
Residue calculus
Complex Analysis (2WA80)

Question 1. Let f(z) =
z cos(z)

sin(z)− 1
.

(a) Determine the isolated singularities of f and their type.

(b) Compute the value of the integral

󰁝

|z|=π

f(z) dz.

Solution.

(a) The isolated singularities are the zeros of sin(z)− 1, i.e., p = π/2+ 2kπ, k ∈ Z. The zeros of
z cos(z) are q = 0 and q = π/2 + kπ, k ∈ Z.
The zeros of sin(z)− 1 are of order 2, since

(sin(z)− 1)′|p = cos(p) = 0, and (sin(z)− 1)′′|p = − sin(p) = −1 ∕= 0,

while the zeros of z cos(z) are of order 1 since

(z cos(z))′|q = cos(q)− q sin(q) ∕= 0.

Hence, the isolated singularities of f in p are poles of order 1.

(b) The value of the integral can be determined by the residue theorem. Since p = π/2 is the
only pole of f within the inner region of {|z| = π}, we have that

󰁝

|z|=π

f(z) dz = 2πi resπ
2
(f) = 2πi lim

z→π
2

(z − π/2) cos(z)

sin(z)− 1
z

= 2πi

󰀕
lim
z→π

2

(z − π/2) cos(z)

sin(z)− 1

󰀖󰀕
lim
z→π

2

z

󰀖

= π2i

󰀕
lim
z→π

2

cos(z)− (z − π/2) sin(z)

cos(z)

󰀖

= π2i

󰀕
lim
z→π

2

− sin(z)− sin(z)− (z − π/2) cos(z)

− sin(z)

󰀖
= 2π2i.

Question 2. Determine the integral

󰁝 ∞

0

sin(x)

x(x2 + 1)
dx.

Solution. Set f(x) = sin(x)
x(x2+1) . We first notice that f(−x) = f(x), i.e., f is even. Therefore,

󰁝 ∞

0

f(x) dx =
1

2

󰁝

R
f(x) dx.

We further observe that f(z) has an isolated singularity at z = 0 that is removable. To avoid the
singularity, we will consider a deformed axis γ that loops over the point z = 0. More specifically, we
consider γ = (−∞, 1]∪K∪ [1,∞), where K = { 1

2e
−i(θ−π) ∈ C | θ ∈ (0,π)}. Since f is holomorphic

in the strip between−i and i, and R and γ are homotopic, we have due to homotopic invariance

󰁝

R
f(z) dz =

󰁝

γ

f(z) dz =

󰁝

γ

sin(z)

z(z2 + 1)
dz =

1

2i

󰁝

γ

eiz

z(z2 + 1)
dz − 1

2i

󰁝

γ

e−iz

z(z2 + 1)
dz

=
1

2i

󰁝

γ

eiz

z(z − i)(z + i)
dz − 1

2i

󰁝

γ

e−iz

z(z − i)(z + i)
dz.

For the first integral, we obtain

󰁝

γ

eiz

z(z − i)(z + i)
dz = 2πi resi

eiz

z(z − i)(z + i)
= 2πi lim

z→i

eiz

z(z + i)
= −πie−1.
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As for the second integral, we obtain

󰁝

γ

e−iz

z(z2 + 1)
dz = −2πi

󰀕
res0

e−iz

z(z − i)(z + i)
+ res−i

e−iz

z(z − i)(z + i)

󰀖

= −2πi

󰀕
lim
z→0

e−iz

(z2 + 1)
+ lim

z→−i

e−iz

z(z − i)

󰀖
= −2πi

󰀕
1− e−1

2

󰀖
.

Altogether, we obtain

󰁝 ∞

0

f(x) dx =
1

2

󰁝

R
f(x) dx =

1

2

󰀕
1

2i
(−πie−1)− 1

2i
(−2πi)

󰀕
1− e−1

2

󰀖󰀖
=

π

2
(1− e−1).

Question 3. Determine the integral

󰁝 2π

0

sin θ

2− cos θ
dθ.

