
2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

Modelling and Perturbation Methods

Assignments and Exercises - 2MMA30

Sjoerd Rienstra

Singularity is almost invariably a clue

(Sherlock Holmes, The Boscombe Valley Mystery)

1 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

2 09-02-2018



Contents

1 Mathematical Modelling and Perturbation Methods 7

2 Modelling and Scaling 11

2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 What is a model? Some philosophical considerations. . . . . . . . . . . . . . . . 11

2.1.2 Types of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Perturbation methods: the continuation of modelling by other means . . . . . . . 14

2.1.4 Nondimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Modelling, Nondimensionalisation and Scaling: Assignments . . . . . . . . . . . . 19

2.2.1 Travel time in cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Membrane resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Ship drag: wave and viscosity effects. . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Sphere in viscous flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.5 Cooling of a cup of tea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 The velocity of a rowing boat. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.7 A sessile drop with surface tension. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.8 The drag of a plate sliding along a thin layer of lubricant. . . . . . . . . . . . . . 22

2.2.9 The suspended cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.10 Electrically heated metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.11 Traffic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.12 The Korteweg-de Vries equation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.13 An equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.14 The pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.15 Heat convection and diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.16 Heat conduction in a long bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.17 A Simple Balloon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.18 A pulsating sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.19 Similarity solutions for non-linear and linear diffusion . . . . . . . . . . . . . . . 29

2.2.20 Falling through the center of the earth . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.21 Energy consumption of a car . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

3 Asymptotic Analysis 31

3.1 Basic definitions and theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Asymptotic Expansions: Applications . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 General procedure for algebraic equations . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Example: roots of a polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Asymptotic Expansions: Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Asymptotic order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Asymptotic expansions in ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Asymptotic sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4 Asymptotic expansions in x and ε . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.5 Solving algebraic equations asymptotically . . . . . . . . . . . . . . . . . . . . . 43

3.3.6 Solving differential equations asymptotically . . . . . . . . . . . . . . . . . . . . 47

3.3.7 A water-bubbles mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.8 A chemical reaction-diffusion problem (regular limit) . . . . . . . . . . . . . . . 49

4 Method of Slow Variation 51

4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 General procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Example: heat flow in a bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Method of Slow Variation: Assignments . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Heat flux in a bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Lubrication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Quasi 1D gas dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 Webster’s horn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.5 Shallow water waves along a varying bottom . . . . . . . . . . . . . . . . . . . . 58

4.2.6 A laterally heated bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Method of Lindstedt-Poincaré 61

5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 General Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Example: the pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Method of Lindstedt-Poincaré: Assignments . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 A quadratically perturbed harmonic oscillator . . . . . . . . . . . . . . . . . . . 65

5.2.2 A weakly nonlinear harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 A weakly nonlinear, quadratically perturbed harmonic oscillator . . . . . . . . . 65

5.2.4 A coupled nonlinear oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.5 A weakly nonlinear 4th order oscillator . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.6 A weakly nonlinear oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.7 The Van der Pol oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.8 A variant of the Van der Pol oscillator . . . . . . . . . . . . . . . . . . . . . . . 66

4 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

5.2.9 Another weakly nonlinear oscillator . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Matched Asymptotic Expansions 67

6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Singular perturbation problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.2 Matched Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Matched Asymptotic Expansions: Assignments . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Non-uniform approximations and boundary layers . . . . . . . . . . . . . . . . . 79

6.2.2 Boundary layers and integration . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.3 Friedrichs’ model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.4 Singularly perturbed ordinary differential equations . . . . . . . . . . . . . . . . 79

6.2.5 A hidden boundary layer structure . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.6 A singularly perturbed nonlinear problem . . . . . . . . . . . . . . . . . . . . . 80

6.2.7 A singularly perturbed linear problem . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.8 A boundary layer problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.9 Sign and scaling problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.10 The Michaelis-Menten model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.11 Groundwater flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.12 Stirring a cup of tea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.13 Fisher’s travelling wave problem . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.14 Nonlinear diffusion in a semi-conductor . . . . . . . . . . . . . . . . . . . . . . 84

6.2.15 Heat conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.16 Polymer extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.17 Torsion of a thin-walled tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.18 A visco-elastic medium forced by a piston . . . . . . . . . . . . . . . . . . . . . 86

6.2.19 Heat conduction in fluid flow through a slit . . . . . . . . . . . . . . . . . . . . . 87

6.2.20 The sag of a slender plate supported at the ends . . . . . . . . . . . . . . . . . . 87

6.2.21 Heat conduction along cylinder walls . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.22 Cooling by radiation of a heat conducting plate . . . . . . . . . . . . . . . . . . 90

6.2.23 The stiffened catenary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.24 A boundary layer problem with x-dependent coefficients . . . . . . . . . . . . . 92

6.2.25 A catalytic reaction problem in 1D . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.26 A cooling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.27 Visco-elastic fibre spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.28 The weather balloon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.29 A chemical reaction-diffusion problem (singular limit) . . . . . . . . . . . . . . 99

6.2.30 An internal boundary layer (Oxford, OCIAM, 2003) . . . . . . . . . . . . . . . . 99

6.2.31 The Van der Pol equation with strong damping . . . . . . . . . . . . . . . . . . . 99

6.2.32 A beam under tension resting on an elastic foundation . . . . . . . . . . . . . . . 99

5 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

7 Multiple Scales, WKB and Resonance 101

7.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.1 Multiple Scales: general procedure . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.2 A practical example: a damped oscillator . . . . . . . . . . . . . . . . . . . . . . 102

7.1.3 The air-damped resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.4 The WKB Method: slowly varying fast time scale . . . . . . . . . . . . . . . . . 106

7.1.5 Weakly nonlinear resonance problems . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Multiple Scales, WKB and Resonance: Assignments . . . . . . . . . . . . . . . . . 111

7.2.1 Non-stationary Van der Pol oscillator . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.2 The air-damped, unforced pendulum . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.3 The air-damped pendulum, harmonically forced near resonance . . . . . . . . . . 111

7.2.4 Relativistic correction for Mercury . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.5 Weakly nonlinear advection-diffusion . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.6 Golden Ten: an application of multiple scales . . . . . . . . . . . . . . . . . . . 113

7.2.7 Modal sound propagation in slowly varying ducts . . . . . . . . . . . . . . . . . 118

7.2.8 A nearly resonant weakly nonlinear forced harmonic oscillator . . . . . . . . . . 119

7.2.9 A non-linear beam with small forcing . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.10 Acoustic rays in a medium with a varying sound speed . . . . . . . . . . . . . . 120

7.2.11 Homogenisation as a Multiple Scales problem . . . . . . . . . . . . . . . . . . . 120

7.2.12 The non-linear pendulum with slowly varying length . . . . . . . . . . . . . . . 121

7.2.13 Asymptotic behaviour of solutions of Bessel’s equation . . . . . . . . . . . . . . 121

7.2.14 Kapitza’s Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.15 Doppler effect of a moving sound source . . . . . . . . . . . . . . . . . . . . . . 123

7.2.16 Vibration modes in a slowly varying elastic beam . . . . . . . . . . . . . . . . . 124

7.2.17 An aging spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Some Mathematical Auxiliaries 125

8.1 Phase plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 Newton’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3 Normal vectors of level surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.4 A Systematic derivation of the Korteweg-de Vries Equation . . . . . . . . . . . . . . 130

8.5 Trigonometric relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.6 Units, dimensions and dimensionless numbers . . . . . . . . . . . . . . . . . . . . 134

8.7 Quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 139

6 09-02-2018



Chapter 1

Mathematical Modelling and

Perturbation Methods

Mathematical modelling is an art. It is the art of portraying a real, often physical, problem mathemat-

ically, by sorting out the whole spectrum of effects that play or may play a role, and then making a

judicious selection by including what is relevant and excluding what is too small. This selection is

what we call a model or theory. Models and theories, applicable in a certain situation, are not iso-

lated islands of knowledge provided with a logical flag, labelling it valid or invalid. A model is never

unique, because it depends on the type, quality and accuracy of answers we are aiming for, and of

course the means (time, money, numerical power, mathematical skills) that we have available.

Normally, when the problem is rich enough, this spectrum of effects does not simply consist of two

classes important and unimportant, but is a smoothly distributed hierarchy varying from essential

effects via relevant and rather relevant to unimportant and absolutely irrelevant effects. As a result, in

practically any model there will be effects that are small but not small enough to be excluded. We can

ignore their smallness, and just assume that all effects that constitute our model are equally important.

This is the usual approach when the problem is simple enough for analysis or a brute force numerical

simulation.

Figure 1.1: Concept of hierarchy (turbofan engine)

There are situations, however, where it could be wise to utilise the smallness of these small but im-

portant effects, but in such a way, that we simplify the problem without reducing the quality of the

model. Usually, an otherwise intractable problem becomes solvable and (most importantly) we gain

great insight in the problem.
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Perturbation methods do this in a systematic manner by using the sharp fil-

let knife of mathematics in general, and asymptotic analysis in particular.

From this perspective, perturbation methods are ways of modelling with

other means and are therefore much more important for the understand-

ing and analysis of practical problems than they’re usually credited with.

David Crighton [14] called “Asymptotics - an indispensable complement to

thought, computation and experiment in applied mathematical modelling”.

Examples are numerous: simplified geometries reducing the spatial dimen-

sion, small amplitudes allowing linearization, low velocities and long time

scales allowing incompressible description, small relative viscosity allow-

ing inviscid models, zero or infinite lengths rather than finite lengths, etc.

The question is: how can we use this gradual transition between models of different level. Of course,

when a certain aspect or effect, previously absent from our model, is included in our model, the change

is abrupt and big: usually the corresponding equations are more complex and more difficult to solve.

This is, however, only true if we are merely interested in exact or numerically exact solutions. But an

exact solution of an approximate model is not better than an approximate solution of an exact model.

x2 = 4+ 10−6x5

x2 = 4

Figure 1.2: Compare “exact” and approximate models.

So there is absolutely no reason to demand the solution to be more exact than the corresponding model.

If we accept approximate solutions, based on the inherent small or large modelling parameters, we do

have the possibilities to gradually increase the complexity of a model, and study small but significant

effects in the most efficient way.

The methods utilizing systematically this approach are called perturbations methods. Usually, a dis-

tinction is made between regular and singular perturbations. A (loose definition of a) regular perturba-

tion is one in which the solutions of perturbed and unperturbed problem are everywhere close to each

other.

We will find many applications of this philosophy in continuous mechanics (fluid mechanics, elas-

ticity), and indeed many methods arose as a natural tool to understand certain underlying physical

phenomena. We will consider here four methods relevant in continuous mechanics: (1) the method of
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slow variation and (2) the method of Lindstedt-Poincaré as examples of regular perturbation methods;

then (3) the method of matched asymptotic expansions and (4) the method of multiple scales (with

as a special case the WKB method) as examples of singular perturbation methods. In (1) the typical

length scale in one direction is much greater than in the others, while in (2) the relevant time scale is

unknown and part of the problem. In (3) several approximations, coupled but valid in spatially distinct

regions, are solved in parallel. Method (4) relates to problems in which several length scales act in the

same direction, for example a wave propagating through a slowly varying environment.

In order to quantify the used small effect in the model, we will always introduce a small positive

dimensionless parameter ε. Its physical meaning depends on the problem, but it is always the ratio

between two inherent length scales, time scales, or other characteristic problem quantities.

9 09-02-2018
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Chapter 2

Modelling and Scaling

2.1 Theory

2.1.1 What is a model? Some philosophical considerations.

Mathematics has, historically, its major sources of inspiration in applications. It is just the unexpected

question from practice that forces one to go off the beaten track. Also it is usually easier to portray

properties of a mathematical abstraction with a concrete example at hand. Therefore, it is safe to say

that most mathematics is applied, applicable or emerges from applications.

Before mathematics can be applied to a real problem, the problem must be described mathematically.

We need a mathematical representation of its primitive elements and their relations, and the problem

must be formulated in equations and formulas, to render it amenable to formal manipulation and to

clarify the inherent structure. This is called mathematical modelling. An informal definition could be:

Describing a real-world problem in a mathematical way by what is called a model, such

that it becomes possible to deploy mathematical tools for its solution. The model should

be based on first principles and elementary relations and it should be accurate enough,

such that it has reasonable claims to predict both quantitative and qualitative aspects of

the original problem. The accuracy of the description should be limited, in order to make

the model not unnecessary complex.

This is evidently a very loose definition. Apart from the question what is meant with: a problem being

described in a mathematical way, there is the confusing paradox that we only know the precision

of our model, if we can compare it with a better model, but this better model is exactly what we

try to avoid as it is usually unnecessarily complex! In general we do not know a problem and its

accompanying model well enough to be absolutely sure that the sought description is both consistent,

complete and sufficiently accurate for the purpose, ànd not too formidable for any treatment. A model

is, therefore, to a certain extent a vague concept. Nevertheless, modelling plays a key rôle in applied

mathematics, since mathematics cannot be applied to any real world problem without the intermediate

steps of modelling. Therefore, a more structured approach is necessary, which is the aim of the present

chapter.

11
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Some people define modelling as the process of translating a real-world problem into mathematical

terms. We will not do so, as this definition is too wide to include the subtle aspects of “limited pre-

cision” (to be discussed below). Therefore we will introduce the word mathematising, defined as the

process of translating a real-world problem into mathematical terms. It is a translation in the sense

that we translate from the inaccurate, verbose “everyday” language to the language of mathematics.

For example, the geometrical presence and evolution of objects in space and time may be described

parametrically in a suitable coordinate system. Any properties or fields that are expected to play a rôle

may be formulated by functions in time and space, explicitly or implicitly, for example as a differential

equation.

Mathematising is an elementary but not trivial step. In fact, it forms probably the single most important

step in the progress of science. It requires the distinction, naming, and exact specification of the

essential relevant elementary objects and their interrelations, where mathematics acts as a language

in which the problem is described. If theory is available for the mathematical problem obtained this

way, the problem considered may be subjected to the strict logic of mathematics, and reasoning in this

language will transcend over the limited and inaccurate ordinary language. Mathematising is therefore,

apart from providing the link between the mathematical world and the real world, also important for

science in general.

A very important point to note is the fact that such a mathematised formulation is always at some

level simplified. The earth can be modelled by a point or a sphere in astronomical applications, or

by an infinite half-space or modelled not at all in problems of human scale. Based on the level of

simplification, sophistication or accuracy, we can associate an inherent hierarchy to the set of possible

descriptions. A model may be too crude, but also it may be too refined. It is too crude if it just

doesn’t describe the problem considered, or if the numbers it produces are not accurate enough to be

acceptable. It is too refined if it includes irrelevant effects that make the problem untreatable, or make

the model so complicated that important relations or trends remain hidden.

The ultimate goal for mathematising a problem is a deeper understanding and a more profound anal-

ysis and solution of the problem. Usually, a more refined problem translation is more accurate but

also more complicated and more difficult – if not impossible! – to analyse and solve than a simpler

one. Therefore, not every mathematical translation is a good one. We will call a good mathematical

translation a model or mathematical model if it is lean or thrifty in the sense, that it describes our

problem quantitatively or qualitatively in a suitable or required accuracy with a minimal number of

essentially different parameters and variables. (We say “essentially different”, in view of a reduction

that is always possible by writing the problem in dimensionless form. See Buckingham’s Theorem

below.) Again, this definition is rather subjective, as it greatly depends on the context of the problem

considered and our knowledge and resources. So there will rarely be one “best” model. At the same

time, it shows that modelling, even if relying significantly on intuition, is part of the mathematical

analysis.
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2.1.2 Types of models

We will distinguish the following three classes of models.

• Systematic models.

Other possible names are asymptotic models or reducing models, and it is the most important

type for us here. The starting point is to use available complete models, which are adequate,

but over-complete in so far that effects are included which are irrelevant, uninteresting, or

negligibly small, making the mathematical problem unnecessarily complex. By using avail-

able additional information (order of magnitude of the parameters) assumptions can be made

which minimize in a systematic way the over-complete model into a good model by taking

a parameter that is already large or small to its asymptotic limit: small parameters are taken

zero, large parameters become infinite, an almost symmetry becomes a full symmetry.

Examples of systematic models are found in particular in the well-established fields of con-

tinuum physics (fluid mechanics, elasticity). An ordinary flow is usually described by a model

which is reduced from the full, i.e. compressible and viscous, Navier-Stokes equations.

An example is the convection-diffusion problem described by the “complete” model

∂T

∂t
+ v·∇T = α∇2T,

which is difficult to solve, but may be reduced to the much simpler

∂T

∂t
+ v·∇T = 0

if we have reasons to believe that diffusion term α∇2T is small compared to convection.

Another example is the (again difficult) nonlinear pendulum equation

d2θ

dt2
= − g

L
sin θ,

which may be reduced to the much simpler linear equation

d2θ

dt2
= − g

L
θ,

if we know or conjecture that angle θ is small and sin θ ≃ θ .

• Constructing models

Another possible name is building block models. Here we build our problem description step

by step from low to high, from simple to more complex, by adding effects and elements

lumped together in building blocks, until the required accuracy or adequacy is obtained. This

type of model is usually the first if a new scientific discipline is explored.

An example is the 1D Euler-Bernoulli model of a flexible bar with small displacements and

where the bending moment is assumed to be a linear function of the radius of curvature.

E I
∂4 y

∂x4
− T

∂2 y

∂x2
+ Q + m0

∂2 y

∂t2
= 0.

13 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

• Canonical models.

Another possible name is characteristic models or quintessential models. Here an existing

model is further reduced to describe only the essence of a certain aspect of the problem.

These models are particularly important if the mathematical analysis of a model from one of

the other categories is lacking available theory. The development of such theory is usually

hindered by too much irrelevant details. These models are useful for the understanding, but

usually far away from the original full problem setting and therefore not suitable for direct

industrial application.

An example is Burgers’ equation, originally formulated as an “unphysically” reduced version

of the Navier-Stokes equations in order to study certain fundamental effects,

∂u

∂t
+ u

∂u

∂x
= ν ∂

2u

∂x2
.

Note that an asymptotic model may start as a building-block model, which is only found at a later

stage to be too comprehensive. Similarly, a canonical model may reduce from an asymptotic model

if the latter appears to contain a particular, not yet understood effect, which should be investigated in

isolation before any progress with the original model can be made.

The type of model which is most relevant in the context of asymptotic techniques, is the asymptotic

or systematic model. In the following we will explain this further.

2.1.3 Perturbation methods: the continuation of modelling by other means

We have seen above that a real-world problem described by a systematic model, is essentially de-

scribed by a hierarchy of systematic models, where a higher level model is more comprehensive and

more accurate than one from a lower level. Now suppose that we have a fairly good model, describing

the dominating phenomena in good order of magnitude. And suppose that we are interested in im-

proving on this model by adding some previously ignored aspects or effects. In general, this implies a

very abrupt change in our model. The equations are more complex and more difficult to solve. As an

illustration, consider the simple “model” x2 = a2, and the more complete “model” x2+εx5 = a2. The

first one can be solved easily analytically, the second one with much more effort only numerically. So

it seems that the relation between solution and model is not continuous in the problem parameters.

Whatever small ε we take, from a transparent and exact solution of the simple model at ε = 0, we

abruptly face a far more complicated solution of a model that is just a little bit better. This is a pity,

because certain type of useful information (parametric dependencies, trends) become increasingly

more difficult to dig out of the more complicated solution of the complex model. This discontinuity

of models in the parameter ε may therefore be an argument to retain the simpler model.

The (complexity of the) model is, however, only discontinuous if we are merely interested in exact

or numerically “exact” solutions (for example for reasons of benchmarking or validation of solution

methods). This is not always the case. As far as our modelling objectives are concerned, we have

to keep in mind that also the improved model is only a next step in the modelling hierarchy and

not exact in any absolute sense. So there is no reason to require the solution to be more exact than

the corresponding model, as an exact solution of an approximate model is not better than an

approximate solution of an exact model. Moreover, the type of information that analytical solutions

may provide (functional relationships, etc. ) is sometimes so important that numerical accuracy may

be worthwhile to sacrifice.
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Let us go back to our “fairly good”, improved model. The effects we added are relatively small.

