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Abstract. I believe the single most important reason why we are so
helpless against cyber-attackers is that present systems are not super-
visable. This opinion is developed in years spent working on network in-
trusion detection, both as academic and entrepreneur. I believe we need
to start writing software and systems that are supervisable by design;
in particular, we should do this for embedded devices. In this paper, I
present a personal view on the field of intrusion detection, and conclude
with some consideration on software design.

1 Preamble

Allow me to start with a personal note: it is useful to understand where my com-
ments come from. I landed on the field of intrusion detection in 2004, after years
of moving from rather theoretical to increasingly more practical research topics.
We dove into the intrusion detection field with the declared intent of setting up
a company afterwards. After years of trying many useless ideas, we focused on
a couple of promising technologies. In 2009, my 2 PhD students Damiano Bol-
zoni and Emmanuele Zambon and I started SecurityMatters. As of May 2017,
SecurityMatters is doing well, and there are some very demanding customers
who are very happy with its network monitoring system, so in-between the fail-
ures we must have done a couple of things right. While I need to clarify that
SecurityMatters appliance is now much more than a network intrusion detec-
tion system and certainly way more than an anomaly-based intrusion detection
system, SecurityMatters has been a tremendous learning experience regarding
intrusion detection. In what follows I would like to share with you some of the
lessons learned.

2 A Journey in Intrusion Detection

Network intrusion detection is the art of detecting when something goes wrong
simply by monitoring network traffic. This can be done at different places in
a system. In an industrial system, you can monitor the networks of the web



applications, the back office (Windows), the SCADA1 system and the PLC2

(I have used an industrial control system as reference, but this is immaterial).
Depending where you look, you have different observables. Regardless of where
you do the monitoring, there are two ways to detect when something goes wrong
in a system: either you recognize the wrong behaviour or you are able to recognize
the correct behaviour and you alert when something deviates from it. So you
either have a model of the malicious behaviour or you have a model of the
legitimate behaviour. There is no third way, even though you can intermix the
two approaches.

This is reflected in the notation used in the intrusion detection commu-
nity [1, 2], where knowledge based intrusion detection (a.k.a., misuse based3) is
the kind of intrusion detection that relies on a model of the attack, and behaviour
based intrusion detection the one that relies on the model of the legitimate be-
haviour. In turn, behaviour based NIDS are usually subdivided in anomaly based
NIDS and specification based intrusion detection [3], with the distinction that in
anomaly based NIDS the model of the target system is built more or less auto-
matically during a “learning phase”, while in specification-based NIDS models
are “manually developed specifications that capture legitimate (rather than pre-
viously seen) system behaviors” [4]. The common perception about knowledge-
based vs. anomaly-based and specification-based NIDS is that

P1 Knowledge-based NIDSs work well in practical deployments, but they are
“ineffective”

P2 Anomaly-based NIDS are effective (only) in benchmarks, but do not work
well in practical deployments.

P3 Specification-based NIDS are effective (only) in benchmarks and for very
specific small systems, but cannot be applied to practical large systems
(next to being too expensive to build and maintain).

In what follows, I will touch on what I think are the reasons behind this
“perception”, and I will particularly focus on anomaly detection systems because
our experience with them is instrumental to the goal of this paper. Where I
want to get to in the end is to argue that the true reason of the shortcomings
of acceptance-based systems (P2 and P3) are more rooted in the way we design
software than in the actual limitations of those approaches.

But first, we need to agree on the parameters we refer to, when we evaluate
the detection systems. Intuitively, IDSs need to be effective on real systems

1 Supervisory control and data acquisition (SCADA). For the purpose of this paper it
is a control (computer) system used e.g., in industrial control systems. Intuitively,
SCADA systems control e.g., PLCs.

2 Programmable Logic Controller (PLC). Typically small computer systems used in
e.g., manufacturing to connect to sensors and actuators.

3 The notation in the literature is unfortunately confusing: misuse based systems
are often narrowly associated with the use of signatures; similarly, anomaly based
systems are usually associated with the use of machine-learning techniques like neural
networks, while their scope is much broader.



and cost-effective to operate, and in my opinion this translates in the following
partially unusual list of desiderata:

D1 High detection rate (effectiveness), also w.r.t. attacks that have not been
witnessed yet (e.g., 0-days).