Solution. We simply apply the transformation cos(θ) = (eiθ+e−iθ)/2, sin(θ) = (eiθ−e−iθ)/(2i)
to obtain

󰁝 2π

0

sin θ

2− cos θ
dθ =

󰁝

∂B1(0)

1

i

z − z−1

4− (z + z−1)

dz

iz
=

󰁝

∂B1(0)

z2 − 1

z(z2 − 4z + 1)
dz

=

󰁝

∂B1(0)

z2 − 1

z(z − λ1)(z − λ2)
dz =:

󰁝

∂B1(0)

f(z) dz,

where λ1 = 2 +
√
3 /∈ B1(0), λ2 = 2−

√
3 ∈ B1(0). Using the residue theorem, we get

󰁝

∂B1(0)

f(z) dz = 2πi (res0(f) + resλ2
(f)) = 2πi

󰀕
lim
z→0

z2 − 1

z2 − 4z + 1
+ lim

z→λ2

z2 − 1

z(z − λ1)

󰀖

= 2πi

󰀕
−1 +

λ2
2 − 1

λ2(λ2 − λ1)

󰀖
= 2πi

󰀣
−1− 2

√
3(
√
3− 2)

2
√
3(2−

√
3)

󰀤
= 0.

Question 4. (a) Show that the function f(z) =
sin(z)− z cos(z)

z3
is entire.

(b) Use (a) to determine the integral

󰁝

R

sin(x)− x cos(x)

x3
dx.

Solution.

(a) From the definition of sin(z) and cos(z), we find

sin(z)− z cos(z) =

∞󰁛

n=0

(−1)n

(2n+ 1)!
z2n+1 −

∞󰁛

n=0

(−1)n

(2n)!
z2n+1 =

∞󰁛

n=0

󰀕
(−1)n

(2n+ 1)!
− (−1)n

(2n)!

󰀖
z2n+1

=

󰀕
(−1)

6
− (−1)

2

󰀖
z3 +

∞󰁛

n=2

󰀕
(−1)n

(2n+ 1)!
− (−1)n

(2n)!

󰀖
z2n+1

=
1

3
z3 +

∞󰁛

n=2

󰀕
(−1)n

(2n+ 1)!
− (−1)n

(2n)!

󰀖
z2n+1.

Hence, f(z) =
1

3
+

∞󰁛

n=2

󰀕
(−1)n

(2n+ 1)!
− (−1)n

(2n)!

󰀖
z2(n−1) is a power series with convergence radius

∞, and is therefore entire.
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(b) Since f is entire, we can choose a deformed axis γ that loops over the top of z = 0 to avoid the
point z = 0, without changing the integral. Then we use the formulas cos(z) = (eiz+e−iz)/2
and sin(z) = (eiz − e−iz)/(2i) to obtain

󰁝

R
f(x) dx =

󰁝

γ

f(z) dz =
1

2

󰁝

γ

eiz − e−iz

iz3
− eiz + e−iz

z2
dz

=
1

2

󰁝

γ

󰀕
1

iz3
− 1

z2

󰀖
eiz dz − 1

2

󰁝

γ

󰀕
1

iz3
+

1

z2

󰀖
e−iz dz

= −1

2

󰁝

γ

z + i

z3
eiz dz +

1

2

󰁝

γ

i− z

z3
e−iz dz.

Notice that z+i
z3 eiz is holomorphic on the upper side of γ with deg( z+i

z3 ) ≤ −2, and therefore

the first integral vanishes. Since deg( i−z
z3 ) ≤ −2 and the only isolated singularity on the lower

side of γ is z = 0, which is a pole of order 3, we obtain from a theorem from the lecture:

󰁝

R
f(x) dx =

1

2

󰁝

γ

i− z

z3
e−iz dz = −πi res0

(i− z)e−iz

z3

= −πi
1

2!

d2

dz2
(i− z)e−iz

󰀏󰀏󰀏󰀏
z=0

= −πi

2
(i+ z)e−iz|z=0 =

π

2
.

Question 5. Evaluate the integral

󰁝 ∞

0

1− cos(x)

x2(x2 + 1)
dx.