Otherwise, the previous lower level model was not fairly good as we assumed, but just completely

wrong. Usually, this smallness is quantified by small dimensionless parameters (see below) occurring

in the equations and (or) boundary conditions. This is the generic situation. The transition from a

lower-level to a higher-level theory is characterized by the appearance of one or more modelling

parameters, which are (when made dimensionless) small or large, and yield in the limit a simpler

description. Examples are infinitely large or small geometries with circular or spherical symmetry

that reduce the number of spatial dimensions, small amplitudes allowing linearization, low velocities

and long time scales in flow problems allowing incompressible description, small relative viscosity

allowing inviscid models, etc. In fact, in any practical problem it is really the rule rather than the

exception that dimensionless numbers are either small or large.

If we accept approximate solutions, where the approximation is based on the inherently small or large

modelling parameters, we do have the possibility to gradually increase the complexity of a model,

and study small but significant effects in the most efficient way. The methods utilizing this approach

systematically are called “perturbation methods”. The approximation constructed is almost always an

asymptotic approximation, i.e. where the error reduces with the small or large parameter.

Usually, a distinction is made between regular and singular perturbations. A (loose definition of a)

regular perturbation problem is where the approximate problem is everywhere close to the unper-

turbed problem. This, however, depends of course on the domain of interest and, as we will see, on

the choice of coordinates. If a problem is regular without any need for other than trivial reformula-

tions, the construction of an asymptotic solution is straightforward. In fact, it forms the usual strategy

in modelling when terms are linearised or effects are neglected. The more interesting perturbation

problems are those where this straightforward approach fails.

We will consider here four methods relevant in the presented modelling problems. The first two are

examples of regular perturbation methods, but only after a suitable coordinate transformation. The

other two methods are of singular perturbation type, because there is no coordinate transformation

possible that renders the problem into one of regular type.

The first method is called the Method of Slow Variation, where the typical axial length scale is much

greater than the transverse length scale. The second one is the Lindstedt-Poincaré Method or the

method of strained coordinates, for periodic processes. Here, the intrinsic time scale ( ∼ the period of

the solution) is unknown and has to be found. The third one is the Method of Matched Asymptotic

Expansions (MAE). To render the problem into one of regular type, different scalings are necessary

in spatially distinct regions (boundary layers). The fourth method considered here is the Method of

Multiple Scales and may be considered as a combination of the method of slow variation and the

method of strained coordinates, as now several (long, short, shorter) length scales occur in parallel.

This cannot be repaired by a single coordinate transformation. Therefore, the problem is temporarily

reformulated into a higher dimensional problem by taking the various length scales apart. Then the

problem is regular again, and can be solved. A refinement of this method is the WKB Method, where

the coordinate transformation of the fast variable becomes itself slowly varying.
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2.1.4 Nondimensionalisation

2.1.4.1 Buckingham’s5-Theorem:

Theorem: If a physical problem is described by n variables and parameters in r dimen-

sions, the number of dimensionless groups is at least1 n − r .

Exactly n − r if all r dimensions play a role. More than n − r if some dimensions are redundant, or

occur in the same combination. In that case r is effectively smaller.

Note: mol, rad or dB do not count, because they are dimensionless units.

A way to see this theorem intuitively is as follows.

From the problem variables, parameters, and their combinations we can construct time, length, etc.

scales. They follow from the problem and are therefore called inherent (length, time) scales. For

example, from a velocity V and a length L we have a time L/V . These new scales can be used for

measuring, instead of meters or seconds. In this way we can replace the original r dimensions by r

new dimensions from (combinations of) r variables. These r variables, when measured in the new

dimensions, are by definition equal to unity, and play no visible role anymore. The remaining n − r

variables, on the other hand, may be expressed in the new dimensions to constitute the essential (and

nondimensional) problem parameters.

Example. A problem with the 4 variables force F , length L , velocity V and viscosity η are expressed

in 3 dimensions kg, m and s by [F] = kg m/s2, [L] = m, [V ] = m/s and [η] = kg/m s.

With the inherent unit of length L , inherent unit of time L/V and inherent unit of mass ηL2/V , the

variables L , V and η become simply 1 (times L , V and η, respectively). Only force F becomes some

(dimensionless) number F times the new units as follows:

F = F ·
ηL2

V
· L

( L

V

)2
= F · LVη, in other words F = F

LVη
.

A more formal way to obtain this is by utilizing a bit linear algebra. We have for any dimensionless

quantity G the condition that it should satisfy for some combination of α = (α1, α2, α3, α4)

[G] = [Fα1 Lα2 V α3ηα4] = mα1+α2+α3−α4 kgα1+α4 s−2α1−α3−α4 = m0 kg0 s0 = 1.

In other words we have r = 3 equations for n = 4 unknowns




1 1 1 −1

1 0 0 1

−2 0 −1 −1







α1

α2

α3

α4



=




0

0

0




Since all equations are independent, this system has rank = 3, the number of equations r , and so

4 − 3 = 1 linearly independent solutions. Therefore, there is one dimensionless variable G. (If some

1In [1] it is incorrectly stated at most.
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rows are dependent, the rank would have been less than r and the number of independent solutions

more than n − r .) Solving this system yields the solution α = (1,−1,−1,−1), or any multiple of it.

The corresponding dimensionless number is then

G = F

LVη
,

which confirms the above result with G = F . Note that other forms, like G2,
√

G, 1/G etc. are

equally possible dimensionless numbers, equivalent to G.

2.1.4.2 Weber’s Law.

Normally, we have in the problems studied several variables and parameters of the same unit (dimen-

sion), which act as each other’s reference to compare with. The opposite situation, when there is no

reference available, is also meaningful.

When a variable is perceived for which there is no reference quantity available to compare with, c.q. to

scale on, the actual value of the variable itself will be the reference. The resulting logarithmic relation

(see below) is known as Weber’s Law2.

Take for example the perceived loudness of sound. Since the range of our human audible sensitivity

is incredibly large (1014 in energy), the loudest and quietest levels are practically infinitely far away.

Therefore, we have no reference or scaling level to compare with, other than the actually perceived

sound itself.

As a result, variations in sound loudness dL are perceived proportional to relative variations of the

physical sound intensity dI/I :

dL = K
dI

I
,

for a suitably chosen constant K . After integration we obtain that L varies logarithmically in I .

L = L0 + K log I

with L0 a conveniently chosen reference level.

As the intensity (the time-averaged energy flux) I is, for a single tone, proportional to the mean

squared acoustic pressure p2
rms, we have the relation L = K log(p2

rms)+ L0. If

L = 2 log10(prms/p0)

for a reference value p0 = 2 ·10−5 Pascal is taken, we call L the Sound Pressure Level in Bells. The

usual unit is one tenth of it, the decibel.

2Ernst Heinrich Weber, 1834
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2.2 Modelling, Nondimensionalisation and Scaling: Assignments

2.2.1 Travel time in cities

A simple model for the travel time by car between two addresses in a big city is: the time T in minutes

is equal to the distance L in kilometers plus the number N of traffic lights passed,

T = L + N .

a) What is this formula if time is measured in hours and distance in miles?

b) Generalise the formula for arbitrary units of time and length.

c) Make this last version dimensionless in a suitable way.

2.2.2 Membrane resonance.

The resonance frequency ω of a freely suspended membrane (like a framedrum, a skin stretched over

a frame without a resonance cavity) is determined by the membrane tension T , membrane surface

density σ , membrane diameter a, air density ρa and sound speed ca . In other words, there is a relation

ω = f (T, σ, a, ρa, ca).

According to Buckingham, this relation can be reduced to a relation between three dimensionless

groups:

frequency ω , dimension 1/s

memb. tension T , ” kg/s2

memb. density σ , ” kg/m2

memb. diameter a , ” m

air density ρa, ” kg/m3

air soundspeed ca , ” m/s





Buckingham: 6− 3 = 3 dimensionless groups G

G = ωα1 T α2σ α3aα4ρα5
a cα6

a

[G] =
(

1

s

)α1
(

kg

s2

)α2
(

kg

m2

)α3

mα4

(
kg

m3

)α5 (m

s

)α6

= m−2α3+α4−3α5+α6 s−α1−2α2−α6 kgα2+α3+α5 = m0s0kg0

a) Give (mutually independent) examples of the 3 possible dimensionless numbers G.

b) Show that it is possible to write the functional dependence between the frequency and the other

parameters as

Gω = F(G1,G2)

where Gω is the only parameter that depends on ω. You may introduce for convenience cM =
(T/σ )

1
2 , the propagation speed of transversal waves in the membrane in the absence of air loading.
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2.2.3 Ship drag: wave and viscosity effects.

A ship of typical size L , moving with velocity V in deep water of density ρ and viscosity η, feels a

drag D due to gravity waves and due to viscous friction, apart from density, velocity and geometry

effects. Symbolically, we have

D = f (g, η, ρ, V, L).

12345678901234567890123456789012123456789012345678901234
12345678901234567890123456789012123456789012345678901234
12345678901234567890123456789012123456789012345678901234
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12345678901234567890123456789012123456789012345678901234

g L

V

η, ρ

According to Buckingham, this relation can be reduced to a relation between three dimensionless

groups:

drag D , dimension kg m/s2

length L , ” m

velocity V , ” m/s

viscosity η, ” kg/m s

gravity g , ” m/s2

water density ρ, ” kg/m3





Buckingham: 6− 3 = 3 dimensionless groups G

G = Dα1 Lα2 V α3ηα4 gα5ρα6

[G] =
(

kg m

s2

)α1

mα2

(m

s

)α3

(
kg

m s

)α4 (m

s2

)α5

(
kg

m3

)α6

= mα1+α2+α3−α4+α5−3α6s−2α1−α3−α4−2α5kgα1+α4+α6 = m0s0kg0

a) Give (mutually independent) examples of the 3 possible dimensionless numbers G.

b) Show that it is possible to write the functional dependence between the drag and the other param-

eters as

G D = F(Gg,Gη)

where G D is a parameter that depends on D but not on g or η, Gg depends on g but not on D or

η, and Gη depends on η but not on D or g.
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2.2.4 Sphere in viscous flow

Work out in detail – using Buckingham’s theorem – scaling and non-dimensionalisation of the problem

of the viscous air resistance (drag D, velocity V ) of a sphere (radius R) in a fluid (density ρ, viscosity

η). What would be a suitable scaling if viscosity dominates the resistance? And what if pressure

difference dominates?

R

V

Sphere in viscous fluid

length R, dimension m

velocity V , ” m/s

viscosity η, ” kg/m s

density ρ, ” kg/m3





D = f (ρ, V, η, R)

2.2.5 Cooling of a cup of tea.

The total amount of thermal energy in a cup of tea of volume V , water density ρ, specific heat c and

temperature T at time t is E(t) = ρcV T (t). According to Newton’s cooling law, the heat flux through

the surface A is q = −h A(T −T∞)with heat transfer coefficient h. What is the dimension of h? Make

the problem dimensionless and determine the characteristic time scale of the problem.

Confirm this by solving the equation for the decaying temperature T (t)

dE

dt
= q, T (0) = T0.

2.2.6 The velocity of a rowing boat.

Determine the functional dependence of the velocity v of a rowing boat on the number n of rowers by

using the following modelling assumptions.

The size of the boat scales with the number of rowers (i.e. their volume) but has otherwise the same

shape. So if the volume per rower is G, the volume of the boat is V = nG. Furthermore, the volume

of the boat can be written as a length L times a cross section A = ℓ2 and L = λℓ for a shapefactor λ.

The drag only depends on the water pressure distribution and is for high enough Reynolds numbers

given by D = 1
2
ρv2 ACD , where ρ is the water density and CD the drag coefficient, which is a constant

as it depends only on the shape of the boat.

The required thrust is therefore F = D, while the necessary power to maintain the velocity v is then

P = d
dt

∫ x
F dx ′ = Fv. The available power per rower is a fixed p.
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2.2.7 A sessile drop with surface tension.

The height h of a drop of liquid at rest on a horizontal surface with the effect of gravity being balanced

by surface tension is a function of liquid density ρ, volume L3, acceleration of gravity g, surface

tension γ and contact angle θ . As [h] = m, [ρ] = kg/m3, [L] = m, [g] = m/s2, [γ ] = kg/s2, and

[θ] = 1, we have 6 − 3 = 3 dimensionless numbers. One is of course the already dimensionless θ .

The second dimensionless number is the Bond number, known to control this kind of problems, and

is given by

B = ρgL2

γ
.

The third is a dimensionless number containing h, leading to a functional relationship given by

h = ℓF(B, θ),

where F is dimensionless and ℓ is an inherent length scale. We have practically two useful choices

for ℓ. One is suitable when B is small (high relative surface tension) and the drop becomes spherical.

The other is the proper scaling when B is large (low relative surface tension), such that the drop will

spread out, flat as a pancake, and h ≪ L . In particular, h/L = O(B−1/2)

Find these two (mutually independent) possible ℓ1 and ℓ2.

2.2.8 The drag of a plate sliding along a thin layer of lubricant.

Find a functional relation for the drag D of a plate of size L × W slipping with velocity V along a

thin layer of grease of thickness h and viscosity η. Assume that the drag is linearly proportional to the

wetted surface.

length L , dimension m

width W , ” m

velocity V , ” m/s

viscosity η, ” kg/m s

thickness h, ” m

2.2.9 The suspended cable

A cable, suspended between the points X = 0, Y = 0 and X = D, Y = 0, is described as a linear

elastic, geometrically non-linear inextensible bar3 of bending stiffness E I and weight Q per unit

length.

At the suspension points the cable is horizontally clamped such that the cable hangs in the vertical

plane through the suspension points. The total length L of the cable is larger than D, so the cable is

not stretched.

In order to keep the cable in position, the suspension points apply a reaction force, with horizontal

component −H resp. H , and a vertical component V , resp. QL−V . From symmetry we already have

3A so called Euler-Bernoulli bar.
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(0, 0) (D, 0)

−H ←−
1
2

QL ↑
−→ H

↑ 1
2

QL

Figure 2.1: A suspended cable

V = QL−V so V = 1
2

QL is known. On the other hand, H , the force that keeps the cable ends apart,

is unknown.

Let s be the arc length along the cable, and ψ(s) the tangent angle with the horizon. Then the cartesian

co-ordinates (X (s),Y (s)) of a point on the cable are given by

X (s) =
∫ s

0

cosψ(s′) ds′, Y (s) =
∫ s

0

sinψ(s′) ds′.

The shape of the cable ψ(s) and the necessary force H , are determined by the following differential

equation and boundary conditions

E I
d2ψ

ds2
= H sinψ − (Qs − V ) cosψ

ψ(0) = 0, ψ(L) = 0, X (L) = D, Y (L) = 0.

a. Make the equations and boundary conditions dimensionless by scaling all lengths on L .

How many (and which) dimensionless problem parameters do we have? How does this conform

to Buckingham’s Theorem?

b. Under what conditions can we approximate the equation by

0 = H sinψ − (Qs − V ) cosψ.

Can we keep all the boundary conditions? Which would you keep? Solve the remaining equation.

c. Under what conditions can we approximate the equation by

E I
d2ψ

ds2
= Hψ − (Qs − V ).

Can we keep all the boundary conditions? Do we have to adapt any to bring it in line with the used

approximation? Can you solve the remaining equation (up to a numerical evaluation)?

2.2.10 Electrically heated metal

A piece of metal � of size L is heated, from an initial state T (x, t) ≡ 0, to a temperature distribution

T by applying at t = 0 an electric field with potential ψ and typical voltage V (Fig. 2.2). This heat

source, the energy dissipation of the electric field, is given by the inhomogeneous term σ |∇ψ |2 in the

following inhomogeneous heat equation

C
∂T

∂t
= κ∇2T + σ |∇ψ |2.
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L

�

Figure 2.2: A piece of metal heated by an electric field.

The edges are kept at T = 0, yielding a dissipation of thermal energy. As time proceeds, the tempera-

ture distribution will converge to a steady state corresponding to an equilibrium of heat production by

the source and heat loss via the edges. We are interested in the typical time this takes and the typical

final temperature.

If we introduce the formal scaling T = T0u, t = t0τ , x = Lξ , and ψ = V9, then we get

CT0

t0

∂u

∂τ
= κT0

L2
∇2

ξ u + σV 2

L2
|∇ξ9|2.

a. If we take the final (steady state) situation as reference, what would then be our choice for T0?

b. What is then the choice for the time t0?

Note that the boundary conditions are rather important. If the edges were thermally isolated, we would,

at least initially, have no temperature gradients scaling on L , and the diffusion term κ∇2T would be

negligible. Only the storage term C ∂
∂t

T would balance the source term, and there would be no other

temperature to scale on than σV 2t0/C L2. In other words, the temperature would rise approximately

linearly in time.

2.2.11 Traffic waves

A simple (but nonlinear) one-dimensional wave equation, used (for example) to model traffic flow

density ρ at position x and time t , is

∂ρ

∂t
+ C(ρ)

∂ρ

∂x
= 0, ρ(x, 0) = F(x).

Since dimensional quantities must include an inherent scale, we can write (with dimensionless shape

functions g and f )

C(u) = C0g
( ρ

D

)
, F(x) = ρ0 f

( x

L

)
.

a. Make the problem dimensionless in a sensible way. What is the remaining dimensionless param-

eter?

b. Show that the solution ρ is implicitly given by

ρ = F(x − C(ρ)t).

It is sufficient to consider the original equation. The dimensionless solution is similar.
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2.2.12 The Korteweg-de Vries equation

A version of the Korteweg-de Vries equation (an equation for certain types of water waves) is given

by

Aζt + Bζx x x + Cζ ζx = 0

Rescale the ζ = λσ , x = αz and t = βτ , such that the remaining equation has only coefficients equal

to 1.

2.2.13 An equation

x satisfies the following equation

ax2 + bf
( x

L

)
= 0

with parameters a, b and L , and dimensionless function f with dimensionless argument, while [x] =
meters and [b] = seconds.

a) What are the dimensions of a and L?

b) Find, by scaling x = λX for some suitable λ and collecting parameters in dimensionless groups

R, equivalent equations of the form

X2 + R f (X) = 0, X2 + f (R X) = 0.

c) Under what conditions can the original equation be approximated by

f
( x

L

)
= 0

2.2.14 The pendulum

Consider a pendulum consisting of a bob of mass m, suspended from a fixed, massless support of

length L . The acceleration of gravity is g. Depending on time variable t , the pendulum angular dis-

placement φ(t) swings between angle −α and α.

angle φ, dimension -

angle α, ” -

time t , ” s

mass m, ” kg

length L , ” m

gravity g, ” m/s2

a) What is the inherent time scale of the problem?

b) The motion is given by the equation

mL
d2φ

dt2
+ mg sin φ = 0.

Using a), make this equation dimensionless.

c) Under what condition can we approximate the dimensionless equation by

d2φ

dτ 2
+ φ − 1

6
φ3 = 0
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2.2.15 Heat convection and diffusion

Consider a steady flow field v = v(x) of air of uniform density ρ and specific heat capacity c, and

temperature T = T (x, t) at position x and time t . The heat is convected by the flow and diffused by

Fourier’s law for heat conduction, leading to the equations

ρc

(
∂T

∂t
+ v·∇T

)
= −∇·q, q = −κ∇T,

where q is the heat flux density and κ is the coefficient of conductivity.

Assume that the typical velocity of the velocity field is U0, and the length scale of the variation of

both the flow field and the temperature field is L . Neglecting transient effects we have thus a typical

time scale of L/U0.

temperature T , dimension K

length scale L , ” m

velocity U0, ” m/s

density ρ, ” kg/m3

heat flux density q, ” W/ m2

specific heat capacity c , ” J/kgK

conductivity κ , ” W/mK

a) Under what conditions (i.e. for which small parameter) can the diffusion be neglected, such that

we obtain the simplified equation
∂T

∂t
+ v·∇T = 0

b) Show that (under these conditions) the temperature is constant along any streamline x = ξ(t),

given by

v = dξ

dt
.

