y)$, for some function Φ , depending only on y. Then $\partial_x U = \partial_y v$. We now solve for

$$e^{x}(-x\sin(y) - \sin(y) - y\cos(y)) + \Phi'(y) = \partial_{y}U = -e^{x}(x\sin(y) + y\cos(y) + \sin(y)),$$

which gives $\Phi'(y) = 0$ and therefore, $\Phi(y)$ is a constant function. Hence $u(x, y) = e^x(x\cos(y) - y\sin(y)) + c$ for some $c \in \mathbb{R}$ is a candidate for the corresponding component function of f = u + iv. To determine c, we insert z = 0 to obtain 0 = f(0) = c, i.e., c = 0. To conclude, we have

$$f(x + iy) = e^x (x \cos(y) - y \sin(y)) + i(e^x (x \sin(y) + y \cos(y)))$$

= $e^x x(\cos(y) + i \sin(y)) + ie^x y(\cos(y) + i \sin(y))$
= $(x + iy)e^{x + iy} = z \exp(z).$

Question 3. Find the points $z \in \mathbb{C}$ for which the function $f(z) = z \operatorname{Im}(z) - \operatorname{Re}(z)$ is complex differentiable and determine its derivative f'(z). Where is f holomorphic?

Solution. We write $f(x + iy) = (x + iy)y - x = (y - 1)x + iy^2 =: u(x, y) + iv(x, y)$. Clearly, the real function F = (u, v) is totally differentiable u and v are polynomials in x and y. The Cauchy–Riemann equations read

$$y-1 = \partial_x u = \partial_y v = 2y, \qquad x \partial_y u = -\partial_x v = 0,$$

and therefore x = 0 and y = -1, i.e., z = -i. The derivative is given by

$$f'(-i) = \partial_x u(0, -1) + i \partial_x v(0, -1) = -2.$$

The function is nowhere holomorphic.

Question 4. Let f be holomorphic on $B_1(0)$. Which of the following statements is/are true:

On Holomorphic Functions Complex Analysis (2WA80)

(a) If
$$f\left(\frac{1}{n}\right) = \frac{1}{n^2}$$
 for all $n \in \mathbb{N}$, then $f(z) = z^2$ on $B_1(0)$.
(b) If $f\left(1 - \frac{1}{n}\right) = \left(1 - \frac{1}{n}\right)^2$ for all $n \in \mathbb{N}$, then $f(z) = z^2$ on $B_1(0)$.

Solution.

- (a) We set $g(z) := f(z) z^2$. Then g(1/n) = 0 for all $n \in \mathbb{N}$ where the accumulation point of (1/n) is $0 \in B_1(0)$. The identity theorem then gives $g \equiv 0$ on $B_1(0)$, i.e., $f(z) = z^2$. Hence, the statement is true.
- (b) The function $f(z) = z^2 + \sin\left(\frac{\pi}{1-z}\right)$ is holomorphic in $B_1(0)$ and satisfies the condition. Hence, the statement is false.

Question 5. Let $f(z) = \text{Re}(z) + 2\text{Im}(z) + i(2\text{Re}(z) - \text{Im}(z))^2$.

- (a) Determine the points $z \in \mathbb{C}$ for which f is complex differentiable.
- (b) Is f in the points found in (a) holomorphic?

EINDHOVEN

UNIVERSITY OF

(c) Find entire functions g that satisfy $\operatorname{Re}(g(z)) = \operatorname{Re}(f(z))$ for all $z \in \mathbb{C}$.

Solution.

(a) Let u(x, y) = x + 2y and $v(x, y) = (2x - y)^2$. Both u and v are polynomials in (x, y) and therefore continuously differentiable on $\mathbb{R} \times \mathbb{R}$. In particular, $f = (u, v) \times \mathbb{R}^2 \to \mathbb{R}^2$ is totally differentiable (1p) We now check the Cauchy–Riemann equations: Since $\partial_x u = 1$, $\partial_y u = 2$, $\partial_x v = 4(2x - y)$ and $\partial_y v = -2(2x - y)$, this yields

$$1 = \partial_x u = \partial_y v = -2(2x - y), \qquad 2 = \partial_y u = -\partial_x v = -4(2x - y), \tag{1p}$$

i.e., the Cauchy–Riemann equations are satisfied in the points z satisfying

$$4\text{Re}(z) - 2\text{Im}(z) = -1.$$
 (1*p*)

Therefore, f is complex differentiable in these points.