D2 Low false positive rate (FPR). The FPR is one of the important factors
in determining the total cost of ownership of the intrusion detection system.

D3 Actionability. When the IDS raises an alert, someone needs to act upon
it. The more information the IDS can provide over the alert raised that can
be useful to determine the reaction strategy, the better it is. While often
forgotten in the benchmarks, actionability is always an important factor in
the operational cost of an IDS.

D4 Adaptability. Most IT systems change continuously (even SCADA system,
for that matter), therefore the IDS has to be able to cope with that. In
our experience, adaptability is another primary factor in the total cost of
ownership of an IDS, because changes can raise false alerts, that need to be
acted upon.

D5 Scalability. One of the obvious challenges ahead is monitoring increasingly
complex, heterogeneous and open systems of systems. Not all IDS technolo-
gies scale up that well.

For the sake of clarity, we need to unclutter the terminology used in the se-
quel, because the word “system” is overloaded and it is used to indicate both the
monitoring and the monitored system. To distinguish the two uses of “system”
I will use the following notation

– the “target system” (or “underlying system”) is the system being monitored,
– the “system” is usually the monitoring system (the NIDS).

We can now discuss P1 . . . P3, starting with knowledge-based detection.

Knowledge-Based Systems That knowledge-based NIDS systems “work” is
demonstrated by the fact that basically all network intrusion detection and pre-
vention systems commercially available are knowledge-based (typically based on
signatures). There are probably millions of knowledge-based NIDS in use around
the globe. In particular, knowledge-based systems score very well on actionabil-
ity (they recognize the kind of attack, so they can immediately refer to the
appropriate mitigation strategy), scalability (when you recognize the attacks it
does not matter if you are looking at one target system or at a hundred of them,
provided that the FPR is reasonably low).

However, they are ineffective because it is very easy for attackers to evade
them [5,6]. Knowledge-based systems (in particular, signature-based) catch main-
stream, well-established attacks, but they are always a few steps behind, and are
actually helpless against skilful and targeted attackers. Knowledge-based detec-
tion is (and I believe will always be) extremely useful, because it handles effi-
ciently the low-key attacks, but will never be the key technology that will defend
us from the prepared attacker.

So let us move to behavior-based NIDS.



Behavior-Based Systems As argued before, here I will focus in particu-
lar on anomaly detection systems. In a nutshell, the art of anomaly-based in-
trusion detection is finding a suitable abstraction function AF such that if
AF (present state) 6∈ AF (model of target system) then the system raises an alert.
In the anomaly-based systems the model of the system is built using machine
learning techniques. A hard to break misunderstanding is that the machine learn-
ing in use must be general-purpose and domain agnostic, like e.g., neural net-
works. This is not so, and nowadays the machine learning (and the AF) used is
often tailored for the specific protocol and the specific domain of the target sys-
tem. We will further elaborate on that in the section about whitebox anomaly
detection. On the other hand, since we are talking about behavior-based de-
tection, the AF should in theory be attack-agnostic. In practice, however, this
cannot be completely so, in the sense that the possibly interesting anomalies
(the attacks) must not be lost in the abstraction (***). So to build a good AF
you do need to have some idea of the possible attacker vectors and the kind of
events you are interested in observing. If you don’t know what you are looking
for, you are probably not going to find it.

Getting back to the statement P2, that “anomaly-based systems do not work
in practice” It is now interesting to take a look at it in the light of the experiences
we had in making anomaly detection systems actually work. Let us look at D1
D5 and how anomaly detection copes with them. Allow me to keep D1 and D2
(detection rate and false positives) as last.

Actionability. By definition, anomaly-based network intrusion detection sys-
tems (ABNIDSs) do not recognize the attack (otherwise, you would have used a
knowledge-based detection, with less headaches), the only thing they can rely on
is their knowledge of the target system. But if you have completely lost the se-
mantics of the target system when you applied the abstraction function AF, then
you have also lost an important source of information, that can be very useful in
deciding how to act upon an alerts. This is the reason why I like to distinguish
two kind of ABNIDS, which I call blackbox and whitebox. - We call blackbox
those ABNIDs that use abstraction function unrelated to the system’s seman-
tics, like n-gram analysis, neural networks, and alike. - We call whitebox systems
those ABNIDS in which the abstraction function AF retains something of the
high-level semantics of the target system. I would call whitebox IDS an IDS that
would distinguish between read and write file access, and would be able to report
an alert like “thesubstation Alpha is giving instructions to PLC Beta: this is an
anomalous action as Alpha normally only reads data from Beta”. (Aside: we
started using the notation “whitebox ABNIDS” in [7], there is another reference
to whitebox anomaly detection in [8], but that is about host-based detection,
and is unrelated).

