Question 1. Which of the following statements are true about the function $f(z)=z \cdot \bar{z}$?
(a) f is analytic.
(b) f is nowhere analytic.
(c) f is differentiable in $z=0$ and thus also in a neighbourhood of $z=0$.
(d) f is differentiable in $z=0$ and nowhere else.
(e) f is nowhere differentiable.

Question 2. Let $v: \mathbb{R}^{2} \rightarrow \mathbb{R}, v(x, y)=e^{x}(x \sin (y)+y \cos (y))$. Determine a holomorphic function f satisfying $\operatorname{Im}(f)(x+i y)=v(x, y)$ with $f(0)=0$. Express the function f in terms of $z \in \mathbb{C}$.

Question 3. Find the points $z \in \mathbb{C}$ for which the function $f(z)=z \operatorname{Im}(z)-\operatorname{Re}(z)$ is complex differentiable and determine its derivative $f^{\prime}(z)$. Where is f holomorphic?

Question 4. Let f be holomorphic on $B_{1}(0)$. Which of the following statements is/are true:
(a) If $f\left(\frac{1}{n}\right)=\frac{1}{n^{2}}$ for all $n \in \mathbb{N}$, then $f(z)=z^{2}$ on $B_{1}(0)$.
(b) If $f\left(1-\frac{1}{n}\right)=\left(1-\frac{1}{n}\right)^{2}$ for all $n \in \mathbb{N}$, then $f(z)=z^{2}$ on $B_{1}(0)$.

Question 5. Let $f(z)=\operatorname{Re}(z)+2 \operatorname{Im}(z)+i(2 \operatorname{Re}(z)-\operatorname{Im}(z))^{2}$.
(a) Determine the points $z \in \mathbb{C}$ for which f is complex differentiable.
(b) Is f in the points found in (a) holomorphic?
(c) Find entire functions g that satisfy $\operatorname{Re}(g(z))=\operatorname{Re}(f(z))$ for all $z \in \mathbb{C}$.

Question 6. Determine if the following statements are true or false. In each part, give a brief justification of your answer.
(a) $|\cos (z)| \leq 1$ for all z in the upper half plane, i.e., $z \in\{x+i y: x \in \mathbb{R}, y>0\}$.
(b) The function $f(x+i y)=\left(x^{2}-y^{2}+y\right)+i(2 x y-x)$ is entire.
(c) If f is holomorphic on $B_{1}(0)$, then $f\left(\frac{1}{n}\right)=\frac{1}{n+1}$ for all $n \in \mathbb{N}$ cannot be satisfied.
(d) If f is entire, then $f\left(\frac{1}{n^{2}}\right)=\frac{1}{n}$ for all $n \in \mathbb{N}$ cannot be satisfied.

Hint: Use the identity theorem for (c) and (d).

