Question 1. Let $f(z)=\frac{z \cos (z)}{\sin (z)-1}$.
(a) Determine the isolated singularities of f and their type.
(b) Compute the value of the integral $\int_{|z|=\pi} f(z) d z$.

Solution.

(a) The isolated singularities are the zeros of $\sin (z)-1$, i.e., $p=\pi / 2+2 k \pi, k \in \mathbb{Z}$. The zeros of $z \cos (z)$ are $q=0$ and $q=\pi / 2+k \pi, k \in \mathbb{Z}$.
The zeros of $\sin (z)-1$ are of order 2 , since

$$
\left.(\sin (z)-1)^{\prime}\right|_{p}=\cos (p)=0, \quad \text { and }\left.\quad(\sin (z)-1)^{\prime \prime}\right|_{p}=-\sin (p)=-1 \neq 0
$$

while the zeros of $z \cos (z)$ are of order 1 since

$$
\left.(z \cos (z))^{\prime}\right|_{q}=\cos (q)-q \sin (q) \neq 0 .
$$

Hence, the isolated singularities of f in p are poles of order 1 .
(b) The value of the integral can be determined by the residue theorem. Since $p=\pi / 2$ is the only pole of f within the inner region of $\{|z|=\pi\}$, we have that

$$
\begin{aligned}
\int_{|z|=\pi} f(z) d z & =2 \pi i \operatorname{res}_{\frac{\pi}{2}}(f)=2 \pi i \lim _{z \rightarrow \frac{\pi}{2}} \frac{(z-\pi / 2) \cos (z)}{\sin (z)-1} z \\
& =2 \pi i\left(\lim _{z \rightarrow \frac{\pi}{2}} \frac{(z-\pi / 2) \cos (z)}{\sin (z)-1}\right)\left(\lim _{z \rightarrow \frac{\pi}{2}} z\right) \\
& =\pi^{2} i\left(\lim _{z \rightarrow \frac{\pi}{2}} \frac{\cos (z)-(z-\pi / 2) \sin (z)}{\cos (z)}\right) \\
& =\pi^{2} i\left(\lim _{z \rightarrow \frac{\pi}{2}} \frac{-\sin (z)-\sin (z)-(z-\pi / 2) \cos (z)}{-\sin (z)}\right)=2 \pi^{2} i
\end{aligned}
$$

Question 2. Determine the integral $\int_{0}^{\infty} \frac{\sin (x)}{x\left(x^{2}+1\right)} d x$.
Solution. Set $f(x)=\frac{\sin (x)}{x\left(x^{2}+1\right)}$. We first notice that $f(-x)=f(x)$, i.e., f is even. Therefore,

$$
\int_{0}^{\infty} f(x) d x=\frac{1}{2} \int_{\mathbb{R}} f(x) d x
$$

We further observe that $f(z)$ has an isolated singularity at $z=0$ that is removable. To avoid the singularity, we will consider a deformed axis γ that loops over the point $z=0$. More specifically, we consider $\gamma=(-\infty, 1] \cup K \cup[1, \infty)$, where $K=\left\{\left.\frac{1}{2} e^{-i(\theta-\pi)} \in \mathbb{C} \right\rvert\, \theta \in(0, \pi)\right\}$. Since f is holomorphic in the strip between $-i$ and i, and \mathbb{R} and γ are homotopic, we have due to homotopic invariance

$$
\begin{aligned}
\int_{\mathbb{R}} f(z) d z & =\int_{\gamma} f(z) d z=\int_{\gamma} \frac{\sin (z)}{z\left(z^{2}+1\right)} d z=\frac{1}{2 i} \int_{\gamma} \frac{e^{i z}}{z\left(z^{2}+1\right)} d z-\frac{1}{2 i} \int_{\gamma} \frac{e^{-i z}}{z\left(z^{2}+1\right)} d z \\
& =\frac{1}{2 i} \int_{\gamma} \frac{e^{i z}}{z(z-i)(z+i)} d z-\frac{1}{2 i} \int_{\gamma} \frac{e^{-i z}}{z(z-i)(z+i)} d z
\end{aligned}
$$

For the first integral, we obtain

$$
\int_{\gamma} \frac{e^{i z}}{z(z-i)(z+i)} d z=2 \pi i \operatorname{res}_{i} \frac{e^{i z}}{z(z-i)(z+i)}=2 \pi i \lim _{z \rightarrow i} \frac{e^{i z}}{z(z+i)}=-\pi i e^{-1}
$$