To start with an unprofessional statement:

Personal Opinion 1 I believe that blackbox anomaly-based intrusion detection
systems are of very limited use for security.

This was noticed back in 2010 by Sommer and Paxson, [9], who wrote “We argue
that when evaluating an anomaly detection system, understanding the target



system’s semantic properties is much more valuable than identifying a concrete
set of parameters for which the system happens to work best for a particular
input”. To this, we added some evidence in [10]. In our hands-on experience, the
problem with blackbox (say n-gram-based) ABNIDS is that their actionability
is zero: you get an alert and to find out what is going on you need to have a
very skilled someone take a look with Wireshark. Is it interesting? What should
be done about it? The information given with the ABNIDS warning was “the
frequency distribution of this packet is abnormal”. Whitebox detection here
has a tremendous advantage: it tells you something about the semantics of the
anomaly and what the target system was doing at the time of the alert, and the
insight in the alert can be much more detailed, like there is a doctor breaking
the glass 10 times in a day, the observed limit is 5.

In our search for usable anomaly-detection, we came to the conclusion that

Personal Opinion 2 “Useful” anomaly-based intrusion detection is not quite
about intrusion detection; it is about being able to understand what happens in
the target system and being able to monitor its integrity.

In our opinion, good anomaly detection starts by a good representation of the
target system. A representation people can understand. You do not concentrate
so much on the attack you need to discover (even though (***) has to be satis-
fied), but on explaining what happens. This brings it closer to specification based
systems and to monitoring/forensics. By doing so, you’ll have less difficulties (a)
getting the IDS accepted at the stakeholder (it appears familiar) (b) providing
actionable security when something goes wrong.

To give a concrete example: this is the recurring pattern of what typically
happens in real-life deployments of a whitebox ABNIDS (based on the experience
we have when deploying SilentDefense): the first thing we make is the model of
the target system. This usually takes a couple of days of passive listening to
the network traffic, and the application of our whitebox AF. Then we present
the customer with the results. We haven’t started doing anomaly detection yet,
we have just learned the model. And by only producing a good model of the
target system we have identified at least a dozen issues in the network that need
to be solved and can be acted upon (notice that a blackbox model would not
produce the same results). When this happens, we believe we are in presence
of an anomaly detection system that (a) is “good”, and (b) fits well the target
system.

The downside of this approach is that anomaly-detection systems need to
specialize to a particular domain, which is not only a particular network protocol
but a particular set of applications of it. In addition, things might work well in
a certain domain (e.g., Industrial Control Systems – ICS) but they might not
work at all in another domain (e.g., IT). For instance, because the changes and
intrinsic dynamism of a domain make a certain model obsolete too quickly. Our
experience with SecurityMatters taught us that domain knowledge is crucial to
success, in that for instance we “understand” very well domains such as energy
distribution, oil and gas, etc. We have also learned how to approach a new
domain, but each new domain requires adjustments and understanding.



Adaptability. Behaviour-based systems - regardless of whether they are anomaly-
based or specification based - need by definition to be adjusted every time there
is a change in the underlying system. This is a problem, even in a closed, rel-
atively static setting like ICSs. There is a common misunderstanding that the
network traffic (and the underlying settings) of Industral Control Systems does
not change much in time. This is not true: there are continuous changes due to
maintenance, replacement of parts, new functionalities, etc.; if a behavior-based
system is connected, then it should have the ability of adjusting itself to these
changes without raising a myriad of alerts. This requires providing facilities to
the people who are in charge of the monitoring to distinguish the typical benign
cases from the possibly malicious ones. Again, it comes down to understanding
the application domain, and building some actionability into the system. This is
yet another reason why - given how software is written today –

Personal Opinion 3 There cannot be a one-size-fits-all anomaly-based network
intrusion detection system that works equally well on all domains.

Examples of “domains” are backoffice, webapplication, IoT, but also more specif-
ically: Oil and Gas, Banking, Water companies. In short: ABNIDSs are always
tailored to the target system.

