Residue calculus

Complex Analysis (2WA80)
Question 1. Let $f(z)=\frac{z \cos (z)}{\sin (z)-1}$.
(a) Determine the isolated singularities of f and their type.
(b) Compute the value of the integral $\int_{|z|=\pi} f(z) d z$.

Question 2. Determine the integral $\int_{0}^{\infty} \frac{\sin (x)}{x\left(x^{2}+1\right)} d x$.

Question 3. Determine the integral $\int_{0}^{2 \pi} \frac{\sin \theta}{2-\cos \theta} d \theta$.

Question 4. (a) Show that the function $f(z)=\frac{\sin (z)-z \cos (z)}{z^{3}}$ is entire.
(b) Use (a) to determine the integral $\int_{\mathbb{R}} \frac{\sin (x)-x \cos (x)}{x^{3}} d x$.

Question 5. Evaluate the integral $\int_{0}^{\infty} \frac{1-\cos (x)}{x^{2}\left(x^{2}+1\right)} d x$
Question 6. (a) Show that the function $f(z)=\frac{1-\cos (z)-\frac{z}{2} \sin (z)}{z^{4}}$ is entire.
(b) Use (a) to determine the integral $\int_{0}^{\infty} \frac{1-\cos (x)-\frac{x}{2} \sin (x)}{x^{4}} d x$.

Question 7. Let f be holomorphic on the upper half plane, and on the real axis. Suppose that there exist real positive constants M, R_{0} and α such that $|f(w)| \leq M|w|^{-\alpha}$ for all $|z| \geq R_{0}$.
(a) For a positive real $R>0$, consider the Jordan curve $\gamma_{R}^{+}=[-R, R] \cup K_{R}^{+}$, where K_{R}^{+}is the semi-circular arc in the upper half plane with centre 0 and radius R, i.e.,

$$
K_{R}^{+}=\{z \in \mathbb{C}:|z|=R, \operatorname{Im}(z) \geq 0\}
$$

Show that

$$
\lim _{R \rightarrow \infty} \int_{K_{R}^{+}} \frac{f(w)}{w-z} d w \longrightarrow 0
$$

for any point z in the upper half plane.
(b) Use (a) to conclude that

$$
f(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} d t
$$

for any z in the upper half plane.

