



Where innovation starts

# From Intrusion Detection to Software Design

A position paper

Sandro Etalle

### Why me

- Intrusion Detection in Industrial Control Systems
- First in academia
- Then, in our spin-off
  - CEO for 4 years+
  - I talked to customers





- SecurityMatters
  - Large install base
  - 40 people, and growing
  - Healthy and reputable
  - We must have done something right





### The problem: attacks

SECURITY

TU/e



A black hat claims responsibility for the hack. Here's how he says he did it.



We believe that fighting crime should be easy: we provide effective, easy-to-use offensive technology to the worldwide law enforcement and intelligence communities.

striking is how easy it is to break into a system.

### I believe that today the single most important reason why attacks are so difficult to counter is that

### present systems are so hard to monitor



### The source: Attackers

- Interesting types
  - Criminals (Cost < Benefit)
  - Hacktivists (Cost < fixed limit)
  - Nation states (no constraints)
  - Occasional (typically: insiders)
- Not everything hackable will be hacked, see e.g.
  - Where Do All The Attacks Go?, by Dinei Florencio and Cormac Herley https://www.microsoft.com/en-us/research/wpcontent/uploads/2016/02/WhereDoAllTheAttacksGo.pdf



### Two Ways of Dealing with Attacks





### The Solution: Prevention?

- SW will never be 100% bug-free
- and even if it were 100% bug-free, it would be used in an insecure way
- and even if it were used in a secure way, something else will eventually spoil the system. There are too many connections
- And even then ....

TU/e

### The Washington Post Democracy Dies in Darkness

#### Innovations

# How a fish tank helped hack a casino

By Alex Schiffer July 21 💟



### The possibilities (in my opinion...)



**ECURITY TU/e** 

### So what is Intrusion Detection?

- An area with a large gap between research and applications
- "despite extensive academic research one finds a striking gap in terms of actual deployments of such systems"
  - Robin Sommer, Vern Paxson: Outside the Closed World: On Using Machine Learning for Network Intrusion Detection. S&P 2010
  - They are talking about machine-learning based IDS,
- Evidence indicates that this is a general problem of IDS
  - Why?
  - Next: the evaluation parameters of IDS

### When do we have a GOOD IDS?

- Research papers look at (only) two parameters
  - Low False Negatives (high detection rate): effectiveness
  - Low **False Positives** rate. High FP => High Usage Costs

- IMHO
  - Regarding the detection rate, papers usually indicate 90%+, but 50% detection rate would be more than sufficient, if <u>it was for real</u> <u>attacks</u> (attacks are multistep anyhow)
  - False positive rate is very important and my rule of thumb is that it should be < 0,01% to be viable.
  - BUT : these parameters are not enough to evaluate an IDS

### When evaluating an IDS we should also look at:

- Actionability: how much information does the IDS give the user to prepare the response? No information => Very High Usage Costs
- Adaptability. Most IT systems change continuously (even SCADA systems, for that matter). The IDS operational costs are heavily affected by the cost of adapting it to the system changes.
- **Scalability.** How much does it cost to install and operate the IDS when deployed on 2, 200 or 2000 networks.
- IMHO:
  - lack on these fronts are the reason why "despite extensive academic research one finds a striking gap in terms of actual deployments of such systems"
  - Of course these parameters are difficult to evaluate in an academic setting
  - Did I mention it is a "horrible" research area?



# Let's start digging into IDSs



### How can you detect an attack.

#### Knowledge-Based

- Negative model aka blacklisting
- You recognize the attack
- Anti-viruses, Blacklisting, Signatures, etc...



#### Behavior Based

- Positive model: you recognize the normal behavior
- what is not normal, is an attack, or in any case it is worth looking at
- e.g. firewalls, whitelisting systems,









### Let's take care of knowledge-based systems

- They detect a fraction of the attacks.
  - Too bad, because they score very well on the the other criteria
- For a lot of systems you don't have the knowledge
- ... or it is not cost effective to process it
- Too easy to evade



The US government's \$6 Billion firewall is nothing but a big blunder.

Dubbed **EINSTEIN**, the nationwide firewall run by the US Department of Homeland Security (DHS) is not as smart as its name suggests.



### The possibilities (in my opinion...)



SECURITY TU/e

### So we are left with behavior-based systems

• Where do we get the knowledge about the system?