As for the second integral, we obtain

$$
\begin{aligned}
\int_{\gamma} \frac{e^{-i z}}{z\left(z^{2}+1\right)} d z & =-2 \pi i\left(\operatorname{res}_{0} \frac{e^{-i z}}{z(z-i)(z+i)}+\operatorname{res}_{-i} \frac{e^{-i z}}{z(z-i)(z+i)}\right) \\
& =-2 \pi i\left(\lim _{z \rightarrow 0} \frac{e^{-i z}}{\left(z^{2}+1\right)}+\lim _{z \rightarrow-i} \frac{e^{-i z}}{z(z-i)}\right)=-2 \pi i\left(1-\frac{e^{-1}}{2}\right)
\end{aligned}
$$

Altogether, we obtain

$$
\int_{0}^{\infty} f(x) d x=\frac{1}{2} \int_{\mathbb{R}} f(x) d x=\frac{1}{2}\left(\frac{1}{2 i}\left(-\pi i e^{-1}\right)-\frac{1}{2 i}(-2 \pi i)\left(1-\frac{e^{-1}}{2}\right)\right)=\frac{\pi}{2}\left(1-e^{-1}\right) .
$$

Question 3. Determine the integral $\int_{0}^{2 \pi} \frac{\sin \theta}{2-\cos \theta} d \theta$.
Solution. We simply apply the transformation $\cos (\theta)=\left(e^{i \theta}+e^{-i \theta}\right) / 2, \sin (\theta)=\left(e^{i \theta}-e^{-i \theta}\right) /(2 i)$ to obtain

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\sin \theta}{2-\cos \theta} d \theta & =\int_{\partial B_{1}(0)} \frac{1}{i} \frac{z-z^{-1}}{4-\left(z+z^{-1}\right)} \frac{d z}{i z}=\int_{\partial B_{1}(0)} \frac{z^{2}-1}{z\left(z^{2}-4 z+1\right)} d z \\
& =\int_{\partial B_{1}(0)} \frac{z^{2}-1}{z\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right)} d z=: \int_{\partial B_{1}(0)} f(z) d z
\end{aligned}
$$

where $\lambda_{1}=2+\sqrt{3} \notin B_{1}(0), \lambda_{2}=2-\sqrt{3} \in B_{1}(0)$. Using the residue theorem, we get

$$
\begin{aligned}
\int_{\partial B_{1}(0)} f(z) d z & =2 \pi i\left(\operatorname{res}_{0}(f)+\operatorname{res}_{\lambda_{2}}(f)\right)=2 \pi i\left(\lim _{z \rightarrow 0} \frac{z^{2}-1}{z^{2}-4 z+1}+\lim _{z \rightarrow \lambda_{2}} \frac{z^{2}-1}{z\left(z-\lambda_{1}\right)}\right) \\
& =2 \pi i\left(-1+\frac{\lambda_{2}^{2}-1}{\lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)}\right)=2 \pi i\left(-1-\frac{2 \sqrt{3}(\sqrt{3}-2)}{2 \sqrt{3}(2-\sqrt{3})}\right)=0
\end{aligned}
$$

Question 4. (a) Show that the function $f(z)=\frac{\sin (z)-z \cos (z)}{z^{3}}$ is entire.
(b) Use (a) to determine the integral $\int_{\mathbb{R}} \frac{\sin (x)-x \cos (x)}{x^{3}} d x$.

Solution.

(a) From the definition of $\sin (z)$ and $\cos (z)$, we find

$$
\begin{aligned}
\sin (z)-z \cos (z) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{2 n+1}=\sum_{n=0}^{\infty}\left(\frac{(-1)^{n}}{(2 n+1)!}-\frac{(-1)^{n}}{(2 n)!}\right) z^{2 n+1} \\
& =\left(\frac{(-1)}{6}-\frac{(-1)}{2}\right) z^{3}+\sum_{n==}^{\infty}\left(\frac{(-1)^{n}}{(2 n+1)!}-\frac{(-1)^{n}}{(2 n)!}\right) z^{2 n+1} \\
& =\frac{1}{3} z^{3}+\sum_{n=2}^{\infty}\left(\frac{(-1)^{n}}{(2 n+1)!}-\frac{(-1)^{n}}{(2 n)!}\right) z^{2 n+1} .
\end{aligned}
$$