2.2.16 Heat conduction in a long bar

A semi-infinite isolated metal bar, given by 0 6 x <∞, is heated by a uniform heat source of constant

flux density Q at x = 0, starting from t = 0. Assume that the initial temperature T = 0, such that T

is linearly proportional to Q. The bar metal has a specific heat capacity c, density ρ and conductivity

κ . Due to the uniform source and the isolation, the temperature along a cross section is uniform.

temperature T , dimension K

length x , ” m

time t , ” s

density ρ, ” kg/m3

specific heat capacity c , ” J/kgK

conductivity κ , ” W/mK

heat source Q, ” W/m2
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a) According to Buckingham’s 5 theorem, there are 6− 4 = 2 dimensionless groups possible (note

that T ∝ Q, so T/Q is to be considered as one variable). Give examples of such groups.

b) Show, by using a), that the most general form for T (x, t) is4

T (x, t) = Qx

κ
F

(√
x2ρc

κt

)
.

c) Assume that T satisfies the equation

ρc
∂T

∂t
= κ ∂

2T

∂x2
,

and define the similarity variable η =
√

x2ρc/κt . Derive the (ordinary) differential equation in

the variable η for function F(η) of b). Use the chain rule carefully when differentiating T to x and

t . Make sure that the final equation only depends on η and contains no x or t dependence anymore.

The solution of this equation is not standard but can be found (for example) by Mathematica or

Wolfram Alpha.

2.2.17 A Simple Balloon

A balloon rises in the atmosphere of density ρa such that it is at height h(t) at time t . The balloon

of mass m, fixed volume V and cross sectional surface A is subject to inertia −mh ′′, Archimedean

(buoyancy) force gρa V , weight −mg and air drag − 1
2
ρaCd A(h ′)2, where g = 9.8 m/s2 is the acceler-

ation of gravity, and drag coefficient Cd depends on the geometry but is for a sphere (and high enough

Reynolds number) in the order of 0.5.

Together these forces cancel out each other, so altogether we have the following equation for the

dynamics of the balloon

m
d2h

dt2
= gρa V − gm − 1

2
ρa

(
dh

dt

)2

Cd A.

Assume that h(0) = 0 and h ′(0) = 0. The atmospheric air density will vary (in the troposphere, i.e.

for 0 6 h 6 11 km) with the height according to

ρa(h) = ρ0

(
1− h

L

)α
kg/m3, with ρ0 = 1.225 kg/m3, L = 44.33 km, α = 4.256.

In practice a flexible balloon will grow in size with the decreasing atmospheric pressure, but we will

ignore this and assume that the material is very stiff.

Make the equation dimensionless on the inherent length and time scales. There are two natural length

scales in the problem (the atmospheric variation L and the diameter of the balloon ∼ V 3/2,∼ A1/2).

What seems to be the most sensible one? Try both if you hesitate. The suitable time scale can be found

by assuming that the dynamics is dominated by the balance between the buoyancy and the drag. When

is this possibly not the case?

4The seemingly different T (x, t) = (Qt/ρcx)G
(√

x2ρc/κ t
)

is in reality of the same form. Write F(η) = η−2G(η).
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Introduce convenient dimensionless parameters and (in the case of ρa) shape function. Can you inter-

pret these parameters? For what conditions can we neglect the inertia term? Is this reasonable for a

balloon of m = 1 kg, V = 2 m3 and A = 1.9 m2. What about the initial conditions? The remaining

equation is still difficult, but can you solve it if you assume that m/ρ0V is small, while 1− h/L is not

small?

2.2.18 A pulsating sphere

The radially symmetric sound field of a pulsating sphere r = a0+a(t) (with a small) in a medium with

mean density ρ0 and sound speed c0 is described by the following (linearised) equations for pressure

perturbation p, density perturbation ρ and velocity perturbation v.

∂ρ

∂t
+ ρ0

(
∂v

∂r
+ 2

v

r

)
= 0,

ρ0

∂v

∂t
+ ∂p

∂r
= 0,

p − c2
0ρ = 0.

while

v = ∂a

∂t
at r = a0.

If the sphere pulsates harmonically with frequency ω, we write for convenience

a = Re(â eiωt ), p = Re( p̂ eiωt), v = Re(v̂ eiωt ), ρ = Re(ρ̂ eiωt ).

leading to the equations (we eliminate ρ)

iω p̂ + ρ0c2
0

(
∂v̂

∂r
+ 2

v̂

r

)
= 0,

iωρ0v̂ +
∂ p̂

∂r
= 0.

with

v̂ = iωâ at r = a0.

The proper solution of the equations can be shown to be

p̂ = A

r
e−ikr

v̂ = 1

ρ0c0

A

r

(
1+ 1

ikr

)
e−ikr

with constant A to be determined, and the acoustic wavenumber

k = ω

c0

= 2π

λ

where λ is the free field wavelength.

a. Determine A by applying the boundary condition at r = a0.

b. Scale p̂ and v̂ on â/a0, and make dimensionless: p̂ on ρc2
0 and v̂ on c0. Lengths can be scaled on

a0 and on 1/k. Do both. Their ratio, dimensionless number ε = ka0, is called Helmholtz number.

c. Simplify the formulas for small source size (known as a compact source), i.e. ε = ka0 ≪ 1. What

do you get in each case of scaling? Can you interpret the results?
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2.2.19 Similarity solutions for non-linear and linear diffusion

Consider the temperature T due to a heat source at r = 0 in a spherically symmetric environment of

specific heat capacity cp , density ρ and conductivity κ .

All parameters are constant, except κ which is a function of the absolute temperature T . We assume

here κ = κ0T n−1. For example, for diamond, κ0 = 27 530 W/mKn and n − 1 = −1.26.

We have the equation

ρcp

∂T

∂t
= ∇·(κ∇T

)

a) Scale T = T0u such that we obtain

∂u

∂t
= ∇2un

b) Consider spherically symmetric similarity solutions of the form

u = u(r, t) = tαF(z), z = rt−β , r = |x|.

What are the restrictions on α and β? What is the remaining equation for F?

c) Find a solution of the form F(z) = Czm for particular choice of m and C .

We continue with the more usual model of linear diffusion, i.e. where n = 1.

d) Scale time t such that we obtain for T (r, t) = u(r, t ′) (we skip the prime in the following)

∂u

∂t
= ∇2u

e) Consider again spherically symmetric similarity solutions of the form

u = u(r, t) = tαF(z), z = rt−β , r = |x|.

What are the restrictions on α and β? What is the remaining equation for F? Find the general

solution by using Maple.

f) Assume that the heat source is a source of constant flux Q, which corresponds to a condition

∫

r=ε
−κ∇u ·n dS = −4πε2κ

∂u

∂r

∣∣∣
r=ε
= Q

for any sphere r = ε, in particular for ε→0. For what value of α is this condition satisfied? (Use

Maple to find the behaviour of the integrand for small r .)

g) What is, for this choice of α, the resulting solution if we add the boundary condition that u→
constant for r→∞ ? (Use Maple.)
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2.2.20 Falling through the center of the earth

Although it is unlikely that such a tunnel will ever be excavated in the near future, we assume a

vacuum straight tunnel right through the center of the earth. It connects two opposite points on the

earth’s surface, separated by the earth’s diameter 2R. If the earth’s mass density ρ is uniform, then

according to Newton’s law of gravitation any object in the tunnel at radial position r is attracted only

by the part of the earth’s mass that is inside the concentric sphere of radius r . The proportionality

constant is the universal gravity constant G.

At time t = 0 at position r = R we drop a stone of negligible mass (compared to the mass of the

earth) with zero initial speed. We wait until the stone returns at time t = T (about 84 minutes).

The problem parameters and variables, according to our model, are

radius R, dimension m

position r , ” m

time t , ” s

return time T , ” s

density ρ, ” kg/m3

gravity constant G, ” m3/s2kg

Show by dimensional arguments that T depends only on ρ and G, and not on R. In other words, at

whatever depth we release the stone, the return time is the same.

2.2.21 Energy consumption of a car

Consider a car of mass m at position x(t) and velocity v(t) = x ′(t) at time t , moving from x = 0

to x = L in time t = 0 to t = T along a road of height h(x) at position x . The car is subject to

acceleration force mv′, gravity force −mgh ′(x), air drag bv|v| = 1
2
ρACDv|v| (where ρ is the density

of air, A is the car’s frontal area, and CD is its drag coefficient), internal friction cv, and engine thrust

F(t). Assuming an always positive velocity, we have then the balance of forces

mv′ + bv2 + cv + mgh ′(x) = F(t).

We study the extra energy consumption due to velocity fluctuations. by comparing the energy con-

sumption for a steady velocity v(t) = V0 = L/T with a velocity fluctuating around average V0.

The necessary energy is the work done from x = 0 to L , or the power Fv integrated from t = 0 to T .

E =
∫ L

0

F dx =
∫ T

0

Fv dt.

Check (by integrating the equation) that, if v(0) = v(T ) and h(0) = h(L), the energy only depends

on the friction terms, i.e. b and c, and therefore not on m.

Make time dimensionless as t = T τ and position as x = Ls. Since m plays no role, we make masses

dimensionless on bL , and the other variables similarly. Assume v(t) = V0(1 + εu(τ )) with ε small,

u(0) = u(1) = 0, and u normalised by (without normalisation of u, ε is not defined)
∫ 1

0

u2 dτ = 1.

Find the extra energy consumption due to the fluctuating velocity, in dimensionless form, to leading

order in ε.
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Chapter 3

Asymptotic Analysis

3.1 Basic definitions and theorems

It is sometimes of interest to analyse the behaviour of a function near a particular point y0, say y→ y0,

especially when this point is a singularity of some kind. We distinguish between the behaviour on the

right side (y ↓ y0) and on the left side (y ↑ y0) if y0 is finite, and y → ±∞ if y0 is infinite. By a

simple coordinate transformation y0 can always be assumed to be 0, approached from the right. If

y0 is finite, we can transform ε = y − y0 or ε = y0 − y. If it is ±∞, we can transform ε = 1/y or

ε = −1/y. In general, we consider therefore f (ε) or f (x, ε) for ε ↓ 0.

1. O (Big O)

f (ε) = O(ϕ(ε)) as ε→ 0 if there are a fixed constant K > 0 and an interval (0, ε1) such that

| f (ε)| 6 K |ϕ(ε)| for 0 < ε < ε1.

Intuitive interpretation: f can be embraced completely by |ϕ| (up to a multiplicative constant)

in a neighbourhood of 0. A crude estimate (for example sin ε = O(1/ε)) is not incorrect, but a

sharp estimate is more informative.

Examples: sin ε = O(ε), (1− ε)−1 = O(1), sin(1/ε) = O(1), (ε + ε2)−1 = O(ε−1),

ln((1+ ε)/ε) = O(ln ε).

2. o (small o)

f (ε) = o(ϕ(ε)) as ε→ 0 if for every δ > 0 there is an interval (0, ε1) such that

| f (ε)| 6 δ|ϕ(ε)| for 0 < ε < ε1.

Intuitive interpretation: f is always smaller than any multiple (however small) of |ϕ| in a neigh-

bourhood of 0. Again, a crude estimate is not incorrect, but a sharp estimate is more informative.

Examples: sin(2ε) = o(1), cos ε = o(ε−1), e−a/ε = o(εn) for any a > 0 and any n.

3. Os (sharp O)

f (ε) = Os(ϕ(ε)) as ε→ 0 if f (ε) = O(ϕ(ε)) and f (ε) 6= o(ϕ(ε)).

Intuitive interpretation: f behaves exactly the same (up to a multiplicative constant) as ϕ in a

neighbourhood of 0.

Examples: 2 sin ε = Os(ε), 3 cos ε = Os(1), but there is no n such that ln ε = Os(ε
n).
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4. Similar behaviour.

(i) If f = o(ϕ) then f = O(ϕ).

(ii) If lim
ε↓0

∣∣∣∣
f (ε)

ϕ(ε)

∣∣∣∣ = 0 then f = o(ϕ).

(iii) If lim
ε↓0

∣∣∣∣
f (ε)

ϕ(ε)

∣∣∣∣ = L ∈ [0,∞) then f = O(ϕ).

(iv) If lim
ε↓0

∣∣∣∣
f (ε)

ϕ(ε)

∣∣∣∣ = L ∈ (0,∞) then f = Os(ϕ).

(v) If f = O(ϕ) and ϕ = O( f ) then f = Os(ϕ).

The reverse is certainly not true: (i) sin ε = O(ε) but sin ε 6= o(ε). (ii) If f ≡ 0 and ϕ ≡ 0 on

an interval containing ε = 0, then f = o(ϕ) but lim
ε↓0
| f/ϕ| does not exist. (iii,iv) ε sin(1/ε) =

Os(ε), but lim
ε↓0
| sin(1/ε)| does not exist. (v) sin(1/ε) = Os(1) but 1 6= O(sin(1/ε)).

5. Asymptotic approximation.

ϕ(ε) is an asymptotic approximation to f (ε) as ε→ 0, denoted by f ∼ ϕ, if

f (ε) = ϕ(ε)+ o(ϕ(ε)) as ε→ 0,

Intuitive interpretation: If lim
ε→0

f/ϕ = 1 then f ∼ ϕ. Note: f ∼ 0 is only possible if f ≡ 0.

Examples: sin ε ∼ ε, (ε + ε2)−1 ∼ 1/ε, ln(aε) ∼ ln ε for any a > 0.

6. Pointwise asymptotic approximation.

ϕ(x, ε) is a pointwise asymptotic approximation to f (x, ε) as ε→ 0 if

f (x, ε) ∼ ϕ(x, ε) for fixed x .

Intuitive interpretation: f (x, ε) is approximated asymptotically better and better by ϕ(x, ε) for

ε→ 0 and x fixed. We don’t know anything yet if we allow x to become small or large (within

the domain).

Examples: sin(x + ε) ∼ sin x and sin x 6= 0, 1/(ε + x) ∼ 1/x and x 6= 0. Note that in the last

example the approximation fails if we would scale x = εnt for any n > 1.

7. Uniform asymptotic approximation.

The continuous function ϕ(x, ε) is a uniform asymptotic approximation to the continuous func-

tion f (x, ε) for x ∈ D as ε→ 0, if the way ϕ approaches f is the same for all x .

More precisely: if for any positive number δ there is an ε1 (independent of x and ε) such that

| f (x, ε)− ϕ(x, ε)| 6 δ|ϕ(x, ε)| for x ∈ D and 0 < ε < ε1.

Intuitive interpretation:

f (x, ε) is approximated uniformly by ϕ(x, ε), if the approximation is preserved with any scal-

ing of x = a(ε)+ b(ε)t , valid in the domain of f . In formulas (with a scaling x = εt ∈ [0, K ]
as an example):

if f (x, ε) ∼ ϕ(x, ε) and ϕ(εt, ε) ∼ g(t, ε), then also f (εt, ε) ∼ g(t, ε).
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Examples:

cos(ε)+ e−x/ε ∼ 1 only pointwise for x ∈ (0,∞). Not uniform: take x = εt.
cos(ε)+ e−x/ε ∼ 1 pointwise and uniformly for x ∈ [a,∞), a > 0.

cos(ε)+ e−t ∼ 1+ e−t uniformly for t ∈ [0,∞).

sin(εx + ε) ∼ ε(x + 1) only pointwise for x ∈ (−∞,∞). Take x = t/ε.

sin(εx + ε) ∼ ε(x + 1) uniformly for x ∈ [−a, a], 0 < a <∞.
2+ sin( t + ε) ∼ 2+ sin(t) uniformly for t ∈ (−∞,∞).

2+ eε sin(t + εt) ∼ 2+ sin(t) only pointwise for t ∈ R. Note that sin(t + εt) = sin t + O(εt).

2+ eε sin(τ ) ∼ 2+ sin(τ ) uniform for τ ∈ R. Note that we rescaled τ = (1+ ε)t.

Uniform implies pointwise, but the reverse is not necessarily true. See the above examples.

8. If f and ϕ are absolutely integrable, and f (x, ε) ∼ ϕ(x, ε) uniformly on a domain D , while∫
D
|ϕ|dx = O(

∫
D
ϕdx), then

∫
D

f (x, ε) dx ∼
∫
D
ϕ(x, ε) dx .

9. Asymptotic sequence.

The sequence {µn(ε)} is called an asymptotic sequence, if µn+1 = o(µn) as ε → 0 for each

n = 0, 1, 2, · · · . This is denoted symbolically

µ0 ≫ µ1 ≫ µ2 ≫ · · · ≫ µn ≫ . . .

Common examples are µn = εn, or more generally µn = δ(ε)n if δ(ε) = o(1). Combinations

of ε and ln(ε) yield the sequence µn,k = εn ln(ε)k , where k = n, · · ·, 0 and

ln ε ≫ 1≫ ε ln(ε)≫ ε ≫ ε2 ln(ε)2 ≫ ε2 ln(ε)≫ ε2 ≫ . . .

10. Asymptotic expansion.

If {µn(ε)} is an asymptotic sequence, then f (ε) has an asymptotic expansion of N + 1 terms

with respect to this sequence, denoted by

f (ε) ∼
N∑

n=0

anµn(ε),

where the coefficients an are independent of ε, if for each M = 0, . . . , N

f (ε)−
M∑

n=0

anµn(ε) = o(µM (ε)) as ε→ 0.

µn(ε) is called a gauge function or order function.

If µn(ε) = εn, we call the expansion an asymptotic power series. Any Taylor series in ε around

ε = 0 is also an asymptotic power series.
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Asymptotic expansions, based on Taylor expansions in εn , of elementary functions:

eε = 1+ ε + 1
2
ε2 + . . .

sin(ε) = ε − 1
6
ε3 + . . .

cos(ε) = 1− 1
2
ε2 + . . .

1

1− ε = 1+ ε + ε2 + . . .

ln(1− ε) = −ε − 1
2
ε2 − 1

3
ε3 − . . .

ln(1+ ε) = ε − 1
2
ε2 + 1

3
ε3 − . . .

(1+ ε)α = 1+ αε + 1
2
α(α − 1)ε2 + . . .

Examples of combinations (which are sometimes not Taylor expansions in εn)

εε = eε ln ε = 1+ ε ln ε + 1
2
ε2(ln ε)2 + . . .

ln(sin ε) = ln ε − 1
6
ε2 + . . .

ln(cos ε) = − 1
2
ε2 − 1

12
ε4 + . . .

1

1− f (ε)
= 1+ f (ε)+ f (ε)2 + . . . , if f (ε) = o(1).

11. How to determine the coefficients.

The coefficients an of an asymptotic expansion can be determined uniquely (for given µn(ε))

by the following recursive procedure

a0 = lim
ε→0

f (ε)

µ0(ε)
, a1 = lim

ε→0

f (ε)− a0µ0(ε)

µ1(ε)
, . . . aN = lim

ε→0

f (ε)−∑N−1
n=0 anµn(ε)

µN (ε)
,

provided µn are nonzero for ε near 0 and each of the limits exist.

12. Convergent and asymptotic.

Let {µn(ε)} be an asymptotic sequence, with µ0 = 1 and ε > 0, and let

f (ε) =
N∑

n=0

anµn(ε)+ RN (ε).

If the series converges for N → ∞, then limN→∞ RN (ε) = 0. If the series is an asymptotic

expansion for ε→ 0, then limε→0 RN (ε) = 0. A convergent power series (like a Taylor series)

is also an asymptotic expansion. An asymptotic expansion is not necessarily convergent.

13. Asymptotically equal

Two functions f and g are asymptotically equal up to N terms, with respect to the asymptotic

sequence {µn}, if f − g = o(µN ).

14. The fundamental theorem of asymptotic expansions [10]

An asymptotic expansion vanishes if and only if the coefficients vanish, i.e.

{
a0µ0(ε)+ a1µ1(ε)+ a2µ2(ε)+ . . . = 0 (ε→ 0)

}
⇔

{
a0 = a1 = a2 = . . . = 0

}
.