- (b) Since the set $\{z \in \mathbb{C} : 4\operatorname{Re}(z) 2\operatorname{Im}(z) = -1\}$ is a line and is closed in \mathbb{C} (1p) f is not holomorphic in any of these points (1p)
- (c) Since $\partial_x u = 1$, $\partial_y u = 2$, we choose $V(x, y) = y + \Phi(x)$ (1p) for some function Φ satisfying

$$2 = \partial_y u = -\partial_x V = -\Phi'(x), \qquad (1p)$$

i.e., $\Phi(x) = -2x + c$ for some constant $c \in \mathbb{R}$ (1p) Hence, V(x, y) = -(2x - y) + c. Therefore, entire functions g satisfying $\operatorname{Re}(g(z)) = \operatorname{Re}(f(z))$ for all $z \in \mathbb{C}$ are of the form

$$g(z) = \operatorname{Re}(z) + 2\operatorname{Im}(z) - i(2\operatorname{Re}(z) - \operatorname{Im}(z)) + ic$$

= $\operatorname{Re}(z) + i\operatorname{Im}(z) - 2i(\operatorname{Re}(z) + i\operatorname{Im}(z)) + ic = (1 - 2i)z + ic.$ (2p)

Question 6. Determine if the following statements are **true** or **false**. In each part, give a brief justification of your answer.

- (a) $|\cos(z)| \le 1$ for all z in the upper half plane, i.e., $z \in \{x + iy : x \in \mathbb{R}, y > 0\}$.
- (b) The function $f(x+iy) = (x^2 y^2 + y) + i(2xy x)$ is entire.
- (c) If f is holomorphic on $B_1(0)$, then $f\left(\frac{1}{n}\right) = \frac{1}{n+1}$ for all $n \in \mathbb{N}$ cannot be satisfied.

(d) If f is entire, then $f\left(\frac{1}{n^2}\right) = \frac{1}{n}$ for all $n \in \mathbb{N}$ cannot be satisfied.

Hint: Use the identity theorem for (c) and (d).

Solution.

(a) **False**. Take x = 0, y = 2, which gives

$$\cos(2i) = \frac{1}{2}(e^{-2} + e^2) = \frac{e^2}{2}(1 + e^{-4}) > \frac{e^2}{2} > 1.$$

(b) **True**. Set $u(x,y) = x^2 - y^2 + y$ and v(x,y) = 2xy - x. It is easy to see that F = (u,v) is totally differentiable since u and v are polynomials in x and y. Furthermore,

 $\partial_x u = 2x = \partial_y v, \qquad \partial_y u = -2y + 1 = -(2y - 1) = -\partial_x v,$

i.e., the Cauchy–Riemann equations are satisfied for $(x, y) \in \mathbb{R}^2$. Hence, f is entire.

- (c) **False.** Set $g(z) = f(z) \frac{z}{1+z}$. g is holomorphic on $B_1(0)$ since f and $\frac{z}{1+z}$ are holomorphic on $B_1(0)$. Furthermore, g(1/n) = 0 for all $n \in \mathbb{N}$ and $\frac{1}{n}$ has the accumulation point $0 \in B_1(0)$. Therefore, $g \equiv 0$ and f(z) = z/(1+z), which is holomorphic on $B_1(0)$, i.e., (c) is false.
- (d) **True**. Suppose there is an entire function f satisfying the property above. Then $g(z) = f(z^2) z$ is entire due to the chain rule, and g satisfies g(1/n) = 0 for all $n \in \mathbb{N}$ with accumulation point $0 \in \mathbb{C}$. Hence, $g \equiv 0$ due to the Identity theorem, i.e., $f(z^2) = z$. However, for z = -1, f(1) = -1 and for z = 1, f(1) = 1, which contradicts the assumption that f is a well-defined function. Hence, (d) is true.