Hence, $f(z)=\frac{1}{3}+\sum_{n=2}^{\infty}\left(\frac{(-1)^{n}}{(2 n+1)!}-\frac{(-1)^{n}}{(2 n)!}\right) z^{2(n-1)}$ is a power series with convergence radius ∞, and is therefore entire.
(b) Since f is entire, we can choose a deformed axis γ that loops over the top of $z=0$ to avoid the point $z=0$, without changing the integral. Then we use the formulas $\cos (z)=\left(e^{i z}+e^{-i z}\right) / 2$ and $\sin (z)=\left(e^{i z}-e^{-i z}\right) /(2 i)$ to obtain

$$
\begin{aligned}
\int_{\mathbb{R}} f(x) d x & =\int_{\gamma} f(z) d z=\frac{1}{2} \int_{\gamma} \frac{e^{i z}-e^{-i z}}{i z^{3}}-\frac{e^{i z}+e^{-i z}}{z^{2}} d z \\
& =\frac{1}{2} \int_{\gamma}\left(\frac{1}{i z^{3}}-\frac{1}{z^{2}}\right) e^{i z} d z-\frac{1}{2} \int_{\gamma}\left(\frac{1}{i z^{3}}+\frac{1}{z^{2}}\right) e^{-i z} d z \\
& =-\frac{1}{2} \int_{\gamma} \frac{z+i}{z^{3}} e^{i z} d z+\frac{1}{2} \int_{\gamma} \frac{i-z}{z^{3}} e^{-i z} d z
\end{aligned}
$$

Notice that $\frac{z+i}{z^{3}} e^{i z}$ is holomorphic on the upper side of γ with $\operatorname{deg}\left(\frac{z+i}{z^{3}}\right) \leq-2$, and therefore the first integral vanishes. Since $\operatorname{deg}\left(\frac{i-z}{z^{3}}\right) \leq-2$ and the only isolated singularity on the lower side of γ is $z=0$, which is a pole of order 3 , we obtain from a theorem from the lecture:

$$
\begin{aligned}
\int_{\mathbb{R}} f(x) d x & =\frac{1}{2} \int_{\gamma} \frac{i-z}{z^{3}} e^{-i z} d z=-\pi i \operatorname{res}_{0} \frac{(i-z) e^{-i z}}{z^{3}} \\
& =-\left.\pi i \frac{1}{2!} \frac{d^{2}}{d z^{2}}(i-z) e^{-i z}\right|_{z=0}=-\left.\frac{\pi i}{2}(i+z) e^{-i z}\right|_{z=0}=\frac{\pi}{2}
\end{aligned}
$$

Question 5. Evaluate the integral $\int_{0}^{\infty} \frac{1-\cos (x)}{x^{2}\left(x^{2}+1\right)} d x$.
Solution. We begin by noticing that the integrand is even. Hence,

$$
\int_{0}^{\infty} \frac{1-\cos (x)}{x^{2}\left(x^{2}+1\right)} d x=\frac{1}{2} \int_{\mathbb{R}} \frac{1-\cos (x)}{x^{2}\left(x^{2}+1\right)} d x
$$

Now set $f(z)=(1-\cos (z)) /\left(z^{2}\left(z^{2}+1\right)\right)$. Then

$$
\frac{1-\cos (z)}{z^{2}}=\frac{1}{z}\left(1-\sum_{n=0} \frac{(-1)^{n}}{(2 n)!} z^{2 n}\right)=\frac{1}{z}\left(1-\left(1-z^{2} / 2+O\left(z^{4}\right)\right)\right)=\frac{1}{2}+O\left(z^{2}\right)
$$

and f is therefore meromorphic with simple poles $z= \pm i$. Choosing the deformed axis $\gamma=$ $(-\infty, 1 / 2] \cup K \cup[1 / 2, \infty)$ that avoids $z=0$ from above, where K is the semi-circle with radius $1 / 2$ and centred in $z=0$, and noticing that

$$
f(z)=\frac{1}{z^{2}\left(z^{2}+1\right)}\left(1-\frac{e^{i z}+e^{-i z}}{2}\right)=\frac{1}{z^{2}\left(z^{2}+1\right)}-\frac{1}{2} \frac{e^{i z}}{z^{2}\left(z^{2}+1\right)}-\frac{1}{2} \frac{e^{-i z}}{z^{2}\left(z^{2}+1\right)}
$$

we have that

$$
\int_{\mathbb{R}} f(z) d z=\int_{\gamma} f(z) d z=\int_{\gamma} \frac{1}{z^{2}\left(z^{2}+1\right)} d z-\frac{1}{2} \int_{\gamma} \frac{e^{i z}}{z^{2}\left(z^{2}+1\right)} d z-\frac{1}{2} \int_{\gamma} \frac{e^{-i z}}{z^{2}\left(z^{2}+1\right)} d z
$$