PROOF.⇐ Is trivial.⇒ For any δ there is an interval with |µ1| 6 δ|µ0|. It follows that

|a0µ0| = |a1µ1 + . . . | 6 |2δa1µ0|, which is only possible if a0 = 0. The same for a1, etc.
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15. Poincaré expansion.

Let {µn(ε)} be an asymptotic sequence of order functions. If f (x, ε) has an asymptotic expan-

sion with respect to this sequence, given by

f (x, ε) ∼
N∑

n=0

an(x)µn(ε),

where the shape functions an(x) are independent of ε, then this expansion is called a Poincaré

expansion. Note: a Poincaré expansion is never Poincaré anymore after (nontrivial) rescaling x .

16. Regular and singular expansion.

If a Poincaré expansion is uniform in x on a given domain D this expansion is called a regular

expansion. Else, the expansion is called a singular expansion.

Note: A typical indication for non-uniformity is a scaling, such that the asymptotic ordering of

the terms is violated. In other words, a scaled x = x(ε) with a1(x)µ1(ε) 6≪ a0(x)µ0(ε), etc.

17. Role of scaling.

A Poincaré expansion and its region of uniformity depends (among other things) on the chosen

scaling x = x0 + δ(ε)ξ and the domain D .

For example, e−x/ε+ sin(x + ε) = sin(x)+ O(ε) is regular on any positive interval [a, b] with

a, b = O(1) but is singular on (0, b], while e−t + sin(εt+ε) = e−t +ε(t+1)+O(ε3) is regular

on any finite fixed interval.

18. Manipulations of asymptotic expansions.

Let f (x, ε) and g(x, ε) have Poincaré expansions on D with asymptotic sequence {µn(ε)}
f (x, ε) = µ0(ε)a0(x)+ µ1(ε)a1(x)+ · · ·
g(x, ε) = µ0(ε)b0(x)+ µ1(ε)b1(x)+ · · ·

Addition. Then the sum has the following asymptotic expansion

f + g = µ0(a0 + b0)+ µ1(a1 + b1)+ · · ·
Multiplication. If {µkµn} can be asymptotically ordered to the asymptotic sequence {γn}, with

γ0 = µ2
0, γ1 = µ0µ1, γ2 = O(µ0µ2 + µ2

1), etc., then the product has the asymptotic expansion

f g = (µ0a0 + µ1a1 + · · · )(µ0b0 + µ1b1 + · · · ) = γ0a0b0 + γ1(a0b1 + a1b0)+ γ2(· · · )+ · · ·
Integration. If the approximation is uniform, f , a0, a1, etc. are absolute-integrable on D , while∫
D

an dx 6= 0, then we can integrate term by term and obtain the asymptotic expansion
∫

D

f (x, ε) dx = µ0

∫

D

a0(x) dx + µ1

∫

D

a1(x) dx + · · ·

Differentiation. This is the least obvious. Consider the counter example

f (x, ε) = 1
2
x2 + ε cos

(
x
ε

)
= 1

2
x2 + O(ε), but f ′(x, ε) = x − sin

(
x
ε

)
6= x + O(ε).

However, if both f and f ′ have asymptotic expansions with asymptotic sequence {µn(ε)}, say

f (x, ε) = µ0(ε)a0(x)+ µ1(ε)a1(x)+ · · · , f ′(x, ε) = µ0(ε)q0(x)+ µ1(ε)q1(x)+ · · ·
then the derivative of the expansion of f is the expansion of derivative f ′, and satisfy

a′0 = q0, a′1 = q1, etc.

35 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

3.2 Asymptotic Expansions: Applications

3.2.1 General procedure for algebraic equations

The existence of an asymptotic expansion yields a class of methods to solve problems that depend on

a parameter which is typically small in the range of interest. Such methods are called perturbation

methods. The importance of these methods are two-fold. They provide analytic solutions to otherwise

intractable problems, and the asymptotic structure of the solution provides instant insight into the

dominating qualities.

If x(ε) is implicitly given as the solution of an algebraic equation

F (x, ε) = 0 (3.1)

we may solve this asymptotically for ε→ 0 in the following steps.

(i) First we prove, make plausible, or check in one way or another that a solution exists, and try to

find out if this solution is unique or there are more. This is not really an asymptotic question,

but important because the approximations involved later in the solution process may fool us: the

approximated equation may have no solutions while the original has, or the other way round.

Sometimes the existence of solutions is obvious straightaway, but sometimes global arguments

should be invoked.

(ii) Then we have to find the order of magnitude of the sought solution, say x(ε) = γ (ε)X (ε) with

X = Os(1). Unless we have scaled the problem already correctly, the solution is not necessarily

O(1). Often, we cannot decide with certainty, and we have to make a suitable assumption that

is consistent with all the information we have, and proceed to construct successfully a solution

or until we encounter a contradiction.

Another point of concern is the fact that there may be more solutions with different scalings.

The scaling function γ (ε) is found such that it yields a meaningful X = Os(1) in the limit

ε→ 0. This is called a distinguished limit, while the reduced equation for X (0), i.e. F0(X) = 0,

is called a significant degeneration (there may be more than one.) We can rescale F and x such

F (x, ε) = 0 becomes G(X, ε) = 0 while G(X, 0) = O(1).

(iii) The final stage is to make an assumption about an asymptotic expansion of the solution X for

small ε

X (ε) = X0 + µ1(ε)X1 + µ2(ε)X2 + . . .
This is only an assumption, based on a successful and consistent construction later. If we en-

counter a contradiction, we have to go back and correct or alter the assumed expansion.

If both X (ε) and G(X, ε) have an asymptotic series expansion with the same gauge functions,

X (ε) may be determined asymptotically by the following perturbation method. We expand X ,

substitute this expansion in G, and expand G to obtain

G(X, ε) = G0(X0)+ µ1(ε)G1(X1, X0)+ µ2(ε)G2(X2, X1, X0)+ . . . = 0.

From the Fundamental Theorem of asymptotic expansions (3.14) it follows that each term Gn

vanishes, and the sequence of coefficients (Xn) can be determined by induction:

G0(X0) = 0, G1(X1, X0) = 0, G2(X2, X1, X0) = 0, etc. (3.2)
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It should be noted that finding the sequence of gauge functions (µn) is of particular importance.

This is in general done iteratively, but sometimes a good guess also works. For example, if G is

a smooth function of ε, in particular in ε = 0, then in most cases an asymptotic power series

will work, i.e. µn(ε) = εn .

We have to realise that a successful construction is not a proof for its correctness. Strictly math-

ematical proofs are usually very difficult, and in the context of modelling not common. Suc-

cessfully finding a consistent solution is normally the strongest indication for its correctness we

can obtain.

3.2.2 Example: roots of a polynomial

We illustrate this procedure by the following example. Consider the roots for ε→ 0 of the equation

x3 − εx2 + 2ε3x + 2ε6 = 0.

Since the polynomial is of 3d order, and is negative for x = −1 (and ε small), positive in x = ε2,

negative in x = − 1
2
ε, and positive in x = 1, there are exactly 3 real solutions x (1), x (2), x (3).

From the structure of the equation it seems reasonable to assume that the order of magnitude of the

solutions scale like a power of ε. We write

x = εn X (ε), X = Os(1)

We have to determine exponent n first. This is done by balancing terms, and then seek such n that

produce a non-trivial limit under the limit ε→ 0: the distinguished limits of step (ii) above.

We compare asymptotically the coefficients in the equation that remain after scaling

ε3n X3 − ε1+2n X2 + 2ε3+n X + 2ε6 = 0.

Consider now the order of magnitude of the coefficients:

ε3n, ε1+2n, ε3+n, ε6.

By dividing by the biggest coefficient (this depends on n), we can always make sure that one coeffi-

cient is 1 and the others are smaller. For example, if n = 0 we have

1, ε, ε3, ε6.

If n = 2 we have

ε, 1, 1, ε.

If n = 4 we have

ε6, ε3, ε, 1.

If none balance (like for n = 0 and n = 4), the asymptotically biggest, with coefficient 1, would

be zero on its own, which thus implies to leading order that X = 0. However, this is not Os(1) and

therefore not a valid scaling. So at least two should be of the same order of magnitude and dominate

(like with n = 2).

37 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

0 1 2 3

1

2

3

4

5

6

n

3n

1+ 2n

3+ n

6

Figure 3.1: Analysis of distinguished limits.

In other words: in order to have a meaningful (or “significant”) degenerate solution X (0) = Os(1), at

least two terms of the equation should be asymptotically equivalent, and at the same time of leading

order when ε→ 0.

So this leaves us with the task to compare the exponents 3n, 1+2n, 3+n, 6 as a function of n. Consider

the Figure 3.1. The solid lines denote the exponents of the powers of ε, that occur in the coefficients

of the equation considered. At the intersections of these lines, denoted by the open and closed cir-

cles, we find the candidates of distinguished limits, i.e. the points where at least two coefficients are

asymptotically equivalent. Finally, only the closed circles are the distinguished limits, because these

are located along the lower envelope (thick solid line) and therefore correspond to leading order terms

when ε→ 0. We have now three cases.

n = 1.

ε3 X3 − ε3 X2 + 2ε4 X + 2ε6 = 0, or X3 − X2 + 2εX + 2ε3 = 0.

From the structure of the equation it seems reasonable to assume that X has an asymptotic

expansion in powers of ε. If we assume the expansion X = X0 + εX1 + . . ., we finally have

X3
0 − X2

0 = 0, 3X2
0 X1 − 2X0 X1 + 2X0 = 0, etc.

and so X0 = 1, and X1 = −2, etc. leading to x(ε) = ε− 2ε2 + . . . Note that solution X0 = 0

is excluded because that would change the order of the scaling!

n = 2.

ε6 X3 − ε5 X2 + 2ε5 X + 2ε6 = 0, or εX3 − X2 + 2X + 2ε = 0.

From the structure of the equation it seems reasonable to assume that X has an asymptotic

expansion in powers of ε. If we assume the expansion X = X0 + εX1 + . . ., we finally have

−X2
0 + 2X0 = 0, X3

0 − 2X0 X1 + 2X1 + 2 = 0, etc.

and so X0 = 2, X1 = 5, etc. , leading to x(ε) = 2ε2 + 5ε3 + . . .
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n = 3.

ε9 X3 − ε7 X2 + 2ε6 X + 2ε6 = 0, or ε3 X3 − εX2 + 2X + 2 = 0.

From the structure of the equation it seems reasonable to assume that X has an asymptotic

expansion in powers of ε. If we assume the expansion X = X0 + εX1 + . . ., we finally have

2X0 + 2 = 0, −X3
0 + 2X1 = 0, etc.

and so X0 = −1, X1 = − 1
2
, etc. , leading to x(ε) = −ε3 − 1

2
ε4 + . . . �

It is not always so easy to guess the general form of the gauge functions. Then all terms have to be

estimated iteratively by a similar process of balancing as for the leading order term. See the exercises.
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3.3 Asymptotic Expansions: Assignments

3.3.1 Asymptotic order

3.3.1.1

Prove, for functions in ε ↓ 0, that

(a) If f = O(φ) and g = o(ψ), then f g = o(φψ).

(b) If f = O(φ) and g = o(φ), then f + g = O(φ).

(c) If f = O(φ) and φ = o(ψ), then f = o(ψ).

(d) If f = o(φ) and φ = O(ψ), then f = o(ψ).

(e) If f = O(φ) and φ = O( f ), then f = Os(φ).

3.3.2 Asymptotic expansions in ε

3.3.2.1

What values of α, if any, yield (i) f = O(εα), (ii) f = o(εα), (iii) f = Os(ε
α) as ε→0?

(a) f =
√

1+ ε2

(b) f = ε sin(ε)

(c) f = (1− eε)−1

(d) f = ln(1+ ε)

(e) f = ε ln(ε)

(f) f = sin(1/ε)

(g) f = √x + ε, where 0 6 x 6 1

(h) f = e−x/ε, where x > 0

3.3.2.2

Determine asymptotic expansions for ε→ 0 with respect to {εn(ln ε)k} of

(a) ε/ tan ε,

(b) ε/(1− εε),

(c) 1/ ln(sin ε),

(d) (1− ε + ε2 ln ε)/(1− ε ln ε − ε + ε2 ln ε).
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3.3.2.3

Assuming f ∼ aεα + bεβ + . . . , find α, β (with α < β) and nonzero a, b for the following functions:

(a) f = 1/(1− eε)

(b) f = sinh(
√

1+ εx) for 0 < x <∞.

(c) f =
∫ ε

0
sin(x + εx2) dx

3.3.3 Asymptotic sequences

3.3.3.1

Are the following sequences asymptotic sequences for ε→0. If not, arrange them so that they are or

explain why it is not possible to do so.

(a) φn = (1− e−ε)n for n = 0, 1, 2, 3, . . .

(b) φn = [2 sinh(ε/2)]n/2 for n = 0, 1, 2, 3, . . .

(c) φn = 1/ε1/n for n = 1, 2, 3, . . .

(d) φ1 = 1, φ2 = ε, φ3 = ε2, φ4 = ε ln(ε), φ5 = ε2 ln(ε), φ6 = ε ln2(ε), φ7 = ε2 ln2(ε).

(e) φn = εnε for n = 0, 1, 2, 3, . . .

(f) φn = εn/ε for n = 0, 1, 2, 3, . . .

3.3.4 Asymptotic expansions in x and ε

3.3.4.1

Find a one-term asymptotic approximation, for ε→0, of the form f (x, ε) ∼ φ(x) that holds for

−1 < x < 1. Sketch f (x, ε) and φ, and then explain why the approximation is not uniform for

−1 < x < 1.

(a) f (x, ε) = x + exp
(
(x2 − 1)/ε

)

(b) f (x, ε) = x + tanh(x/ε)

(c) f (x, ε) = x + 1/ cosh(x/ε)
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3.3.4.2

Determine, if possible, uniform asymptotic expansions for ε→ 0 and x ∈ [0, 1] of

(a) sin(εx),

(b) 1/(ε + x),

(c) x log(εx),

(d) e− sin(x)ε,

(e) e− sin(x)/ε .

(f) 2 log(1+ x)/(x2 + ε2).

3.3.5 Solving algebraic equations asymptotically

3.3.5.1

Find a two-term asymptotic expansion, for ε→0, of each solution x of the following equations.

(a) εx3 − 3x + 1 = 0,

(b) εx3 − x + 2 = 0,

(c) x2+ε = 1/(x + 2ε), (x > 0).

(d) x2 − 1+ ε tanh(x/ε) = 0

(e) x = a + εxk for x > 0. Consider 0 < k < 1 and k > 1.

(f) 1− 2x + x2 − εx3 = 0.

3.3.5.2

Derive step by step, by iteratively scaling x(ε) = µ0(ε)x0 + µ1(ε)x1 + µ2(ε)x2 + . . . and balancing,

that a third order asymptotic solution (for ε→ 0) of the equation

ln(εx)+ x = a,

is given by

x(ε) = ln ε−1 − ln
(
ln ε−1

)
+ a + o(1).

Find a more efficient expansion based on an alternative asymptotic sequence of gauge functions by

combining e−a ε.

3.3.5.3

Analyse asymptotically for ε→ 0 the zeros of e−x/ε2 +x − ε.
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3.3.5.4

Solve asymptotically, for large n, the n-th positive solution x = xn of

x = tan x .

Hint: for large n and xn > 0, xn = tan(xn) is large, and so xn must be near (in fact: just before) a

pole of tan. If we count the trivial first solution as x0 = 0, then xn ≃ (n+ 1
2
)π . Write ε−1 = (n+ 1

2
)π ,

and xn = ε−1 − y(ε) with 0 < y < 1
2
π such that tan(x) = cot(y). Solve asymptotically for small ε.

Generalise this result to the solutions of

x = α tan x

for α > 0. Note that solution x1 seems lost for α > 1. Do you see where it disappeared to?

3.3.5.5 The pivoted barrier

Consider a horizontal barrier of length L , free on one end and pivoted at the other end, such that it can

swivel horizontally around a vertical pivot. The hinge is constructed in such a way that the barrier is

fixed perpendicularly to the upper end of a vertical hollow cylinder of diameter B and length H . This

upper end is closed, the other end is open. With this open end the cylinder is placed over a vertical

axis which is firmly anchored in the ground. Of course, the length of the axis is more than H and the

diameter of the axis, b, is less than B.

L
H

B

b

α

Figure 3.2: Slightly tilted barrier

Depending on the clearance between cylinder and axis, and the length of the cylinder, the free end

of the barrier (which is otherwise perfectly stiff) will lean down from the exactly horizontal position.

The question is: how much will this be.

You may assume that the construction is reasonable. In other words, the clearance will be small but

not very small, and the length of the cylinder is ample.

Try to solve the problem geometrically exactly. It is possible to reformulate the problem as one of

finding a zero of a 4-th order polynomial equation in sinα, where α is the angle of barrier with

horizon. Conclude that the solution is difficult and clumsy.

Then try to make reasonable approximations and construct an adequate and transparent approximate

solution.
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3.3.5.6

Find an asymptotic approximation, for ε→0, of each solution y = y(x, ε) of

y2 + (1+ ε + x)y + x = 0, for 0 < x < 1,

and determine if it is uniform in x over the indicated interval.

3.3.5.7 The Lagrange points of the reduced three body problem

Consider the so-called Restricted Three Body Problem consisting of a very small object moving in the

gravity field of a system of two bodies, moving in a circle around their center of gravity. This gravity

field (in a co-rotating coordinate system) has 5 points, where the sum of gravities and centrifugal

forces cancel each other. Here, the small object could remain stationary (motionless in the co-rotating

coordinates). These points are called the Lagrange points or libration points. Two of them can be

given analytically exactly. If the mass ratio of both bodies is small, the location of the other three

Lagrange points can be given asymptotically.

Consider the three masses M1 (big), M2 (small) and M3 (negligible). The two masses M1 and M2 are

assumed to be in circular orbits around their center of mass. The third mass M3 is so small that it does

not influence the motion of M1 and M2. We make dimensionless such that M1 = 1 (the Sun, say)

and M2 = µ (Earth or Jupiter, say). µ is small but not negligible (3.03591 · 10−6 for the Earth-Sun

system). M3 = 0 (satellite, small planet) is negligibly small. Gravitational constant becomes G = 1

and the orbital period is 2π . The radii of the orbits around the center of gravity of M1 is µ, and of M2

is 1− µ.

Introduce a coordinate system with the origin in the center of gravity, and co-rotates with M1 and M2.

In this system, M1 has fixed coordinates (−µ, 0) and M2 has (1 − µ, 0). The equations of motion of

M3 in (x, y, z) are now

..
x − 2

.
y= ∂�

∂x
,

..
y + 2

.
x= ∂�

∂y

..
z = ∂�

∂z

where

� = 1
2
(x2 + y2)+ 1− µ

R1

+ µ

R2

+ 1
2
µ(1− µ),

R1 =
√
(x + µ)2 + y2 + z2,

R2 =
√
(x − 1+ µ)2 + y2 + z2.

and so

∂�

∂x
= x − (1− µ)x + µ

R3
1

− µx − 1+ µ
R3

2

,

∂�

∂y
= y − (1− µ) y

R3
1

− µ y

R3
2

,

∂�

∂z
= −(1− µ) z

R3
1

− µ z

R3
2

.
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Figure 3.3: Sketch of restricted three-body problem with 5 Lagrange points and origin.

The 5 stationary points of this system are called “Lagrange points” or “libration points”. They are

given by the system ∇� = 0, or

x

(
1− 1− µ

R3
1

− µ

R3
2

)
− (1− µ)µ

(
1

R3
1

− 1

R3
2

)
= 0,

y

(
1− 1− µ

R3
1

− µ

R3
2

)
= 0,

z

(
− 1− µ

R3
1

− µ

R3
2

)
= 0.