This brings up the point of Scalability. Since ABNIDS are tailored to the
target system, scalability is by definition an issue. To monitor 1000 networks,
you need a thousand different models, that need to be trimmed when things
change, etc. To monitor a smart city you have to monitor every single building,
every single room etc.: there is no fixed recipe that fits all of them (as in the case
of knowledge-based detection). The obvious conclusion is that this technology
scales only up to a point, but areas like IoT, with thousands and thousands of
different networks, will need a leap forward in our approach to monitoring.

Detection rate and false positives. FPs are the nightmare of researchers and
practitioners alike because a high false positive rate (FPR) means that the IDS
will not be looked at. Our experience in ICS confirms that it is usually possible
to tune the system to find the “best” compromise between DR and FPR, though
in our experience, in the case of whitebox anomaly detection this is done more
by focusing on what is monitorable and disregarding what is “not monitorable”,
which are the parts for which it is simply impossible to make a reasonable model
of the observables. In ICS, the “monitorable” part dominates, and we took ad-
vantage of that to engineer an effective NIDS; but if we look at e.g. a standard
laptop, there is no way we could make a reasonable whitebox model of what
happens in there. I want to address this in the next section, but before I do so
it is time to touch on specification-based systems.

Specification based intrusion detection systems Here I need to say that
I do not have enough first-hand experience about them to have a bold opinion,
but it seems to me that they share with ABNIDS a lot of the pro’s and the
con’s, with the added problem that producing the specification is usually very
costly. I believe that one of the root problems with this technology is that - to



be effective – the specification should take into consideration the environment:
the same system (say a PLC) can behave very differently when used in different
contexts, and having the specification of the PLC in isolation is of little use
for intrusion detection. On the other hand, providing a specification for each
implementation is prohibitively expensive. Here ABNIDSs have a tremendous
advantage over specification-based systems, because they learn the behaviour of
the target system in the appropriate context. Additional (obvious) difficulties
include dealing with changes in the systems and actionability. While I believe
that specification-based NIDS form a very promising area, my personal opinion
is that for the moment their applicability is limited to very specific domains,
that are even more narrow that those to which we can apply anomaly-detection
profitably.

Some Considerations on Intrusion Detection While we cannot say (yet)
that whitebox ABNIDSs are successful in general, we have seen that they can be
successful in monitoring specific systems and in particular we have experienced
that when they are successful, the reason is usually that they manage to lift
the understanding to the application level: by analysing the network trace they
understand what the application is doing. That is where anomaly detection
can be effective. In our specific case, achieving this required putting together a
massive knowledge of the domain, and was possible because our target systems
(ICS) are less confusing than e.g., standard computers. In fact, there is little
hope that our method could be (economically) applied to e.g. the applications
running in a modern laptop. This is because the network observables they exhibit
are so complex, limited and confusing that you simply can’t understand what
is going on, let alone make a usable whitebox model of it (not to mention, deal
with changes, which are the rule, rather than the exception).

3 Writing supervisable software

I now want to step away from the topic of intrusion detection and build on
the above considerations to talk about software design. Giving for granted that
software and systems will never be secure, as statistics and trends amply demon-
strate, we have to focus on engineering resilient systems, and a large part of this
resiliency lies in early understanding of when things go wrong. This is what an
intrusion detection is supposed to do. Unfortunately, as the journey above indi-
cates, I believe that there is little hope that intrusion detection will work on a
global scale; it will always work on some sectors, some target areas, but there
are large areas where they are ineffective or too expensive.

This is not surprising, if we consider that ICT systems are largely built as
black boxes, and after building them we pretend that the monitoring system is
able to detect when something goes awry. For some of those black boxes (the
“simpler” ones) IDSs are able to do so, but when the black box is too complex
inside or when there are too many of them connected together we lose control,
and IDSs can only pick some meaningful indicators here and there and hope to



make the best of them. The global picture is then lost and in my opinion this is
when IDSs stop being effective.

It also appears that complexity this is only going to get worse: on one hand
the scale of the target systems is exploding (see IoT), on the other hand, we
tend to try to make things “more secure” by making systems more unintelligible
(e.g., by obfuscating and encrypting the observables), therefore making it harder
to reconstruct the global picture.