Solution. We begin by noticing that the integrand is even. Hence,
󰁝 ∞

0

1− cos(x)

x2(x2 + 1)
dx =

1

2

󰁝

R

1− cos(x)

x2(x2 + 1)
dx.

Now set f(z) = (1− cos(z))/(z2(z2 + 1)). Then

1− cos(z)

z2
=

1

z

󰀣
1−

󰁛

n=0

(−1)n

(2n)!
z2n

󰀤
=

1

z

󰀃
1− (1− z2/2 +O(z4))

󰀄
=

1

2
+O(z2),

and f is therefore meromorphic with simple poles z = ±i. Choosing the deformed axis γ =
(−∞, 1/2]∪K ∪ [1/2,∞) that avoids z = 0 from above, where K is the semi-circle with radius 1/2
and centred in z = 0, and noticing that

f(z) =
1

z2(z2 + 1)

󰀕
1− eiz + e−iz

2

󰀖
=

1

z2(z2 + 1)
− 1

2

eiz

z2(z2 + 1)
− 1

2

e−iz

z2(z2 + 1)
,

we have that
󰁝

R
f(z) dz =

󰁝

γ

f(z) dz =

󰁝

γ

1

z2(z2 + 1)
dz − 1

2

󰁝

γ

eiz

z2(z2 + 1)
dz − 1

2

󰁝

γ

e−iz

z2(z2 + 1)
dz

Since the rational function 1/(z2(z2 + 1)) has degree ≤ −2, we can apply the theorems from the
lecture to deduce

󰁝

γ

1

z2(z2 + 1)
dz = 2πi resi

󰀕
1

z2(z − i)(z + i)

󰀖
= 2πi

1

i2(i+ i)
= −π

󰁝

γ

eiz

z2(z2 + 1)
dz = 2πi resi

󰀕
eiz

z2(z − i)(z + i)

󰀖
= 2πi

1

i2(i+ i)
= −πe−1

󰁝

γ

e−iz

z2(z2 + 1)
dz = −2πi

󰀗
res0

󰀕
e−iz

z2(z2 + 1)

󰀖
+ res−i

󰀕
e−iz

z2(z − i)(z + i)

󰀖󰀘

= −2πi

󰀗
d

dz

e−iz

(z2 + 1)

󰀏󰀏󰀏󰀏
z=0

+
e−1

2i

󰀘
= −2πi

󰀗
−i+

e−1

2i

󰀘
= −π(2 + e−1).
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Altogether, we obtain

󰁝 ∞

0

1− cos(x)

x2(x2 + 1)
dx =

1

2

󰁝

R
f(z) dz =

1

2

󰀕
−π +

πe−1

2
+

π(2 + e−1)

2

󰀖
=

1

2
πe−1.

Question 6. (a) Show that the function f(z) =
1− cos(z)− z

2 sin(z)

z4
is entire.

(b) Use (a) to determine the integral

󰁝 ∞

0

1− cos(x)− x
2 sin(x)

x4
dx.

Solution.

(a) Using the series definition of cos and sin, we have that

1− cos(z)− z

2
sin(z) = 1−

∞󰁛

n=0

(−1)n

(2n)!
z2n − z

2

∞󰁛

n=0

(−1)n

(2n+ 1)!
z2n+1

= 1−
󰀗
1− 1

2
z2 +

1

4!
z4 − · · ·

󰀘
− z

2

󰀗
z − 1

3!
z3 + · · ·

󰀘

=
1

4!
z4 − 2

1

4!
z4 −

∞󰁛

n=3

(−1)n

(2n)!
z2n −

∞󰁛

n=2

(−1)n

2(2(n+ 1)− 1)!
z2(n+1)

=
1

4!
z4 −

∞󰁛

n=3

(−1)n
󰀕

1

(2n)!
+

1

2(2n− 1)!

󰀖
z2n.

Hence,

f(z) =
1

4!
−

∞󰁛

n=3

(−1)n

2(2n− 1)!

󰀕
1 +

1

n

󰀖
z2n−4 =

1

4!
−

∞󰁛

n=1

(−1)n

2(2n+ 3)!