All solutions are found in the plane z = 0, since (1 − µ)R−3
1 + µR−3

2 > 0. Lagrange points L1, L2,

and L3 are located on the line y = 0 (see below), but these are not the only solutions. The second

factor of the y-equation may also vanish, in which case the x-equation simplifies to the condition

R1 = R2 = 1. This then gives rise to the points L4 and L5, which are explicitly given by

x4,5 = 1
2
− µ, y4,5 = ± 1

2

√
3.

The other three points, L1, L2 and L3, are located on the line y = 0, i.e. given by y1 = y2 = y3 = 0

(the colinear libration points). The resulting x-equation can not be simplified further, but may be

solved asymptotically for small µ. We have

x − (1− µ) x + µ
|x + µ|3 − µ

x − 1+ µ
|x − 1+ µ|3 = 0.

Verify that the three coordinates x3, x4, and x5 are given asymptotically by

x1 = 1− ( 1
3
µ)1/3 + 1

3
( 1

3
µ)2/3 + O(µ)

x2 = 1+ ( 1
3
µ)1/3 + 1

3
( 1

3
µ)2/3 + O(µ)

x3 = −1− 5
12
µ+ 1127

20736
µ3 + O(µ4)
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3.3.6 Solving differential equations asymptotically

3.3.6.1

Find a two-term asymptotic expansion, for ε→0, of the solution y = y(x, ε) of the following prob-

lems.

(a) y′′ + εy′ − y = 1, where y(0) = y(1) = 1.

(b) y′′ + y + y3 = 0, where y(0) = 0 and y( 1
2
π) = ε.

3.3.6.2 A car changing lanes

A car rides along a double lane straight road given by −∞ < x < ∞, −2b 6 y 6 2b. The position

of the car at time t is given by

x = ξ(t), y = η(t).

y

x

0 b−b

Figure 3.4: The trajectory of a car that changes lane

For x→−∞, the car is at y = −b, but near x = 0 it changes lane and shifts smoothly to y = b

according to a trajectory given by

η(t) = F(ξ(t)),

where F is given and ξ = ξ(t) is to be found under the condition that all along the trajectory, the car

travels with the same speed V , so

.
ξ(t)2 + .

η(t)2 = V 2, and so
.
ξ(t)2 + F ′(ξ)2

.
ξ(t)2 = V 2.

Note that both F and its argument x have dimension “length”, so if F describes a changes of the order

of b over a distance of the order of L , we should be able to write F as

F(x) = b f (x/L)
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for f = O(1). Take for definiteness ξ(0) = 0, and

f (z) = tanh(z) where f ′(z) = 1− f (z)2.

We assume that the change of lane happens gradually, such that

ε = b

L
≪ 1.

a. Make the problem dimensionless by the inherent length scale b and corresponding time scale b/V .

Write ξ = bX . Note the appearance of the small parameter ε. Do you see the appearance of a term

of the form f ′(εX)? If we expand this for small ε we obtain something like

f ′(εX) = f ′(0)+ εX f ′′(0)+ . . .
which is already incorrect for X = O(1/ε), the order of magnitude we are interested in! Therefore

this choice is NOT clever. Indeed, b is not the typical length scale for ξ .

b. Make the problem dimensionless by the inherent length scale L and corresponding time scale

L/V . Write ξ = L X and t = (L/V )τ .

c. By separation of variables we can write τ as a function, in the form of an integral, of X . Otherwise,

it is impossible to find an explicit expression for X . Therefore, we will try to find an asymptotic

expansion for small ε by assuming the Poincaré expansion

X (τ, ε) = X0(τ )+ ε2 X1(τ )+ O(ε2),

and substitute this in the equation, and expand the equation also asymptotically. Find the first two

terms. Do you see why we can expand in powers of ε2 rather than (for example) ε?

Hint: note that for small δ we approximate (1+ δ)a = 1+ aδ + O(δ2), and
∫

tanh(x)2n dx = x − tanh(x)− 1
3

tanh(x)3 − 1
5

tanh(x)5 − · · · − 1
2n−1

tanh(x)2n−1

such that ∫
(1− tanh(x)2)1 dx = tanh(x)

∫
(1− tanh(x)2)2 dx = tanh(x)− 1

3
tanh(x)3

∫
(1− tanh(x)2)3 dx = tanh(x)− 2

3
tanh(x)3 + 1

5
tanh(x)5

3.3.7 A water-bubbles mixture

A mixture of water and air (in the form of bubbles) with volume fraction α air and volume fraction

1− α water, has a mean density ρ and sound speed c given by

ρ = αρa + (1− α)ρw,
1

ρc2
= α

ρac2
a

+ 1− α
ρwc2

w

.

Typical values are ρw = 1000 kg/m3, ρa = 1.2 kg/m3, cw = 1470 m/s, ca = 340 m/s. Develop

strategies to approximate c for values of α, based on an inherent small problem parameter. When is

c minimal? What is the effect of even a very small fraction of air (common in the wake of a ship’s

propeller, or in a fresh central heating system)?
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3.3.8 A chemical reaction-diffusion problem (regular limit)

A catalytic reaction is a chemical reaction between reactants, of which one – the catalyst – returns

after the reaction to its original state. Its rôle is entirely to enable the reaction to happen. An example

of a catalyst is platinum. The primary reactant is usually a liquid or a gas. As the catalyst and the

reactant are immiscible, the reaction occurs at the catalyst surface, which is therefore made as large

as possible. A way to achieve this is by applying the catalyst in the pores of porous pellets in a so-

called fixed bed catalytic reactor. The reactant diffuses from the surface to the inside of the pellet.

Meanwhile, being in contact with the catalyst, the reactant is converted to the final product.

Assume reactant A reacts to product B at the pellet pores surface via an nth-order, irreversible reaction

A
k→ B

with concentration inside the pellet C = [A] mol/m3, production rate kCn mol/m3s and rate constant

k. This reaction acts as a sink term for A. Under the additional assumption of a well stirred fluid in

order to maintain a constant concentration C = CR at the outer surface of spherically shaped pellets,

we obtain the following unsteady reaction-diffusion equation:

∂C

∂t
−∇·(D∇C) = −kCn, 0 < r̃ < R, t > 0,

C(r, 0) = 0, 0 < r̃ < R,

C(R, t) = CR,
∂

∂ r̃
C(0, t) = 0, t > 0,

C = CRr̃

R

where D is the diffusion coefficient of C inside the pellet. After sufficiently long time the concen-

tration C attains a steady state distribution within the pellet. Assuming spherical symmetry and a

constant diffusion coefficient D, we have the stationary reaction-diffusion equation

D
1

r̃2

d

dr̃

(
r̃2 dC

dr̃

)
= kCn, 0 < r̃ < R,

C(R) = CR,
d

dr̃
C(0) = 0.

The net mass flux into the pellet, an important final result, is given by 4πR2 D d
dr

C(R) (Fick’s law).

We make the problem dimensionless as follows:

c = C

CR

, r = r̃

R
, φ2 = k R2Cn−1

R

D
,

such that

1

r2

d

dr

(
r2 dc

dr

)
= φ2cn, 0 < r < 1,

c(1) = 1, c′(0) = 0,

where the prime ( ′) denotes differentiation with respect to r , φ is called the Thiele modulus, and

reaction order n = 1, 2, 3, . . . .

We are interested in the asymptotic behaviour of c for ε = φ2 → 0. Assume a regular Poincaré

expansion of c in powers of ε and find the first three terms. Hint. Introduce y = rc.
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Chapter 4

Method of Slow Variation

4.1 Theory

The name Method of Slow Variation was coined relatively recently in 1987 by Milton Van Dyke [6].

4.1.1 General procedure

Suppose we have a function ϕ(x, ε) of spatial coordinates x ∈ V and a small parameter ε, such

that the typical variation in one direction, say x , is of the order of length scale ε−1. For example,

ϕ(x, ε) = 1+ ε sin(εx + ε), or = x

ε−2+x2 along V = R.

Roughly speaking, this amounts to something like ∂
∂x
ϕ = O(εϕ). However, if ϕ is zero, or much

smaller or larger than the varying part of ϕ, this is not what we mean. Slightly more precise is therefore

∂ϕ

∂x
= O(εc(ε)), where c = |ϕ − ϕ| while the overbar denotes average over V.

We can express this behaviour most conveniently by writing ϕ(x, y, z, ε) = 8(εx, y, z, ε). Now if

we were to expand 8 for small ε, we might, for example by some Taylor-like expansion in ε, get

something like

8(εx, y, z, ε) = 8(0, y, z; 0)+ ε
(
x8x(0, y, z; 0)+8ε(0, y, z; 0)

)
+ . . .

which is only uniform in x on an interval [0, L] if L = O(1), while the inherent slow variation on the

longer scale of x = O(ε−1) would be masked. It is clearly much better to absorb the ε-dependence in

εx into a new variable, and introduce the scaled variable X = εx . The (assumed) regular expansion

of 8(X, y, z, ε)

8(X, y, z, ε) = µ0(ε)ϕ0(X, y, z)+ . . . (4.1)

now retains the slow variation in X in the shape functions of the expansion and remains valid for all X .

In other words, the scaled variable X in combination with order function µ0 yields with limε→0 µ
−1
0 8

the distinguished limit or significant degeneration of ϕ.

This situation frequently happens when the geometry involved is slender. The theory of one dimen-

sional gas dynamics, lubrication flow, or sound propagation in horns (Webster’s horn equation) are
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important examples, although they are usually derived not systematically, without explicit reference

to the slender geometry. We will illustrate the method both for heat flow in a varying bar, quasi 1-D gas

flow and the shallow water problem. A more advanced example, presented for illustration in section

8.4, is the weakly nonlinear theory for long water waves, resulting in the celebrated Korteweg-deVries

equation.

4.1.2 Example: heat flow in a bar

Consider the stationary problem of the temperature distribution T in a long heat-conducting bar, with

constant heat conductivity κ , outward surface normal n, and slowly varying cross section A. The bar is

kept at a temperature difference such that a given heat flux is maintained, but is otherwise isolated. As

there is no leakage of heat, the axial flux F along a cross section is constant. With spatial coordinates

made dimensionless on a typical bar cross section D and the temperature on a typical temperature 20,

we can write the flux in a dimensionless form like F = κ20 DQ, and have the following equations

and boundary conditions

∇2T = 0,
[
∇T ·n]surface

= 0,

∫∫

A

(
−∂T

∂x

)
dS = Q.

(Note that only the derivatives of T play a role, so we may subtract any reference level and assume, for

example, that T is at one of the ends equal to zero.) After integrating ∇2T over a slice x1 6 x 6 x2,

and applying Gauss’s theorem, we find that the axial flux Q is indeed independent of x .

We will assume here the cross section and the temperature field circular symmetric, but that is not

a necessary simplification for a manageable analysis. As a result we have in cylindrical coordinates

(x, r, θ)

∂2T

∂x2
+ 1

r

∂

∂r

(
r
∂T

∂r

)
= 0,

∂T

∂x
nx +

∂T

∂r
nr = 0, 2π

∫ R

0

r
∂T

∂x
dr = −Q.

The typical length scale L of diameter variation is assumed to be much larger than a diameter D. We

introduce their ratio as the small parameter ε = D/L , and write for the bar surface

S(X, r) = r − R(X) = 0, X = εx,

where (x, r, θ) form a cylindrical coordinate system (see Figure 4.1). By writing R as a continuous

x

n

θ

r

r = R(εx)

Figure 4.1: Slowly varying bar.

function of slow variable X , rather than x , we have made our formal assumption of slow variation
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explicit in a convenient and simple way, since Rx = εRX = O(ε). From calculus we know, that ∇S

is a normal of the surface S = 0. So we can write

n ∼ ∇S, or nx ex + nr er ∼ −εRX ex + er .

The crucial step will now be the assumption that the temperature is only affected by the geometric

variation induced by R. Any initial or entrance effects are ignored or have disappeared. As a result, in

the limit of small ε,

the temperature field T (x, r, ε) = T̃ (X, r, ε) has a regular expansion1 in variable X ,

rather than x – in other words: T̃ yields the distinguished limit of T – and

its axial gradient scales on ε, as
∂T

∂x
= ε ∂ T̃

∂X
= O(ε).

For simplicity we will write in the following T , instead of T̃ . If we rewrite the equations from x into

X , we obtain the rescaled heat equation

ε2TX X +
1

r

(
rTr

)
r
= 0. (∗)

At the wall r = R(X) the boundary condition of vanishing heat flux is

− ε2TX RX + Tr = 0. (†)

The flux condition, for lucidity rewritten with Q = 2πεq, is given by

∫ R(X)

0

r
∂T

∂X
dr = −q.

This problem is too difficult in general, so we try to utilize the small parameter ε in a systematic

manner. From the flux condition, it seems that T = O(1). Since the perturbation terms are O(ε2), we

assume an asymptotic expansion of Poincaré-type, with shape functions of (X, r), not of (x, r)

T (X, r, ε) = T0(X, r)+ ε2T1(X, r)+ O(ε4).

(Remember: this is a modelling assumption and not necessarily possible for every problem.) After

substitution in equation (∗) and boundary condition (†), further expansion in powers of ε2 and equating

like powers of ε, we obtain to leading order the following equation in r

(rT0,r)r = 0 with T0,r = 0 at r = R(X) and regular at r = 0.

An obvious solution is T0(X, r) is constant in r . Since X is present as parameter we have thus

T0 = T0(X).

We can substitute this directly in the flux condition, to find

1

2
R2(X)

dT0

dX
= −q

1i.e. on the whole bar
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and therefore

T0(X) = Tin −
∫ X

0

q
1
2

R2(ξ)
dξ.

We can go on to find the next term T1, but this leading order solution contains already most of the

physical information.

In summary: we assumed that the slowly varying bar induces a slowly varying temperature distri-

bution. This is not always true, but depends on the type of physical phenomenon. Then we rescaled

the equations such that we used this slow variation. After assuming an asymptotic expansion of the

solution we obtained a simplified sequence of problems. The original partial differential equations

simplified to ordinary differential equations, which are far easier to solve.

It should be noted that we did not include in our analysis any boundary conditions at the ends of the

bar. It is true that the present method fails here. The found solution is uniformly valid on R (since

R(X) is assumed continuous and independent of ε), but only as long as we stay away from any end.

Near the ends the boundary conditions induce x-gradients of O(1) which makes the prevailing length

scale again x , rather than X . This region is asymptotically of boundary layer type, and should be

treated differently (see below).

54 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

4.2 Method of Slow Variation: Assignments

4.2.1 Heat flux in a bar

Consider the stationary two-dimensional problem of a long heat-conducting bar, slowly varying in

diameter, which is kept at both ends at a different temperature, and which is otherwise thermally

isolated. We will not consider the neighbourhood of the ends, and therefore we will not explicitly

apply boundary conditions at the ends. Instead, we will assume a given axial heat flux.

In dimensional form, we have

∂2T

∂x2
+ ∂

2T

∂y2
= 0 along 0 < x < ℓ, 0 6 y 6 Hh

(
x
L

)

with ε = H/L is small, ℓ is large enough, h = O(1) is a smooth, strictly positive function, and a flux

−
∫ Hh

0

κ
∂T

∂x
dy = Q

is prescribed. Make the problem dimensionless on H and a suitable temperature. Write the boundary

condition of thermal isolation (flux ∼ ∇T · En = 0) in terms of h.

Apparently, the essential co-ordinate in x-direction is x/L , and significant changes in x-direction are

felt only on a length scale x = O(L−1), so we introduce a slow axial variable.

Assume that the field varies axially in this variable (ℓ is large enough so any end-effects are local and

assumed irrelevant here).

Solve the problem to leading order of an assumed asymptotic expansion of T in powers of ε.

4.2.2 Lubrication flow

Lubrication theory deals with a viscous flow (not-large Reynolds number) through a narrow channel

of slowly varying cross section [38].

Consider steady flow in a two-dimensional narrow channel, with prescribed volume flux. In practice

this flux is created by a prescribed pressure difference or pressure gradient, but by using the flux here,

we can estimate the typical flow velocity and thus the Reynolds number.

If we make dimensionless on the channel height, and scale the pressure gradient such that viscous

forces are balanced by the (externally applied) pressure gradient, we obtain in dimensionless form

(check!)

Re
(

u
∂u

∂x
+ v ∂u

∂y

)
+ ∂p

∂x
= ∂2u

∂x2
+ ∂

2u

∂y2
, Re

(
u
∂v

∂x
+ v ∂v

∂y

)
+ ∂p

∂y
= ∂2v

∂x2
+ ∂

2v

∂y2
,

∂u

∂x
+ ∂v
∂y
= 0

for the velocity (u, v) and pressure p in the channel

−∞ < x <∞, g(εx) 6 y 6 h(εx).

(End conditions in x are not important.) Boundary conditions are no slip at the walls:

u = v = 0 at y = g(εx), and y = h(εx)
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such that 0 < h − g = Os(1). Furthermore, the flow is assumed to consitute the flux

∫ h(εx)

g(εx)

u(x, y) dy = 1.

(If required, we can fix the pressure somewhere, for example p(x = 0) = 0, but this is not important.)

Apparently, the essential co-ordinate in x-direction is εx , and significant changes in x-direction are

felt only on a length scale x = O(ε−1), so we rewrite X = εx .

Assume that the field varies slowly in X (any end-effects are local and irrelevant for the x’s consid-

ered).

How do we scale u, v, p? Do not forget the fact that Re 6 O(1), and that a pressure gradient is

necessary to have a flow, while further the crosswise velocity v will be much smaller than the axial

velocity u.

Assume for scaled u, v, p an obvious asymptotic expansion in ε, and solve up to leading order.

4.2.3 Quasi 1D gas dynamics

Consider a compressible, subsonic inviscid irrotational steady flow through a slowly varying cylin-

drical duct, given dimensionless by r = R(εx). The flow is assumed nearly uniform. Because of

symmetry, it is assumed to be independent of the circumferential co-ordinate θ . As the flow is irro-

tational, we can assume a potential φ for the velocity v. Density ρ and pressure p are related via

thermodynamic relations of isentropy.

This type of flow is called: 1D gas dynamics. A better name would be: quasi-1D gas dynamics.

In dimensionless form, the flow is described by the following equations. Inside the duct 0 6 r 6

R(εx) = O(1) we have the mass equation, Bernoulli’s equation and the isentropic relation

∇ ·(ρv) = ∂

∂x
(ρu)+ 1

r

∂

∂r
(rρv) = 0, where v = ∇φ =

(
∂
∂x
φ
)
ex +

(
∂
∂r
φ
)
er = uex + ver

1
2
|v|2 + c2

γ − 1
= E, a constant O(1)

c2 = γ p

ρ
= ργ−1 = O(1)

The duct walls, with normal vector n, are impermeable, so

v·n = ∇φ·n = 0 at r = R(εx),

while a mass flux F is given by

2π

∫ R(εx)

0

ρ(x, r)u(x, r)r dr = F = O(1).

The thermodynamical properties are fixed by the Bernoulli constant E . The physical parameter γ ,

which is just a constant, is typically for air equal to 1.4. The auxiliary variable c denotes the sound

speed, and is otherwise unimportant.
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Apparently, the essential co-ordinate in x-direction is εx , and significant changes in x-direction are

felt only on a length scale x = O(ε−1), so we rewrite X = εx .

How do we scale φ, u, v, ρ, p, c? Pay particularly attention to the fact that from the flux condition it

follows that u = O(1), while also u = ∂
∂x
φ. Do not forget the fact that a pressure gradient is necessary

to have a flow, while further the crosswise velocity v will be much smaller than the axial velocity u.

Assume that the field varies slowly in X (any end-effects are local and irrelevant for the x’s consid-

ered).

Assume for scaled φ, u, v, ρ, p, c an obvious asymptotic expansion in ε, and determine the prevailing

equations to leading order. Solve the equations for the velocity. For density ρ we are left with an

algebraic equation that cannot be solved explicitly.

4.2.4 Webster’s horn

Consider acoustic waves of fixed frequency ω through a slowly varying horn (duct). The typical wave

length λ is long, i.e. of the same order of magnitude as the typical length scale L of the duct diameter

variations. For simplicity we consider a two-dimensional horn, with a constant lower wall given by

ỹ = 0 and an upper wall given by ỹ = Hh(x̃/L), where h = O(1) is dimensionless and H ≪ L .