Since the rational function $1 /\left(z^{2}\left(z^{2}+1\right)\right)$ has degree ≤-2, we can apply the theorems from the lecture to deduce

$$
\begin{aligned}
\int_{\gamma} \frac{1}{z^{2}\left(z^{2}+1\right)} d z & =2 \pi i \operatorname{res}_{i}\left(\frac{1}{z^{2}(z-i)(z+i)}\right)=2 \pi i \frac{1}{i^{2}(i+i)}=-\pi \\
\int_{\gamma} \frac{e^{i z}}{z^{2}\left(z^{2}+1\right)} d z & =2 \pi i \operatorname{res}_{i}\left(\frac{e^{i z}}{z^{2}(z-i)(z+i)}\right)=2 \pi i \frac{1}{i^{2}(i+i)}=-\pi e^{-1} \\
\int_{\gamma} \frac{e^{-i z}}{z^{2}\left(z^{2}+1\right)} d z & =-2 \pi i\left[\operatorname{res}_{0}\left(\frac{e^{-i z}}{z^{2}\left(z^{2}+1\right)}\right)+\operatorname{res}_{-i}\left(\frac{e^{-i z}}{z^{2}(z-i)(z+i)}\right)\right] \\
& =-2 \pi i\left[\left.\frac{d}{d z} \frac{e^{-i z}}{\left(z^{2}+1\right)}\right|_{z=0}+\frac{e^{-1}}{2 i}\right]=-2 \pi i\left[-i+\frac{e^{-1}}{2 i}\right]=-\pi\left(2+e^{-1}\right)
\end{aligned}
$$

Altogether, we obtain

$$
\int_{0}^{\infty} \frac{1-\cos (x)}{x^{2}\left(x^{2}+1\right)} d x=\frac{1}{2} \int_{\mathbb{R}} f(z) d z=\frac{1}{2}\left(-\pi+\frac{\pi e^{-1}}{2}+\frac{\pi\left(2+e^{-1}\right)}{2}\right)=\frac{1}{2} \pi e^{-1}
$$

Question 6. (a) Show that the function $f(z)=\frac{1-\cos (z)-\frac{z}{2} \sin (z)}{z^{4}}$ is entire.
(b) Use (a) to determine the integral $\int_{0}^{\infty} \frac{1-\cos (x)-\frac{x}{2} \sin (x)}{x^{4}} d x$.

Solution.

(a) Using the series definition of cos and sin, we have that

$$
\begin{aligned}
1-\cos (z)-\frac{z}{2} \sin (z) & =1-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{2 n}-\frac{z}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1} \\
& =1-\left[1-\frac{1}{2} z^{2}+\frac{1}{4!} z^{4}-\cdots\right]-\frac{z}{2}\left[z-\frac{1}{3!} z^{3}+\cdots\right] \\
& =\frac{1}{4!} z^{4}-2 \frac{1}{4!} z^{4}-\sum_{n=3}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{2 n}-\sum_{n=2}^{\infty} \frac{(-1)^{n}}{2(2(n+1)-1)!} z^{2(n+1)} \\
& =\frac{1}{4!} z^{4}-\sum_{n=3}^{\infty}(-1)^{n}\left(\frac{1}{(2 n)!}+\frac{1}{2(2 n-1)!}\right) z^{2 n} .
\end{aligned}
$$

Hence,

$$
f(z)=\frac{1}{4!}-\sum_{n=3}^{\infty} \frac{(-1)^{n}}{2(2 n-1)!}\left(1+\frac{1}{n}\right) z^{2 n-4}=\frac{1}{4!}-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2(2 n+3)!}\left(1+\frac{1}{n+2}\right) z^{2 n}
$$

which is a power series with the convergence radius of $R=\infty$, and is therefore entire.
(b) We begin by noticing that f is even. Therefore,

$$
\int_{0}^{\infty} f(x) d x=\frac{1}{2} \int_{\mathbb{R}} f(x) d x
$$

Since f is entire, we can choose a line γ that goes over $x=0$, without changing the integral. In this case, we have

$$
\int_{\mathbb{R}} f(x) d x=\int_{\gamma} f(z) d z=\int_{\gamma} \frac{1}{z^{4}} d z-\frac{1}{2} \int_{\gamma} \frac{e^{i z}+e^{-i z}}{z^{4}} d z-\frac{1}{4 i} \int_{\gamma} \frac{e^{i z}-e^{-i z}}{z^{3}} d z
$$