󰀕
1 +

1

n+ 2

󰀖
z2n,

which is a power series with the convergence radius of R = ∞, and is therefore entire.

(b) We begin by noticing that f is even. Therefore,

󰁝 ∞

0

f(x) dx =
1

2

󰁝

R
f(x) dx.

Since f is entire, we can choose a line γ that goes over x = 0, without changing the integral.
In this case, we have

󰁝

R
f(x) dx =

󰁝

γ

f(z) dz =

󰁝

γ

1

z4
dz − 1

2

󰁝

γ

eiz + e−iz

z4
dz − 1

4i

󰁝

γ

eiz − e−iz

z3
dz.

Since 1/z4 and 1/z3 are holomorphic on the upper side of γ with degree ≤ −2, we have from
the lecture that 󰁝

γ

1

z4
dz = 0,

󰁝

γ

eiz

z4
dz = 0,

󰁝

γ

eiz

z3
dz = 0.

As for the other terms, we obtain

󰁝

γ

e−iz

z4
dz = −2πi res0

e−iz

z4
= −2πi

1

3!

d3

dz3
e−iz|z=0 = −2πi

3!
(−i)3 =

2π

3!
,

󰁝

γ

e−iz

z3
dz = −2πi res0

e−iz

z3
= −2πi

1

2!

d2

dz2
e−iz|z=0 = −2πi

2!
(−i)2 =

2πi

2!
.

Altogether, we have
󰁝 ∞

0

f(x) dx =
1

2

󰁝

R
f(x) dx = −1

2

2π

3!
+

1

4i

2πi

2!
=

π

12
.
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Question 7. Let f be holomorphic on the upper half plane, and on the real axis. Suppose that
there exist real positive constants M , R0 and α such that |f(w)| ≤ M |w|−α for all |z| ≥ R0.

(a) For a positive real R > 0, consider the Jordan curve
γ+
R = [−R,R] ∪K+

R , where K+
R is the semi-circular arc

in the upper half plane with centre 0 and radius R, i.e.,

K+
R = {z ∈ C : |z| = R, Im(z) ≥ 0}.

Show that

lim
R→∞

󰁝

K+
R

f(w)

w − z
dw −→ 0,

for any point z in the upper half plane.

R−R Re

Im

K+
R

(b) Use (a) to conclude that

f(z) =
1

2πi

󰁝

R

f(t)

t− z
dt,

for any z in the upper half plane.

Solution.

(a) Let z be any point in the upper half plane. Choosing R ≥ R0 large such that |z| ≤ R/2, we
have

R = |w| = |w − z + z| ≤ |z − w|+ |z| ≤ |z − w|+R/2,

for all w ∈ K+
R , and therefore, |z − w| ≥ R/2. Hence,

󰀏󰀏󰀏󰀏󰀏

󰁝

K+
R

f(w)

w − z
dw

󰀏󰀏󰀏󰀏󰀏 ≤
󰁝

K+
R

|f(w)|
|w − z| dw ≤ 2M

R

󰁝

K+
R

|w|−α dw =
2M

R

πR

Rα
→ 0

as R → ∞, thereby proving the statement.

(b) Since γ+
R = [−R,R] ∪K+

R , we can write

󰁝

[−R,R]

f(t)

t− z
dt =

󰁝

γ+
R

f(w)

w − z
dw −

󰁝

K+
R

f(w)

w − z
dw.

For R large such that |z| ≤ R, we have that z ∈ γ+
R . On the other hand, we know that f is

analytic on the upper half plane. Therefore,

󰁝

γ+
R

f(w)

w − z
dw = 2πi resz

f(w)

w − z
= 2πi lim

w→z
f(w) = 2πif(z),

due to the residue theorem. Passing to the limit R → ∞ in the equality above gives

󰁝

R

f(t)

t− z
dt = lim

R→∞

󰁝

[−R,R]

f(t)

t− z
dt = 2πif(z)− lim

R→∞

󰁝

K+
R

f(w)

w − z
dw = 2πif(z),

which concludes the proof.
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