The sound field is given by the velocity potential φ̃, where velocity is ṽ = ∇̃φ̃ (and pressure p̃ =
−iωρ0φ̃ but this is here unimportant), obeying the reduced wave equation ( Helmholtz equation)

∇̃2φ̃ + k̃2φ̃ = 0, in −∞ < x̃ <∞, 0 6 ỹ 6 Hh(x̃/L),

where k̃ = ω/c is the free field wave number, which is equal to 2π/λ.

The wall (with normal vectors ey and n) are impermeable, so we have the boundary conditions

ṽ· ey = 0 at ỹ = 0, ṽ·n = 0 at ỹ = Hh(x̃/L).

Assume that there is a sound field (the problem is linear, so it’s enough to assume that φ̃ 6≡ 0).

Make the lengths in the problem dimensionless on the typical duct height H and φ̃ on an (unimportant)

reference value8. Verify that the equations remain the same. Introduce the small parameter ε = H/L .

Apparently, the x̃ variations scale on L , and so the essential co-ordinate in x-direction is εx . Signifi-

cant changes in x-direction are felt only on a length scale x = O(ε−1), and so we rewrite X = εx .

Note that the dimensionless k = O(ε), so we scale k = εκ .

Assume that the field varies slowly in X (any end-effects are local and irrelevant here).

Assume in scaled coordinates for φ an obvious asymptotic expansion in ε, and derive the equation for

(leading order) φ0. This equation is called “Webster’s equation”.

Solve this equation for h(z) = e2αz.
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4.2.5 Shallow water waves along a varying bottom

Consider the following inviscid incompressible irrotational 2D steady water flow in (x, z)-domain

along a slowly varying bottom. The bottom is given by z = b(x/L), where L is a typical length scale

along which bottom variations occur. The water level is given by z = h(x).

The velocity vector v can be given by a potential φ

v = ∇φ.
Conservation of mass requires

∇2φ = 0 for −∞ < x <∞, b < z < h.

Because of the assumptions we can integrate the momentum equation to Bernoulli’s equation and

obtain for pressure p
1
2
|∇φ|2 + p

ρ0

+ gz = C,

where ρ0 denotes the water density, g the acceleration of gravity, and C is a constant, related to the

chosen reference pressure level.

At the impermeable bottom we have a vanishing normal component of the velocity, yielding the

boundary condition

∇φ·∇(b − z) = ∂φ

∂x

∂b

∂x
− ∂φ
∂z
= 0 at z = b.

Since the water surface z = h is a streamline, it follows that for a particle moving along (x(t), z(t))

with z(t) = h(x(t)) we have dz
dt
= dh

dt
= ∂h

∂x
dx
dt

, leading to

∂φ

∂z
= ∂h

∂x

∂φ

∂x
at z = h.

Furthermore, the water surface takes the pressure of the air above the water, say p = pa , so

1
2
|∇φ|2 + gh + pa

ρ0

= C at z = h.

The water flow is defined by a prescribed volume flux F , which is the same for all positions x .
∫ h

b

∂φ

∂x
dz = F.

By assuming far upstream a constant bottom level b = b∞, a constant water level h = h∞ = b∞+D∞
and a uniform flow with velocity U∞ = F/D∞, we can determine the Bernoulli constant in physical

terms

C = pa

ρ0

+ 1
2
U 2
∞ + gh∞.

Introduce ε = D∞/L where ε is small.

a) Make the problem dimensionless. Scale lengths on D∞, velocities on U∞. Assume that the inverse-

squared Froude number (or Richardson number) γ = gD∞/U 2
∞ = O(1).

b) Solve the problem to leading order for small ε by application of the Method of Slow Variation.

Note that both φ and h are unknowns, and have to be expanded in ε. Bottom variation b and

constants F and C − pa/ρ0, on the other hand, are given.

Note. The very last equation cannot be integrated explicitly.
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4.2.6 A laterally heated bar

A 2-dimensional slowly varying heat conducting bar is described by

−∞ < x̃ <∞, ỹ0 + Hg(x̃/L) 6 ỹ 6 ỹ0 + Hh(x̃/L),

where the geometries g and h are smooth functions of their argument. The bar is kept along the

lower side at fixed temperature T̃ (x̃, ỹ0 + Hg) = θ0, and along the upper side at fixed temperature

T̃ (x̃, ỹ0 + Hh) = θ1. This constitutes a stationary temperature distribution T̃ (x̃, ỹ), which satisfies

the heat equation

∂2T̃

∂ x̃2
+ ∂

2T̃

∂ ỹ2
= 0.

a) Make the problem dimensionless. Scale lengths on H by x̃ = H x and ỹ = ỹ0 + H y, and temper-

ature by T̃ = θ0+ (θ1− θ0)T . Introduce the geometric ratio ε = H/L . Assume that ε is small. As

the notation suggests, g(z) and h(z) do not depend on ε and 0 < h(z)− g(z) = O(1).

b) Assuming that T is slowly varying with geometry g and h in x (no end effects), solve the problem

asymptotically for small ε to first and second order by application of the Method of Slow Variation.
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Chapter 5

Method of Lindstedt-Poincaré

5.1 Theory

5.1.1 General Procedure

When we have a function y, depending on a small parameter ε, and periodic in t with fundamental

frequency ω(ε), we can write y as a Fourier series

y(t, ε) =
∞∑

n=−∞
An(ε) einω(ε)t (5.1)

If amplitudes and frequency have an asymptotic expansion for small ε, say

An(ε) = An,0 + εAn,1 + . . . , ω(ε) = ω0 + εω1 + . . . , (5.2)

we have a natural asymptotic series expansion for y of the form

y(t, ε) =
∞∑

n=−∞
An,0 einω0t + ε

∞∑

n=−∞

(
An,1 + inω1t An,0

)
einω0t + . . . (5.3)

This expansion, however, is only uniform in t on an interval [0, T ], where T = o(ε−1). On a larger

interval, for example [0, ε−1], the asymptotic hierarchy in the expansion becomes invalid, because

εt = O(1). This happens because of the occurrence of algebraically growing oscillatory terms, called

“secular terms”. Secular = occurring once in a century, and saeculum = generation, referring to their

astronomical origin.

Definition. The terms proportional to tm sin(nω0t), tm cos(nω0t) are called “secular terms”. More

generally, the name refers to any algebraically growing terms that limit the region of validity of an

asymptotic expansion.
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It is therefore far better to apply first a coordinate transformation τ = ω(ε)t , introduce Y (τ, ε) =
y(t, ε), and expand Y , rather than y, asymptotically. We get

Y (τ, ε) =
∞∑

n=−∞
An(ε) einτ =

∞∑

n=−∞
An,0 einτ + ε

∞∑

n=−∞
An,1 einτ + . . . (5.4)

which is now, in variable τ , a uniformly valid approximation!

The method is called the Lindstedt-Poincaré method or the method of strained coordinates. In practical

situations, the function y(t, ε) is implicitly given, often by a differential equation, and to be found. A

typical, but certainly not the only example [40] is a weakly nonlinear harmonic equation of the form

y′′ + εh(y, y′)+ α2y = 0,

where h is assumed to allow the existence of one or more periodic solutions for y = O(1) with

frequency ω(ε) ≈ α for ε → 0. In view of the above, it makes sense to construct an asymptotic

approximation like Y = Y0 + εY1 + ε2Y2 + · · · with a rescaled variable τ = ωt . However, except for

trivial situations, the frequency ω is unknown, and has to be found too. Therefore, when constructing

the solution we have to allow for an unknown coordinate transformation. In order to construct the

unknown ω(ε) we expand this in a similar way, for example like

τ = (ω0 + εω1 + ε2ω2 + . . .)t (5.5)

but details depend on the problem. Note that the only purpose of the scaling is to render the asymptotic

expansion of Y regular, so it is no restriction to assume for ω0 something convenient, like ω0 = α.

The other coefficients ω1, ω2, . . . are determined from the additional condition that the asymptotic

hierarchy should be respected as long as possible. In other words, secular terms should not occur. We

will illustrate this with the following classic example.

5.1.2 Example: the pendulum

Consider the motion of the pendulum, described1 by the ordinary differential equation

..
θ +K 2 sin(θ) = 0, with θ(0) = ε, θ ′(0) = 0,

where 0 < ε ≪ 1, K = O(1). By elementary arguments (see section 8.2) it can be shown that

periodic solutions exist. We note that θ = O(ε) so we scale θ = εψ to get (after dividing by ε)

..
ψ +K 2(ψ − 1

6
ε2ψ3 + . . .) = 0, with ψ(0) = 1, ψ ′(0) = 0.

If we are interested in a solution only up to O(ε2) we can obviously ignore the higher order terms

indicated by the dots, to get a version of the Duffing equation.

Following the above procedure, we introduce the transformation τ = ωt to obtain

ω2ψ ′′ + K 2
(
ψ − 1

6
ε2ψ3

)
= 0,

1The equation may be simpified by rescaling time by t̃ = K t , such that factor K 2 cancels out.
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where the prime indicates now differentiation to τ . Since the essential small parameter is apparently

ε2, we expand

ω = ω0 + ε2ω1 + . . . , ψ = ψ0 + ε2ψ1 + . . . ,
and find, after substitution, the equations for the first two orders

ω2
0ψ
′′
0 + K 2ψ0 = 0, ψ0(0) = 1, ψ ′0(0) = 0,

ω2
0ψ
′′
1 + K 2ψ1 = −2ω0ω1ψ

′′
0 + 1

6
K 2ψ3

0 , ψ1(0) = 0, ψ ′1(0) = 0.

Note that we are relatively free to choose ω0, as long as it is O(1). (It is only a coordinate transfor-

mation that would automatically be compensated in the equation.) Clearly, a good choice is ω0 = K

because this simplifies the formulas greatly. The solution ψ0 is then

ψ0 = cos τ, ω0 = K ,

leading to the following equation for ψ1

ψ ′′ + ψ1 = 2K−1ω1 cos τ + 1
6

cos3 τ = 2K−1ω1 cos τ + 1
8

cos τ + 1
24

cos 3τ,

using section (8.5) to expand cos3 τ . At this point it is essential to observe that the right-hand-side

consists of two forcing terms: one with frequency 3 and one with 1, the resonance frequency of the

left-hand-side. This resonance would lead to secular terms, as the solutions will behave like τ sin(τ )

and τ cos(τ ). This would spoil our approximation if we had no further degrees of freedom. However,

this is where our rescaled time comes in! We know that by scaling with the correct frequency ω of the

system there will be no secular terms. So we have to choose ω1 such, that no secular terms arise.

Therefore, in order to suppress the occurrence of secular terms, the amplitude of the resonant forcing

term should vanish, which yields the next order terms ω1 and ψ1. We thus have

ω1 = − 1
16

K

leading to

ψ1 = A1 cos τ + B1 sin τ − 1
192

cos 3τ.

With the initial conditions this is

ψ1 = 1
192

(
cos τ − cos 3τ

)
.

Altogether we have eventually

θ(t) = ε cos τ + 1
192
ε3
(
cos τ − cos 3τ

)
+ O(ε5), τ = K

(
1− 1

16
ε2 + O(ε4)

)
t.
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5.2 Method of Lindstedt-Poincaré: Assignments

5.2.1 A quadratically perturbed harmonic oscillator

Consider the following problem for y(t, ε)

y′′ + y − y2 = 0, with y(0) = ε, y′(0) = 0

asymptotically for small positive parameter ε.

i) Show by phase plane considerations (section 8.1) that y is periodic for small ε.

ii) Determine a three term straightforward expansion and discuss its uniformity for large t .

iii) Construct by means of the Lindstedt-Poincaré method (“method of strained coordinates”) a three

term approximate solution.

5.2.2 A weakly nonlinear harmonic oscillator

Consider the following problem for y(t, ε)

y′′ + (1+ y′2)y = 0, with y(0) = ε, y′(0) = 0

asymptotically for small positive parameter ε.

i) Determine a two term straightforward expansion and discuss its uniformity for large t .

ii) Construct by means of the Lindstedt-Poincaré method (“method of strained coordinates”) a two

term approximate solution.

5.2.3 A weakly nonlinear, quadratically perturbed harmonic oscillator

Consider the system governed by the equation of motion

y′′ + y + εαy2 = 0, y(0) = 0, y′(0) = β,

asymptotically for ε→0, where α = O(1). Hint: rescale y := βy and αβε := ε.

i) Show by phase plane considerations (section 8.1) that y is periodic for small ε.

ii) Determine a three term straightforward expansion and discuss its uniformity for large t .

iii) Determine a three term expansion, valid for large t , by means of the Lindstedt-Poincaré method.

5.2.4 A coupled nonlinear oscillator

Determine a first-order uniformly valid expansion for the periodic solution of

u′′ + u = ε(1− z)u′

cz′ + z = u2

asymptotically for ε → 0, where c = O(1) is a positive constant and u, z = O(1). You are free to

make the solution unique in any convenient way, as long as it is periodic.
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5.2.5 A weakly nonlinear 4th order oscillator

Determine a periodic solution to O(ε) of the problem

u′′′ + u′′ + u′ + u = ε(1− u2 − (u′)2 − (u′′)2)(u′′ + u′)

asymptotically for ε→ 0, where u = O(1).

5.2.6 A weakly nonlinear oscillator

Use Lindstedt-Poincaré’s method to get a two-term asymptotic approximation y = y(t) to the problem

y′′ + y = εyy′2, y(0) = 1, y′(0) = 0.

5.2.7 The Van der Pol oscillator

Consider the weakly nonlinear oscillator, described by the Van der Pol equation, for variable y =
y(t, ε) in t :

y′′ + y − ε(1− y2)y′ = 0

asymptotically for small positive parameter ε.

Construct by means of the Lindstedt-Poincaré method (“method of strained coordinates”) a second-

order (three term) approximation of a periodic solution.

Note that not all solutions are periodic (see for example the phase portrait in figure 8.2), so you have

to make sure to start on the right trajectory. Apart from this, you are free to make the solution unique

in any convenient way. Take for example initial conditions

y(0) = A(ε), y′(0) = 0

with A(ε) to be determined.

5.2.8 A variant of the Van der Pol oscillator

The same as above for

y′′ + y − ε(1− y4)y′ = 0

5.2.9 Another weakly nonlinear oscillator

For parameter β = O(1)

y′′ + y + ε(y′2 + βy3) = 0
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Chapter 6

Matched Asymptotic Expansions

6.1 Theory

6.1.1 Singular perturbation problems

If the solution of the problem considered does not allow a regular expansion, the problem is singu-

lar and the solution has no uniform Poincaré expansion in the same variable. We will consider two

classes of problems. In the first one the singular behaviour is of boundary layer type and the solution

can be built up from locally regular expansions. The solution method is called “method of matched

asymptotic expansions”. In the other one more time or length scales occur together and a solution is

constructed by considering these length scales as if they were independent. The solution method is

called “method of multiple scales”.

6.1.2 Matched Asymptotic Expansions

Very often it happens that a simplifying limit applied to a more comprehensive model gives a correct

approximation for the main part of the domain, but not everywhere: the limit is non-uniform. This

non-uniformity may be in space, in time, or in any other variable. For the moment we think of non-

uniformity in space, let’s say a small region near x = 0. If this region of non-uniformity is crucial for

the problem, for example because it contains a boundary condition, or a source, the primary reduced

problem (which does not include the region of non-uniformity) is not sufficient. This, however, does

not mean that no use can be made of the inherent small parameter. The local nature of the non-

uniformity itself gives often the possibility of another reduction. In such a case we call this a couple

of limiting forms, “inner and outer problems”, and are evidence of the fact that we have apparently

physically two connected but different problems as far as the dominating mechanism is concerned.

Depending on the problem, we now have two simpler problems, serving as boundary conditions to

each other via continuity or matching conditions.
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Non-uniform asymptotic approximations

If a function of x and ε is “essentially” (we will see later what that means) dependent of a combination

like x/ε (or anything equivalent, like (x − x0)/ε
2), then there exists no regular (that means: uniform)

asymptotic expansion for all x = O(1) considered. A different expansion arises when x = O(ε), in

other words after scaling t = x/ε where t = O(1). If the limit exists, we may see something like

8(x, ε) = ϕ
( x

ε
, x, ε

)
≃ ϕ(∞, x, 0)+ . . . , 8(εt, ε) = ϕ(t, εt, ε) ≃ ϕ(t, 0, 0) + . . . .

where x is assumed fixed and non-zero.

Practical examples are

e−x/ε+ sin(x + ε) = 0+ sin x + ε cos x + . . . on x ∈ (0,∞)
e−t + sin(εt + ε) = e−t +ε(t + 1)+ . . . on t ∈ [0, L]

arctan
( x

ε

)
+ tan(εx) = π

2
+ ε

(
x − 1

x

)
+ . . . on x ∈ (0,∞)

arctan(t)+ tan(ε2t) = arctan(t)+ ε2t + . . . on t ∈ [0, L]
1

x2 + ε2
= 1

x2
− ε2

x4
+ . . . on x ∈ (0,∞)

1

ε2t2 + ε2
= ε−2 1

1+ t2
on t ∈ [0, L]

where L is some constant. Of course, if x occurs only in a combination like x/ε, the asymptotic

approximation becomes trivial after transformation, but that is only here for the example.

We call this expansion the outer expansion, principally valid in the “x = O(1)”-outer region. Now

consider the stretched coordinate

t = x

ε
.

If the transformed 9(t, ε) = 8(x, ε) has a non-trivial regular asymptotic expansion, then we call

this expansion the inner expansion, principally valid in the “t = O(1)”-inner region, or boundary

layer. The adjective “non-trivial” is essential: the expansion must be significant, i.e. different from the

outer-expansion rewritten in the inner variable t . This determines the choice (in the present examples)

of the inner variable t = x/ε. The scaling δ(ε) = ε is the asymptotically largest gauge function with

this property.

Note the following example, where we have three inherent length scales: x = O(1), x = O(ε),

x = O(ε2) and therefore two (nested) boundary layers x = εt and x = ε2τ ,

log(x/ε + ε) = − log(ε)+ log(x)+ . . . . . . on x ∈ (0,∞)
log(t + ε) = log(t)+ ε

t
+ . . . on t ∈ (0, L]

log(ετ + ε) = log(ε)+ log(τ + 1) on τ ∈ [0, L]

An important relation between an inner and an outer expansion is the hypothesis that they match:

the respective regions of validity should, asymptotically, overlap (known as the overlap hypothesis).

Algorithmically, one may express this as follows, known as Van Dyke’s Rule. The outer limit of the
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inner expansion should be equal to the inner limit of the outer expansion. In other words, the outer-

expansion, rewritten in the inner-variable, has a regular series expansion, which is equal to the regular

asymptotic expansion of the inner-expansion, rewritten in the outer-variable.

Suppose that we have an outer expansion µ0φ0 + µ1φ1 + . . . in outer variable x and a corresponding

inner expansion λ0ψ0 + λ1ψ1 + . . . in inner variable t , where x = δt . Suppose we can re-expand the

outer expansion in the inner variable and the inner expansion in the outer variable such that

µ0(ε)ϕ0(δt) + µ1(ε)ϕ1(δt) + . . . = λ0(ε)η0(t) + λ1(ε)η1(t) + . . . ,

λ0(ε)ψ0(x/δ) + λ1(ε)ψ1(x/δ) + . . . = µ0(ε)θ0(x) + µ1(ε)θ1(x) + . . . ,

Then for matching the results should be equivalent to the order considered. In particular the expansion

of ηk , written back in x ,

λ0(ε)η0(x/δ)+ λ1(ε)η1(x/δ)+ . . . = µ0(ε)ζ0(x)+ µ1(ε)ζ1(x)+ . . . ,

should be such that ζk = θk for k = 0, 1, · · · .