To build resilient systems, I believe we need to change drastically the way we
actually write software. Next to “security by design”, we need something else:

Personal Opinion 4 We should develop a discipline of writing software that is
supervisable (and privacy-preserving) by design.

I do not have (yet) a precise definition of what supervisable is. What I am
advocating is a discipline more than a science, a discipline I believe we need to
develop; with a lot of practical, hands-on work.

In general, I think that programs and systems should be designed to pro-
vide meaningful observables (including meaningful network observables), which
should be suffcient for the instructed observer to understand:

(a) what the underlying applications are actually doing,
(b) if the system is actually doing what it is pretending to do,

and, ideally,

(c) what the system is failing to do,
(d) whether there is something wrong with the system, and how to react to it.

Privacy and data confidentiality are obviously very important concerns, and
these points seem to oppose them. This is the reason why privacy is explicitly
mentioned in the opinion above: supervisability and privacy/confidentiality can-
not be considered as separate issues and need to be addressed together at design
time. This can be done by separating the information regarding the working
of the application from the information that needs to be kept confidential, and
adopt different encryption strategies for them.

Personal Opinion 5 Trying to achieve privacy by making the software not su-
pervisable is in my opinion as wrong as trying to achieve security by obscurity.

This is – I am afraid – a common engineering mistake: encrypting “everything”
to stay on the safe side. Unfortunately, this often makes the system less super-
visable, less manageable, it makes troubleshooting harder and in several cases it
does not help security [11].

It is better to consider everything public, except for the confidential and
the private information. In addition, I am not saying that everything should be
monitored by everyone, but everything should be supervisable by something, and
there should be something monitoring on it. Something trusted. Communication
can be encrypted, when needed, and supervisors need to be able to decrypt the
non-confidential parts to monitor the functioning of the system.



Getting back to the points above, point (a) advocates the use of observables
with a clear semantics. This is a necessary condition to obtain (b), which is
the key element. It states that the observables (and the communication) should
be designed in such a way that it is difficult for a hypothetical attacker who
has managed to subvert the target system to do anything without being no-
ticed. I realize that in many cases this is impossible: televisions, servers etc. will
always deal with gigabits binary data in which it is by definition easy for an
attacker to embed his own payload. But there are other cases in which this is
possible. I am thinking in particular at how we should deal with the software
of smaller embedded systems and IoT devices. Point (c) goes a step further and
encourages the engineering of systems with predictable behaviour and provid-
ing sufficient observables to allow one to determine whether they are actually
operating correctly. As it happens, while point (b) argues for a minimization of
the communication, point (c) makes a case for the opposite: that the number of
observables should be sufficient to understand also when something is not hap-
pening. Finally, (d) touches on the idea that we should start thinking about how
to do incident response right from the moment that we design the systems. It is
very much “wishful thinking”, but in the long run, it is probably unavoidable.
It should be clear that what I called supervisable is reminiscent of but is very
different from the concepts of monitorability as defined in runtime verification
(e.g., [12, 13]), and the concepts of observability and diagnosability [14].

It may seem that I am advocating writing software for which it is possi-
ble to do specification-based intrusion detection. This is not quite true, for the
same reason I mentioned earlier when discussing specification-based NIDS: the
same artefact behaves (rightly) very differently when put in different contexts
and I don’t believe this variability can be captured by a specification (not a
cost-effective one). I would happy to be contradicted. What I am advocating is
writing software that allows to do monitoring it, possibly using a combination of
techniques like those in anomaly-based detection, specification-based detection
and correlation as is done in present SIM-SIEMS.

In this ideal world, software artefacts should be self-explanatory in their
behaviour, and it should be straightforward to for the instructed observer to
be able to understand what the system is actually doing by simply observing
its network behaviour. Unfortunately, this is not the direction we are following,
and despite the adoption of “standard protocols” when possible, confusion is
the rule and clarity is the exception. Scalability remains an issue, which in my
opinion can only be dealt with in the obvious way by breaking down a system
into monitorable subsystems, etc.

I think this discipline is going to be indispensable in systems where solutions
of different vendors and providers are combined together. Like it is happening in
IoT. Liabilities in case of failure are probably going to play an interesting role
in how systems will be shaped, and in my opinion a form of supervisability will
be a necessary instrument to identify actual responsibilities and actions to be
taken when things go wrong.
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