

Question 1. Which of the following statements are true about the function $f(z) = z \cdot \overline{z}$?

- (a) f is analytic.
- (b) f is nowhere analytic.
- (c) f is differentiable in z = 0 and thus also in a neighbourhood of z = 0.
- (d) f is differentiable in z = 0 and nowhere else.
- (e) f is nowhere differentiable.

Question 2. Let $v : \mathbb{R}^2 \to \mathbb{R}$, $v(x, y) = e^x(x \sin(y) + y \cos(y))$. Determine a holomorphic function f satisfying Im(f)(x + iy) = v(x, y) with f(0) = 0. Express the function f in terms of $z \in \mathbb{C}$.

Question 3. Find the points $z \in \mathbb{C}$ for which the function $f(z) = z \operatorname{Im}(z) - \operatorname{Re}(z)$ is complex differentiable and determine its derivative f'(z). Where is f holomorphic?

Question 4. Let f be holomorphic on $B_1(0)$. Which of the following statements is/are true:

(a) If
$$f\left(\frac{1}{n}\right) = \frac{1}{n^2}$$
 for all $n \in \mathbb{N}$, then $f(z) = z^2$ on $B_1(0)$.
(b) If $f\left(1 - \frac{1}{n}\right) = \left(1 - \frac{1}{n}\right)^2$ for all $n \in \mathbb{N}$, then $f(z) = z^2$ on $B_1(0)$

Question 5. Let $f(z) = \text{Re}(z) + 2\text{Im}(z) + i(2\text{Re}(z) - \text{Im}(z))^2$.

- (a) Determine the points $z \in \mathbb{C}$ for which f is complex differentiable.
- (b) Is f in the points found in (a) holomorphic?
- (c) Find entire functions g that satisfy $\operatorname{Re}(g(z)) = \operatorname{Re}(f(z))$ for all $z \in \mathbb{C}$.

Question 6. Determine if the following statements are **true** or **false**. In each part, give a brief justification of your answer.

- (a) $|\cos(z)| \le 1$ for all z in the upper half plane, i.e., $z \in \{x + iy : x \in \mathbb{R}, y > 0\}$.
- (b) The function $f(x + iy) = (x^2 y^2 + y) + i(2xy x)$ is entire.
- (c) If f is holomorphic on $B_1(0)$, then $f\left(\frac{1}{n}\right) = \frac{1}{n+1}$ for all $n \in \mathbb{N}$ cannot be satisfied.
- (d) If f is entire, then $f\left(\frac{1}{n^2}\right) = \frac{1}{n}$ for all $n \in \mathbb{N}$ cannot be satisfied.

Hint: Use the identity theorem for (c) and (d).