A simple but typical example is the following function on x ∈ [0,∞)
f (x, ε) = sin(x + ε)+ e−x/ε cos x

with outer expansion with x = O(1)

F(x, ε) = sin x + ε cos x − 1
2
ε2 sin x − 1

6
ε3 cos x + O(ε4)

and inner expansion with boundary layer (i.e. inner) variable t = x/ε = O(1)

G(t, ε) = e−t + ε(t + 1)− 1
2
ε2t2 e−t − 1

6
ε3(t + 1)3 + O(ε4).

The outer expansion in the inner variable

F(εt, ε) = sin(εt)+ ε cos(εt)− 1
2
ε2 sin(εt)− 1

6
ε3 cos(εt)+ O(ε4)

becomes re-expanded

Fin(t, ε) = ε(t + 1)− 1
6
ε3(t + 1)3 + O(ε4)

which is, rewritten in x (and re-ordered in powers of ε), given by

Fin(x/ε, ε) = x − 1
6
x3 + ε(1− 1

2
x2)− 1

2
ε2x − 1

6
ε3 + O(ε4).

The inner expansion in the outer variable

G(x/ε, ε) = x + ε + (1− 1
2
x2) e−x/ε− 1

6
(x + ε)3 + O(ε4)

becomes re-expanded

Gout(x, ε) = x − 1
6
x3 + ε(1− 1

2
x2)− 1

2
ε2x − 1

6
ε3 + O(ε4).

Indeed is Gout(x, ε) functionally equal to Fin(x/ε, ε) to the order considered.

Another way to present matching is via an intermediate scaling. Conceptually, this remains closer to

the idea of overlapping expansions than Van Dyke’s matching rule, but in practice it is more labori-

ous. Suppose we have an outer expansion F(x, ε) in the outer variable x , and a corresponding inner

expansion G(t, ε) in the boundary layer variable t , where x = δt and δ(ε) = o(1). Then for matching
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there should be an intermediate scaling x = ηξ , with1 δ ≪ η ≪ 1, such that under this scaling,

the re-expanded outer expansion [F(ηξ, ε)]exp is equal (to the orders considered) to the re-expanded

inner expansion [G( η
δ
ξ, ε)]exp. Note that the result must not depend on the exact choice of η, and the

expansions should be taken of high enough order.

With the above example we have with (for exampe) η ∼ ε 1
2

F(ηξ, ε) = sin(ηξ)+ ε cos(ηξ)− 1
2
ε2 sin(ηξ)− 1

6
ε3 cos(ηξ)+ O(ε4)

= ηξ + ε − 1
6
η3ξ 3 − 1

2
εη2ξ 2 − 1

2
ε2ηξ − 1

6
ε3 + 1

120
η5ξ 5 + . . .

which is indeed to leading orders equal to

G(
η

ε
ξ, ε) = e−ηξ/ε+ ε( η

ε
ξ + 1)− 1

2
ε2(

η

ε
ξ)2 e−ηξ/ε − 1

6
ε3(

η

ε
ξ + 1)3 + O(ε4).

= ηξ + ε − 1
6
(ηξ + ε)3 + . . . .

The idea of matching is very important because it allows one to move smoothly from one regime into

the other. The method of constructing local, but matching, expansions is therefore called “Matched

Asymptotic Expansions” (MAE). An intermediate variable is typically used in evaluating integrals

across a boundary layer (see below).

Constructing asymptotic solutions

The most important application of this concept of inner- and outer-expansions is that approximate so-

lutions of certain differential equations can be constructed for which the limit under a small parameter

is apparently non-uniform.

The main lines of argument for constructing a MAE solution to a differential equation satisfying some

boundary conditions are as follows. Suppose we have the following (example) problem.

ε
d2ϕ

dx2
+ dϕ

dx
− 2x = 0, ϕ(0) = ϕ(1) = 2. (6.1)

Assuming that the outer solution is O(1) because of the boundary conditions, we have for the equation

to leading order
dϕ0

dx
− 2x = 0,

with solution

ϕ0 = x2 + A.

The integration constant A can be determined by the boundary condition ϕ0(0) = 2 at x = 0 or

ϕ0(1) = 2 at x = 1, but not both, so we expect a boundary layer at either end. By trial and error

we find that no solution can be constructed if we assume a boundary layer at x = 1, so, inferring a

boundary layer at x = 0, we have to use the boundary condition at x = 1 and find

ϕ0 = x2 + 1.

1In other words, δ = o(η) and η = o(1).
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The structure of the equation indeed suggests a correction of O(ε), so we try the expansion

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + · · · .
For ϕ1 this results into the equation

dϕ1

dx
+ d2ϕ0

dx2
= 0,

with ϕ1(1) = 0 (the O(ε)-term of the boundary condition), which has the solution

ϕ1 = 2− 2x .

Higher orders are straightforward:

dϕn

dx
= 0, with ϕn(1) = 0,

leading to solutions ϕn ≡ 0. We find for the outer expansion

ϕ = x2 + 1+ 2ε(1− x)+ O(εN ). (6.2)

We continue with the inner expansion, and find near x = 0, an order of magnitude of the solution

givne by ϕ = λψ , and a boundary layer thickness given by x = δt (both λ and δ are to be determined)

ελ

δ2

d2ψ

dt2
+ λ
δ

dψ

dt
− 2δt = 0.

Both from the matching (ϕouter → 1 for x ↓ 0) and from the boundary condition (ϕ(0) = 2) we

have to conclude that ϕinner = O(1) and so λ = 1. Furthermore, the boundary layer has only a

reason for existence if it comprises new effects, not described by the outer solution. From the heuristic

correspondence principle we expect that (i) a meaningful rescaling corresponds with a distinguished

limit or significant degeneration, while (ii) new effects are only included if we have a new equation;

in this case if (d2ψ/dt2) is included. So εδ−2 must be at least as large as δ−1, the largest of δ−1 and δ.

From the principle that we look for the equation with the richest structure, it must be exactly as large,

implying a boundary layer thickness δ = ε. Thus we have the inner equation

d2ψ

dt2
+ dψ

dt
− 2ε2t = 0.

From this equation it would seem that we have a series expansion without the O(ε)-term, since the

equation for this order would be the same as for the leading order. However, from matching with the

outer solution:

ϕouter→ 1+ 2ε + ε2(t2 − 2t) + · · · (x = εt, t = O(1)),

we see that an additional O(ε)-term is to be included. So we substitute the series expansion:

ϕ = ψ0 + εψ1 + ε2ψ2 + · · · (6.3)

It is a simple matter to find

d2ψ0

dt2
+ dψ0

dt
= 0, ψ0(0) = 2 → ψ0 = 2+ A0(e

−t −1),

d2ψ1

dt2
+ dψ1

dt
= 0, ψ1(0) = 0 → ψ1 = A1(e

−t −1),

d2ψ2

dt2
+ dψ2

dt
= 2t, ψ2(0) = 0 → ψ2 = t2 − 2t + A2(e

−t −1),
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where the constants A0, A1, A2, · · · are to be determined from the matching condition that inner and

outer solution should be asymptotically equivalent in the region of overlap. We follow Van Dyke’s

matching rule, and rewrite outer expansion (6.2) in inner variable t , inner expansion (6.3) in outer

variable x , re-expand and rewrite the result in x . This results into

x2 + 1+ 2ε(1− x)+ O(ε3) ≃ 1+ 2ε + x2 − 2εx + O(ε3) (6.4a)

2+ A0(e
−t −1)+ εA1(e

−t −1)+ ε2
(
t2 − 2t + A2(e

−t −1)
)
+ O(ε3)

≃ 2− A0 − εA1 + x2 − 2εx − ε2 A2 + O(ε3) (6.4b)

The resulting reduced expressions (6.4a) and (6.4b) must be functionally equivalent. A full matching

is thus obtained if we choose A0 = 1, A1 = −2, A2 = 0.

Composite expansion

If the boundary layer structure is simple enough, in particular if we have just a simple boundary layer

with matching inner and outer expansions, it is possible to combine the separate expansions into a

single uniform expansion, called a composite expansion.

Suppose we have an outer expansion φ = µ0φ0 + µ1φ1 + . . . in outer variable x ∈ (0, 1) and a

corresponding inner expansion ψ = λ0ψ0 + λ1ψ1 + . . . in inner variable t ∈ [0,∞), where x = δt
and δ(ε) = o(1). In view of matching, the overlapping parts

φ̂(x) =
[
φ(δt)

]
t=x/δ
=
[
µ0(ε)ϕ0(δt)+ µ1(ε)ϕ1(δt)+ . . .

]
t=x/δ
=
[
λ0(ε)η0(t)+ λ1(ε)η1(t)+ . . .

]
t=x/δ

ψ̂(x) = ψ(x/δ) = λ0(ε)ψ0(x/δ)+ λ1(ε)ψ1(x/δ)+ . . . = µ0(ε)θ0(x)+ µ1(ε)θ1(x)+ . . .

are functionally equivalent to the order considered, i.e. φ̂ ≃ ψ̂(x). This means that the combined

expression

φ(x) + ψ(x/δ)

is for x = O(1) asymptotically equal to φ(x) + ψ̂(x), and for x = O(δ) asymptotically equal to

ψ(x) + φ̂(x). In both cases it is the overlapping part φ̂(x) (or equivalently ψ̂(x)) which is too much.

The combined expansion

8(x) = φ(x)+ ψ(x/δ)− φ̂(x)

is thus valid both in the boundary layer and in the outer region.

As an example we may consider the previous problem (6.1), with solution (reformulated)

φ(x) = x2 + 1+ 2ε(1− x)+ O(ε3)

ψ(t) = 1+ e−t −2ε(e−t −1)+ ε2(t2 − 2t)+ O(ε3)

φ̂(x) = 1+ 2ε + x2 − 2εx + O(ε3)

8(x) = x2 + 1+ e−x/ε+2ε − 2εx − 2ε e−x/ε+O(ε3)
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Approximate evaluation of integrals

Another application of MAE is integration. We split the integral halfway the region of overlap, and

approximate the integrand by its inner and outer approximation. Take for example

f (x, ε) = log(1+ x)

x2 + ε2
, 0 6 x <∞, 0 < ε ≪ 1,

with outer expansion

f (x, ε) = log(1+ x)

x2 + ε2
= log(1+ x)

x2
− ε2 log(1+ x)

x4
+ O(ε4)

and inner expansion in boundary layer x = εt

f (εt, ε) = log(1+ εt)
ε2(t2 + 1)

= 1

ε2

(εt − 1
2
ε2t2 + O(ε3)

t2 + 1

)
= 1

ε

t

t2 + 1
−

1
2
t2

t2 + 1
+ O(ε).

If we introduce a function η = η(ε) with ε ≪ η ≪ 1 (note that eventually the detailed choice of η is

and should be immaterial), and split up the integration interval [0,∞) = [0, η] ∪ [η,∞), we find

∫ ∞

0

log(1+ x)

x2 + ε2
dx ≃

∫ η/ε

0

t

t2 + 1
+ O(ε) dt +

∫ ∞

η

log(1+ x)

x2
+ O(ε2) dx

=
[

1
2

log(1+ t2)+ O(ε)

]η/ε

0

+
[

log x − 1+ x

x
log(1+ x)+ O(ε2/x2)

]∞

η

=
(

log η + 1
2

log(1+ ε2/η2)− log ε + O(η)

)
+
(

log(1+ η)− log η + log(1+ η)
η

+ O(ε2/η2)

)

≃ − log ε + 1.

Implicit matching subtleties

An interesting detail in the matching process of boundary layer problems where the inner equation is a

form of Newton’s equation (for example exercises 6.2.11, 6.2.12, 6.2.23, and others) is the following.

Consider a boundary layer equation in Y (t) = Y0(t)+ . . . , 0 6 t <∞, of the form

∂2

∂t2 Y0 + F ′(Y0) = 0,

which may be integrated to
1
2
( ∂
∂t

Y0)
2 + F(Y0) = E .

If Y0 should be matched for t →∞ to an outer solution y(x) of O(1) with x = εt , then the integration

constant E may be found by observing that yx ∼ ε−1Yt = O(1), so the leading order Y0t should vanish

for large t . Hence E = F(y(0)). An important condition for consistency is that the final integral

∫ Y0

Y0(0)

1√
E − F(η)

dη = ±
√

2t

diverges (no square root singularity but at least a simple pole) at η = y(0), in order to have t →∞.
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We illustrate this by the following example. The singular boundary value problem

ε2y′′ + y2 = K (x), y(0) = 0, y(1) = 0

where K (x) > c > 0 is O(1) and sufficiently smooth, has boundary layers of O(ε) near x = 0 and

x = 1. We consider x = 0. (The other is analogous.)

An outer approximation y = y0 + . . . is readily found to be

y0(x) = ±
√

K (x),

with sign to be decided. Write for notational convenience K (0) = k2. The leading order inner equation

for y(x) = Y (t) = Y0 + . . . , where x = εt , is

Y ′′0 + Y 2
0 = k2, Y0(0) = 0.

As argued above, for matching it is required that Y0(t)→± k and Y ′0→ 0. We integrate

1
2
(Y ′0)

2 + 1
3
Y 3

0 − k2Y0 = E = ±( 1
3
k3 − k3) = 2

3
k3.

Since Y0 is small for t → 0 and (Y ′0)
2 > 0, the sign of E can only be positive, and thus outer solution

y0(x) must be negative. Furthermore

2
3
k3 − 1

3
Y 3

0 + k2Y0 = 1
3
(Y0 + k)2(2k − Y0).

Noting that Y ′0 has to be negative, we can finish as usual to find explicitly

∫ 0

Y0

1

(η + k)
√

2k − η dη = 2
3

√
3

[
artanh

(√
2k − Y0

3k

)
− artanh

(√
2
3

)]
=
√

2
3
kt

such that

Y0(t) = 2k − 3k tanh2

(√
1
2
k t + artanh

(√
2
3

))

Logarithmic switchback

It is not always evident from just the structure of the equation what the necessary expansion will look

like. Sometimes it is well concealed and we are only made aware of an invalid initial choice by a

matching failure. In fact, it is also the matching process itself that reveals us the required sequence of

scaling functions. An example of such a back reaction is known as logarithmic switchback.

Consider the following problem for y = y(x, ε) on the unit interval.

εy′′ + x(y′ − y) = 0, 0 < x < 1, y(0, ε) = 0, y(1, ε) = e.

The outer solution appears to have the expansion

y(x, ε) = y0(x)+ εy1(x)+ ε2 y2(x)+ O(ε3).
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By trial and error, the boundary layer appears to be located near x = 0, so the governing equations

and boundary conditions are then

y′0 − y0 = 0, y0(1) = e,

y′n − yn = −x−1 y′′n−1, yn(1) = 0,

with general solution

yn(x) = An ex +
∫ 1

x

z−1 ex−z y′′n−1(z) dz,

such that

y0(x) = ex ,

y1(x) = − ex ln(x),

y2(x) = ex
(

1
2

ln(x)2 + 3
2
− 2x−1 + 1

2
x−2

)
,

etc. The boundary layer thickness is found from the assumed scaling x = εm t and noting that y =
O(1) because of the matching with the outer solution. This leads to the significant degeneration of

m = 1
2
, or x = ε 1

2 t . The boundary layer equation for y(x, ε) = Y (t, ε) is thus

Y ′′ + tY ′ − ε 1
2 tY = 0, Y (0, ε) = 0.

The obvious choice of expansion of Y in powers of ε
1
2 is not correct, as the found solution does not

match with the outer solution. Therefore, we consider the outer solution in more detail for small x .

When x = ε 1
2 t , we have for the outer solution

y(ε
1
2 t, ε) = 1+ ε 1

2 t + ε
(
− 1

2
ln ε + 1

2
t2 − ln t + 1

2
t−2 + . . .

)
+ O(ε

3
2 ln ε) (6.5)

(The dots indicate powers of t−2 that appear with higher order yn.) So we apparently need at least

Y (t, ε) = Y0(t)+ ε
1
2 Y1(t)+ ε ln(ε)Y2(t)+ εY3(t)+ o(ε),

with equations and boundary conditions

Y ′′0 + tY ′0 = 0, Y0(0) = 0,

Y ′′1 + tY ′1 = tY0, Y1(0) = 0,

Y ′′2 + tY ′2 = 0, Y2(0) = 0,

Y ′′3 + tY ′3 = tY1, Y3(0) = 0,

etc. Hence, the inner expansion is given by

Y0(t) = A0 erf
(

t√
2

)
,

Y1(t) = A1 erf
(

t√
2

)
+ A0

[
t erf

(
t√
2

)
+ 2

(
2
π

) 1
2 (e−

1
2 t2 −1)

]
,

Y2(t) = A2 erf( t√
2
),

Y3(t) = A3 erf( t√
2
)+

∫ t

0

e−
1
2 z2

∫ z

0

e
1
2 ξ

2

ξY1(ξ) dξ dz.
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Unfortunately, Y3 cannot be expressed in closed form. However, for demonstration it is sufficient to

derive the behaviour of Y3 for large t . As erf(z)→ 1 exponentially fast for z→∞, we obtain

Y1(t) = A0t + A1 − 2
(

2
π

) 1
2 A0 + exponentially small terms.

If Y3 behaves for large t algebraically, then tY ′3 ≫ Y ′′3 , so Y ′3 = Y1 − t−1Y ′′3 ≃ A0t . By successive

substitution it follows that

Y3(t) = 1
2

A0t2 + (A1 − 2
(

2
π

) 1
2 A0)t − A0 ln(t)+ . . .

For matching of the inner solution, we introduce the intermediate variable η = ε−αx = ε 1
2−αt where

0 < α < 1
2
, and compare with expression (6.5). We have

A0 + ε
1
2

(
A1 − 2

(
2
π

) 1
2 A0

)
+ εαA0η + ε ln(ε)A2 + 1

2
ε2αA0η

2

+ ε 1
2+α

(
A1 − 2

(
2
π

) 1
2 A0)η − εA0 ln η + ε( 1

2
− α)A0 ln ε

≡ 1+ εαη + 1
2
ε2αη2 − ε ln η − αε ln(ε)+ 1

2
ε2−2αη−2.

Noting that 2− 2α > 1, we find a full matching with

A0 = 1, A1 = 2
(

2
π

) 1
2 , A2 = − 1

2
.

This problem is an example where intermediate matching is preferable.

Prandtl’s boundary layer analysis.

The start of modern boundary layer theory is Prandtl’s analysis in 1904 of the canonical problem of

uniform incompressible low-viscous flow of main flow speed U∞, viscosity µ and density ρ0, along a

flat plate of length L . Consider the stationary 2D Navier-Stokes equations for incompressible flow for

velocity (u, v) and pressure p

ux + vy = 0, ρ0(uux + vu y) = −px + µ(ux x + u yy), ρ0(uvx + vvy) = −py + µ(vx x + vyy),

subject to boundary conditions u = v = 0 at y = 0, 0 < x < L . Make dimensionless u := U∞u,

v := U∞v, p := ρ0U 2
∞p, x := Lx , y := Ly. (The scaling of the pressure may not be evident, but is

due to the fact that the low-viscous problem is inertia dominated, so the pressure gradient, which is

really a reaction force, should balance the inertia terms.) We are left with the dimensionless Reynolds

number Re = ρ0U∞L/µ. Since Re is supposed to be large, we write ε = Re−1 small. We obtain

ux + vy = 0, uux + vu y = −px + ε(ux x + u yy), uvx + vvy = −py + ε(vx x + vyy),

subject to boundary conditions u = v = 0 at y = 0, 0 < x < 1. The leading order outer solution for

y = O(1) is given by (u, v, p) = (1, 0, 0), but this solution does not satisfy the boundary condition

u = 0 at y = 0 along the plate. So we anticipate a boundary layer in y, such that the viscous friction

εu yy contributes. When we scale x = X , y = εnY , u = U , v = εm V , and p = P , we find

UX + εm−n VY = 0, UUX + εm−n V UY = −PX + εUX X + ε1−2nUY Y ,

εmU VX + ε2m−n V VY = −ε−n PY + ε1+m VX X + ε1+m−2nVY Y .
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This yields the distinguished limit m = n = 1
2
, with the significant degeneration

UX + VY = 0, UUX + V UY = UY Y , PY = 0,

known as Prandtl’s boundary layer equations. Since P = P(X) has to match to the outer solution p =
constant (for this particular flat plate problem), pressure gradient PX = 0 and disappears to leading

order. Very quickly after Prandtl’s introduction of his boundary layer equations, Blasius (1906) was

able to reduce the equation to an ordinary differential equation by means of a similarity solution for

the stream function ψ , with U = ψY and V = −ψX , of the form

ψ(X,Y ) =
√

2X f (η), η = Y√
2X
,

leading to Blasius’ equation

f ′′′ + f f ′′ = 0.