Since $1 / z^{4}$ and $1 / z^{3}$ are holomorphic on the upper side of γ with degree ≤-2, we have from the lecture that

$$
\int_{\gamma} \frac{1}{z^{4}} d z=0, \quad \int_{\gamma} \frac{e^{i z}}{z^{4}} d z=0, \quad \int_{\gamma} \frac{e^{i z}}{z^{3}} d z=0
$$

As for the other terms, we obtain

$$
\begin{aligned}
& \int_{\gamma} \frac{e^{-i z}}{z^{4}} d z=-2 \pi i \operatorname{res}_{0} \frac{e^{-i z}}{z^{4}}=-\left.2 \pi i \frac{1}{3!} \frac{d^{3}}{d z^{3}} e^{-i z}\right|_{z=0}=-\frac{2 \pi i}{3!}(-i)^{3}=\frac{2 \pi}{3!} \\
& \int_{\gamma} \frac{e^{-i z}}{z^{3}} d z=-2 \pi i \operatorname{res}_{0} \frac{e^{-i z}}{z^{3}}=-\left.2 \pi i \frac{1}{2!} \frac{d^{2}}{d z^{2}} e^{-i z}\right|_{z=0}=-\frac{2 \pi i}{2!}(-i)^{2}=\frac{2 \pi i}{2!}
\end{aligned}
$$

Altogether, we have

$$
\int_{0}^{\infty} f(x) d x=\frac{1}{2} \int_{\mathbb{R}} f(x) d x=-\frac{1}{2} \frac{2 \pi}{3!}+\frac{1}{4 i} \frac{2 \pi i}{2!}=\frac{\pi}{12}
$$

Question 7. Let f be holomorphic on the upper half plane, and on the real axis. Suppose that there exist real positive constants M, R_{0} and α such that $|f(w)| \leq M|w|^{-\alpha}$ for all $|z| \geq R_{0}$.
(a) For a positive real $R>0$, consider the Jordan curve $\gamma_{R}^{+}=[-R, R] \cup K_{R}^{+}$, where K_{R}^{+}is the semi-circular arc in the upper half plane with centre 0 and radius R, i.e.,

$$
K_{R}^{+}=\{z \in \mathbb{C}:|z|=R, \operatorname{Im}(z) \geq 0\}
$$

Show that

$$
\lim _{R \rightarrow \infty} \int_{K_{R}^{+}} \frac{f(w)}{w-z} d w \longrightarrow 0
$$

for any point z in the upper half plane.
(b) Use (a) to conclude that

$$
f(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} d t
$$

for any z in the upper half plane.

Solution.

(a) Let z be any point in the upper half plane. Choosing $R \geq R_{0}$ large such that $|z| \leq R / 2$, we have

$$
R=|w|=|w-z+z| \leq|z-w|+|z| \leq|z-w|+R / 2
$$

for all $w \in K_{R}^{+}$, and therefore, $|z-w| \geq R / 2$. Hence,

$$
\left|\int_{K_{R}^{+}} \frac{f(w)}{w-z} d w\right| \leq \int_{K_{R}^{+}} \frac{|f(w)|}{|w-z|} d w \leq \frac{2 M}{R} \int_{K_{R}^{+}}|w|^{-\alpha} d w=\frac{2 M}{R} \frac{\pi R}{R^{\alpha}} \rightarrow 0
$$

as $R \rightarrow \infty$, thereby proving the statement.
(b) Since $\gamma_{R}^{+}=[-R, R] \cup K_{R}^{+}$, we can write

$$
\int_{[-R, R]} \frac{f(t)}{t-z} d t=\int_{\gamma_{R}^{+}} \frac{f(w)}{w-z} d w-\int_{K_{R}^{+}} \frac{f(w)}{w-z} d w
$$

For R large such that $|z| \leq R$, we have that $z \in \gamma_{R}^{+}$. On the other hand, we know that f is analytic on the upper half plane. Therefore,

$$
\int_{\gamma_{R}^{+}} \frac{f(w)}{w-z} d w=2 \pi i \operatorname{res}_{z} \frac{f(w)}{w-z}=2 \pi i \lim _{w \rightarrow z} f(w)=2 \pi i f(z)
$$

due to the residue theorem. Passing to the limit $R \rightarrow \infty$ in the equality above gives

$$
\int_{\mathbb{R}} \frac{f(t)}{t-z} d t=\lim _{R \rightarrow \infty} \int_{[-R, R]} \frac{f(t)}{t-z} d t=2 \pi i f(z)-\lim _{R \rightarrow \infty} \int_{K_{R}^{+}} \frac{f(w)}{w-z} d w=2 \pi i f(z)
$$

which concludes the proof.