- From a specification,
  - (specification-based systems)



- We learn it automatically
  - ("anomaly-based systems")





#### To build the model of the system, we have two options



### Specification-based systems are not the solution

- This is all "in my opinion"
- Two crucial features they do not satisfy "by definition"
  - **Adaptability**. Most IT systems change continuously (even SCADA systems, for that matter).
  - **Scalability**. How much does it cost to install and operate the IDS when deployed on 2, 200 or 2000 networks.

#### Disclaimer

TU/e

- I love the principle of specification-based systems
- I think it will become increasingly popular
- But applied only to specific subparts of a system of systems (think of IoT....)

### The possibilities (in my opinion...)



**ECURITY TU/e** 

### And now we are left with anomaly-based systems

- Another splitting, in two flavors:
  - **BlackBox**, using machine learning approaches, like neural networks.
    - The semantics used by the detection system is "unrelated" to the semantics of the target system

- WhiteBox, in which we try to *explain* the semantics of the target system
  - The semantics used by the detection system is related to the semantics of the target system
  - Based on e.g. understanding the communication protocol, extracting command and setpoints and whitelisting them.







### BlackBox Systems are not the solution

- Personal Opinion 1
- I believe that blackbox anomaly-based intrusion detection systems are of very limited use for security.
  - Actionability is the main problem
  - But also FPs...



- Sommer and Paxson (S&P 2010)
  - "we deem it crucial for any effective deployment to acquire deep, semantic insight ... rather than treating the system as a black box as unfortunately often seen. "
  - "the better we understand the semantics of the detection process, the more operationally relevant the system will be."
  - [blackbox] anomaly detection systems face a key challenge of transferring their results into *actionable* reports .... In many studies, we observe a lack of this crucial final step.

### The possibilities (in my opinion...)





### Whitebox IDS should better be working

#### It works! But: on specific systems

- even on some large-scale systems.
- very good usability results on SCADA/ICS
- a solution for all problems? No
- definition: there is not a one-size fits all.

#### Personal Opinion 2

 "Useful" anomaly-based intrusion detection is not quite about intrusion detection; it is about being able to understand what happens in the target system and being able to monitor its integrity.





### Where Whitebox Anomaly Detection Fails

- most IT systems are simply not understandable
  - Too complex, too dynamic too much of a mess.
  - Try to do anomaly detection on the first picture...
- Personal Opinion 3
- There cannot be a one-sizefits-all anomaly-based network intrusion detection system that works equally well on all domains.







### WE GOT STUCK



### What should we do?

- Change the way we write software to make it more amenable to monitoring
- We have no other choice

This is basically Personal Opinion 4

### What is supervisable software?

The short answer: I don't know

 The long answer is: I really really really don't know.

- SW allowing people who monitor it to understand what it is doing.
- It should be easier than writing secure software.



### What about privacy?

- Supervisability certainly does not help privacy.
- a very serious concern.
  - There is a tendency to obfuscate the working of software to "guarantee privacy"
  - There is also the tendency to obfuscate the working of software to "guarantee security" – as if we hadn't done that mistake a million times already
- Personal Opinion 5
- Trying to achieve privacy by making the software not supervisable is in my opinion (almost) as wrong as trying to achieve security by obscurity.



### Supervisable and Privacy-Preserving

- The obvious way is to separate
  - the observables regarding the working of the artifact, and
  - the private data
- This is not always possible: the working may reveal private information.
- However, consider
  - There are *many* sectors in which this is possible
  - There are many sectors in which we have lost that privacy anyhow
  - And there are many sector in which separating the working and the private data is not going to be possible.



### The path to supervisability

- Supervisability
  - Could not find a precise definition
  - An art more than a science
- Writing supervisable SW: easier than writing secure SW
- There are fields (IoT) where this finds a natural application
- Unfortunately market forces do not help, I believe at the end of the day regulations will be necessary.



### I believe there is no other way

Software Eingineering must The tree of desperation help detection Anomaly-based, or **Drevention** Detection Specification-based LARGELY INSUFFICIENT Knowledge The rest is running Behavior based base LARGELY behind the facts **INSUFFICIENT** Anomaly based Specification (learning) Based Whitebox BlackBox (ML) LARGELY **INSUFFICIENT** 



I believe that today the single most important reason why attacks are so difficult to counter is that present systems are so hard to monitor

I believe the only practical way towards making more secure systems goes through

making software more supervisable



PAGE 36<sup>13-</sup> 09-17

## **Questions**?