Prandtl’s boundary layer equations, but with other boundary conditions, are also valid in the viscous

wake behind the plate x > 1, y = O(ε1/2) (Goldstein, 1930). The trailing edge region around x =
1, y = 0, however, is far more complicated (Stewartson, 1969). Here the boundary layer structure

consists of three layers y = O(ε5/8), O(ε4/8), O(ε3/8) within x − 1 = O(ε3/8). This is known as

Stewartson’s triple deck.

The rôle of matching

It is important to note that a matching is possible at all! Only a part of the terms can be matched

by selection of the undetermined constants. Other terms are already equal, without free constants,

and there is no way to repair a possibly incomplete matching here. This is an important consistency

check on the found solution, at least as long as no real proof is available. If no matching appears to

be possible, almost certainly one of the assumptions made with the construction of the solution has to

be reconsidered. Particularly notorious are logarithmic singularities of the outer solution, as we saw

above. See for other examples [13].

Summarizing, matching of inner- and outer expansion plays an important rôle in the following ways:

i) it provides information about the sequence of order (gauge) functions {µk} and {λk} of the

expansions;

ii) it allows us to determine unknown constants of integration;

iii) it provides a check on the consistency of the solution, giving us confidence in the correctness.
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6.2 Matched Asymptotic Expansions: Assignments

6.2.1 Non-uniform approximations and boundary layers

Determine on [0,∞) the outer approximation and all inner approximations (the boundary layers,

corresponding scaling and asymptotic expansions) of

1

x + ε2 + ε3

6.2.2 Boundary layers and integration

Consider the function

f (x, ε) = e−x/ε(1+ x)+ π cos(πx + ε) for 0 6 x 6 1.

a) Construct an outer and inner expansion of f with error O(ε3).

b) Integrate f from x = 0 to 1 exactly and expand the result up to O(ε3).

c) Compare this with the integral that is obtained by integration of the inner and outer expansions

following the method described in section 6.1.2 (or Example 15.30 of SIAM book).

6.2.3 Friedrichs’ model problem

Friedrichs’ (1942) model problem for a boundary layer in a viscous fluid is

εy′′ = a − y′ for 0 < x < 1,

where y(0) = 0, y(1) = 1, and a is a given positive constant of order 1 and independent of ε. Find a

two-term inner and outer expansion of the solution of this problem.

6.2.4 Singularly perturbed ordinary differential equations

Determine the asymptotic approximation of solution y(x, ε) (1st or 1st+2nd leading order terms for

positive small parameter ε→0) of the following singularly perturbed problems.

α and β are non-zero constants, independent of ε.

Provide arguments for the determined boundary layer thickness and location, and show how free

constants are determined by the matching procedure.

a)

εy′′ − y′ = 2x, y(0, ε) = α, y(1, ε) = β.
b)

εy′ + y2 = cos(x), y(0, ε) = 0, 0 6 x 6 1.

c)

εy′′ + (2x + 1)y′ + y2 = 0, y(0, ε) = α, y(1, ε) = β.

79 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

6.2.5 A hidden boundary layer structure

The problem for φ = φ(x, ε) and ε > 0, x > 0

ε2φ′′ − F(x)φ = 0, φ(0) = a, φ′(0) = b

is difficult to analyse asymptotically for small ε (why?). We therefore transform the problem.

a) Rewrite the problem for y(x) given by

φ(x) = a exp

(
1

ε

∫ x

0

y(z) dz

)

What is the initial condition?

b) Assume that F is sufficiently smooth (analytic), and F(x) > c > 0 along the interval of interest.

Formulate a formal asymptotic solution of y = y(x, ε) for small ε up to and including O(ε).

c) Apply this to the asymptotic solution for F(x) = ex .

d) What changes when we apply the transformation

φ(x) = a exp

(
−1

ε

∫ x

0

y(z) dz

)
.

Explain why we obtain, in the end, the same result.

6.2.6 A singularly perturbed nonlinear problem

Find a composite expansion along 0 6 x 6 1 of the solution of the following boundary value problem

εy′′ + 2y′ + y3 = 0, y(0) = 0, y(1) = 1
2
.

6.2.7 A singularly perturbed linear problem

Find a composite expansion of the solution of the following boundary value problem along 0 < x < 1

εy′′ = f (x)− y′, where y(0) = 0 and y(1) = 1.

The function f is continuous, independent of ε and of order 1.

6.2.8 A boundary layer problem

(a) Show that the problem

εxm y′ + y2 = cos x along x ∈ [0, 1], y(0) = 0

with 0 < m < 1, has a boundary layer near x = 0. Give the corresponding scaling of x .

(b) The same question if the right-hand side of the equation is sin x .

80 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

6.2.9 Sign and scaling problems

A small parameter multiplying the highest derivative does not guarantee that boundary or interior lay-

ers are present. After solving the following problems directly, explain why the method of matched

asymptotic expansions cannot be used (in a straightforward manner) to find an asymptotic approxi-

mation to the solution.

(a) ε2 y′′ + ω2y = 0 along 0 < x < 1 and ω 6= 0.

(b) εy′′ = y′ along 0 < x < 1, while y′(0) = −1 and y(1) = 0.

6.2.10 The Michaelis-Menten model

A classic enzyme-reaction model, for the first time proposed by Michaelis en Menten (1913), consid-

ers a substrate (concentration S) reacting with an enzyme (concentration E) to an enzyme-substrate

complex (concentration C), that on its turn dissociates into the final product (concentration P) and the

enzyme. The reaction of the substrate to the complex is described in time t by the system

dE

dt
= −k1 E S + k−1C + k2C,

dS

dt
= −k1 E S + k−1C,

dC

dt
= k1 E S − k−1C − k2C,

dP

dt
= k2C,

with initial values S(0) = S0, C(0) = 0, E(0) = E0 and P(0) = 0. The parameters k1, k−1 and k2 are

reaction rates: k1 of the forward reaction, k−1 of the backward reaction, and k2 of the dissociation.

a. If [S] = [C] = [E] = [P] = mol/m3, and [T ] = s, what are the dimensional units of k1, k−1

and k2?

b. Expressed in de problem variables S,C, E, P en t , and the problem parameters E0, S0, k1, k−1

and k2, how many dimensionless quantities has this problem?

Note: “mol” is already dimensionless and does not count as separate unit.

c. Show that E = E0 − C . Ignore the equation for P . Make S, C and t dimensionless such that

we obtain a system of the form

ds

dτ
= −s + sc + λc,

ε
dc

dτ
= s − sc − µc,

with s(0) = 1, c(0) = 0.

d. Consider the resulting problem asymptotically for ε→0. We see that there are two time scales

(which?). The short one corresponds with the transient switch-on effects, which behave math-

ematically like a boundary layer in time. Solve the problem asymptotically to leading and first

order in ε. Hint: it may be convenient to introduce the parameter ν = µ− λ.
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6.2.11 Groundwater flow

Through a long strip of ground of width L between two canals (water level h0 and h1) the ground

water seeps slowly from one side to the other.

Select a coordinate system such that the Z -axis is parallel to the long axis of the strip and the canals,

the Y -axis is vertical, and the X -axis perpendicular to both. X = 0 corresponds with canal 0, and

X = L with canal 1. Assume that the groundwater level is constant in Z -direction.

Assume that the layer of ground lies on top of a semipermeable layer at levelY = 0, while the ground

water level is given by Y = h(X).

The water leaks through the semi-permeable layer at a rate proportional to the local hydrostatic pres-

sure. As this pressure is on its turn proportional to water level h, this yields a flux density αh, where

α is a constant.

Water comes in by precipitation (rain). Fluctuations in precipitation are assumed to be averaged away

by the slow groundwater flow, such that the flux density N from this precipitation is constant in time.

Assume that variations in overgrowth and buildings may result into a position dependent N = N(X).

Between two neighbouring positions X and X + dX there exists a small difference in height and

therefore in pressure. According to Darcy’s law this creates a flow with a velocity proportional to the

pressure difference, and dependent of the porosity of the ground. As the pressure difference is the

same along the full height, the flow velocity is uniform, and we have

p(X)− p(X + dX) ∼ h(X)− h(X + dX) ∼ v(X) dX,

and the horizontal flux density is proportional to

v = −D
dh

dX

where D is in general a function of position.

The flux balance along a slice dX is then given by
[
Dh dh

dX

]X+dX

X
= (αh − N) dX , or

d

dX

(
Dh

dh

dX

)
= αh − N

a. We consider the situation with h0 = 0, andD is constant. Make dimensionless with L , h1 and

α: X = Lx , h(X) = h1φ(x), N(X) = αh1K (x), and introduce the positive dimensionless

parameter

ε = Dh1

2αL2
.

b. Assume heavy rain, such that K (x) = O(1). solve the resulting problem asymptotically for

ε→0.

c. Assume little rain, such that K (x) = εκ(x), with κ = O(1). Solve the resulting problem

asymptotically for ε→0. Take good care at x = 1. The boundary layer is rather complicated

with a layered structure.

d. What changes when we take the slightly more general case of D = D(X)?
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6.2.12 Stirring a cup of tea

When we stir a cup of tea, the surface of the fluid deforms until equilibrium is attained between

gravity, centrifugal force and surface tension. This last force is only important near the wall.

Consider for this problem the following model problem.

A cylinder (radius a, axis vertically) with fluid (density ρ, surface tension σ ) rotates around its axis

Eez (angular velocity �) in a gravity field −gEez . By the gravity and the centrifugal force the surface

deforms to something that looks like a paraboloid. Within a small neighbourhood of the cylinder wall

the contact angle α is felt by means of the surface tension.

Because of symmetry we can describe the surface by a radial tangent angle ψ with the horizon,

parametrized by arc length s, such that s = 0 corresponds wit the axis, and s = L with the wall of the

cylinder. L is unknown.

Select the origin on the axis at the surface, such that he vertical and radial coordinate are given by

Z(s) =
∫ s

0

sinψ(s′) ds′

R(s) =
∫ s

0

cosψ(s′) ds′.

The necessary balance between hydrostatic pressure and surface tension yields the equation

p0 − ρgZ + 1
2
ρ�2 R2 = −σ

(dψ

ds
+ sinψ

R

)

with unknown p0. Other boundary conditions are

ψ(0) = 0, ψ(L) = α, R(L) = a.

a. Make dimensionless with a: s = at , R = ar , Z = az, L = aλ, and introduce

ε2 = σ

ρga2
, β = p0

ρga
. µ = �2a

g
.

Identify the dimensionless constants in terms of standard dimensionless numbers.

b. Solve the resulting problem asymptotically for ε→0. Assume that µ = O(1). Note that β and

λ are unknown and therefore part of the solution.

6.2.13 Fisher’s travelling wave problem

Derive an approximate solution for large c of the Fisher travelling-wave problem (Book eq. 15.19,

(10.70))

U ′′ + c2U ′ + c2U (1−U ) = 0,

(a) on (−∞,∞) with U (−∞) = 1, U (∞) = 0. It is no restriction to assume that U (0) = 1
2
.

(b) on [0,∞) and U (0) = 0, while the previous solution is the outer solution.
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6.2.14 Nonlinear diffusion in a semi-conductor

A simple model for the nonlinear diffusion of a substitutional impurity in a certain type of semi-

conductor is given by the following nonlinear generalisation of the linear diffusion equation.

V∞
∂c

∂t
= Dc

∂

∂x

(
v
∂c

∂x
− c

∂v

∂x

)

∂v

∂t
+ ∂c

∂t
= Dv

∂2v

∂x2

in spatial coordinate 0 < x <∞ and time t > 0. Here c denotes the concentration of impurity atoms,

v the concentration of vacancies, V∞ the equilibrium vacancy concentration, and Dv and Dc represent

vacancy and impurity diffusivities respectively. The quantities V∞, Dv and Dc are all assumed positive

constants. The appropriate boundary and initial conditions are

c = C0, v = V0 on x = 0

c→0, v→V∞ as x→∞
c = 0, v = V∞ at t = 0

where C0 and V0 are positive constants.

Make the problem dimensionless by introducing

c := c/C0, v := v/V∞, t := t/T, x := x/
√

DcT

where T is a timescale (does it matter which one ?). Introduce the problem parameters

ε2 = Dv/Dc, r = C0/V∞, µ = V0/V∞

Typically, ε is small (the literature gives an example of ε2 ≈ 1/36.

Derive, for small ε, a boundary layer-structured asymptotic expansion of the solution of the problem.

Tip: We saw above that the problem remains exactly the same if we scale time and space such that

t = T τ , x = Lξ with T = L2. From Buckingham’s 5-theorem it then follows that the combination

x2/t is a dimensionless group. Therefore, we can conclude that c and v must be functions of the

similarity variable η = x/
√

t alone.

Before attempting to construct an approximate solution, first rewrite the set of partial differential

equations into a set of ordinary differential equations (and boundary conditions) for v = v(η) and

c = c(η) along 0 ≤ η <∞.

6.2.15 Heat conduction

Consider steady-state heat conduction in the rectangular region 0 6 x ′ 6 L , −D 6 y′ 6 D. Assume

that the temperature is prescribed along the edges x ′ = 0 and x ′ = L and that the edges y′ = ±D

are insulated. We are interested in the problem for a slender geometry, i.e. ε = D/L ≪ 1. If we

normalize x with respect to L and y with respect to D, we need to solve on the rectangle 0 6 x 6 1,

−1 6 y 6 1 the equation

ε2Tx x + Tyy = 0, T (0, y, ε) = f (y), T (1, y, ε) = g(y), Ty(x,±1, ε) = 0
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1. Construct an outer expansion in the form

T (x, y, ε) = T0(x, y) + ε2T1(x, y)+ O(ε4)

2. Construct appropriate inner expansions along the edges x = 0 and x = 1.

Hint: Solve the Laplace equation on a semi-infinity strip by means of a trigonometric-exponential

(Fourier) series expansion.

3. Verify that matching is possible and determine the unknown constants.

4. Solve the problem exactly and compare this with the results found.

6.2.16 Polymer extrusion

Extrusion of a polymer through a circular capillary is described by the pressure P(t) in the vessel,

from which the polymer is pressed, and the flow rate Q(t) through the capillary.

The extrusion process is determined by the compressibility equation for the polymer in the vessel

and the equation of axial momentum conservation for the flow through the capillary. In linear ap-

proximation and after neglecting the inertial effects, we obtain the following dimensionless system

(0 < ε ≪ 1)

dP(t)

dt
= −Q(t), P(0) = 0;

dQ(t)

dt
= 1

ε

(
P(t)− Q(t)

)
, Q(0) = 1.

Determine the first term in:

1. the outer expansion;

2. the inner expansion;

3. the composite expansion.

4. Compare the composite expansion with the exact solution. Can you improve the composite ex-

pansion?

6.2.17 Torsion of a thin-walled tube

Torsion of a thin-walled tube produces a relatively large camber of the cross section. For a clamped

tube this is blocked at the clamped cross section. This blockage mechanism plays locally (near the

clamped cross section) an essential role in the distortion and stress distribution of the tube.

Consider a one-sided (at x = 0) clamped tube (here is x the axial co-ordinate, where 0 < x < l.)

De cross section at the other end x = l is loaded by a torsional moment M , but is otherwise free.

The global (i.e. per cross section) distortion variables are: the torsion angle θ(x) (in radians), the

camber factor β(x) (in m−1) and the cross sectional shear κ(x) (dimensionless). These three variables

satisfy the following set differential equations (they follow from global equilibrium conditions for the
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tube) and boundary conditions (where a1 . . . a4 are constants representative of the rigidity of the cross

section)

a1β
′′ − a2β + a3θ

′ − a2κ
′ = 0,

a3β
′ − a2θ

′′ + a3κ
′′ = 0,

a2β
′ − a3θ

′′ + a2κ
′′ − a4κ = 0,

and
op x = 0 : β(0) = θ(0) = κ(0) = 0,

op x = l : β ′(l) = 0, a2β(l)+ a2κ
′(l)− a3θ

′(l) = 0, a2θ
′(l) = M.

The first set boundary conditions describes the tube being fully clamped at x = 0, while the second

tells us that the end cross section x = l is free, apart from the prescribed torsional moment M .

For a rectangular tube with wall thickness t , cross sectional width and height 2b and 4b, respectively,

and length l (with t ≪ b≪ l but (tl/b2) = O(1)) we have

a1 = 4Eb5t, a2 =
6E

(1+ ν)b
3t, a3 =

2E

(1+ ν)b3t, a4 =
4Et3

3(1− ν2)b
.

Introduce ε = t/b, 0 < ε ≪ 1, and note that then also b/ l = O(ε).

1. Make the formulation dimensionless. Reduce the system to 1 equation for 1 unknown (for exam-

ple β) plus boundary conditions.

2. Determine the first term of the outer expansion, asymptotically for ε→0.

3. The same for the inner expansion (where is the boundary layer?).

4. The same for a composite expansion.

5. Compare the composite expansion with the exact solution. Can you improve the composite ex-

pansion?

6.2.18 A visco-elastic medium forced by a piston

A linear visco-elastic medium (Maxwell model) is contained in a rigid cylindrical vessel, closed by

a freely movable piston. As of time t = 0, a constant (compressive) force is applied to the piston.

The vertical (i.e. in z–direction) displacement at a material point of the visco-elastic medium is w =
w(z, t). With 0 < ε ≪ 1, we have for w the following normalised, dimensionless system:

t > 0, 0 < z < 1 : ε
∂2w

∂t2
− ∂3w

∂z2∂t
− ∂

2w

∂z2
= 0,

t = 0, 0 < z < 1 : w(z, 0) = ∂w

∂t
(z, 0) = 0,

t > 0, z = 0 : w(0, t) = 0,

t > 0, z = 1 : ∂w

∂z
(1, t)+ ∂2w

∂z∂t
(1, t) = −1.

i) Determine asymptotically for small ε (all to leading order) an outer expansion of w.

ii) Determine position and thickness of the boundary layer, and an inner expansion of w.

iii) Determine a composite expansion of w.
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6.2.19 Heat conduction in fluid flow through a slit

y

x V 2h

V t

L

An inviscid fluid flows with constant, uniform velocity V into a 2-dimensional slit. The slit has height

2h and length L , where h/L ≪ 1 (see figure). At the entry plane of the slit, the temperature of the

fluid is Ti . The upper and lower wall have temperature Tw (Tw < Ti ). The straight front of the flow,

that is at time t located at x = V t , is thermally isolated from the environment.

1) Consider the temperature T = T (x, y, t) for:

0 < x < V t 6 L , −h < y < h, 0 < t < L/V .

Formulate the equation for T with the corresponding boundary and initial value conditions.

2) Make dimensionless.

3) Consider the ”thin-layer-approximation” (method of slow variation) for this problem, and give

the solution.

4) What condition is not satisfied by the solution found under 3)? So where do you expect a

boundary layer? Calculate the correction to the solution of 3) as a result of this boundary layer

(accurate up to O(h/L)).

6.2.20 The sag of a slender plate supported at the ends

A long, slender, strip shaped plate, of width 2a and length 2b where a/b ≪ 1, is along its long sides

(x = ±a) supported, while the short sides (y = ±b) are free. The plate is positioned in the horizontal

(x, y)–plane and is loaded by its own weight (loading per unit surface q measured in N/m2, in the

z–direction). The sag w(x, y) of the plate satisfies the following differential equation

−a < x < a

−b < y < b

}
∇4w = 11w = ∂4w

∂x4
+ 2

∂2w

∂x2∂y2
+ ∂

4w

∂y4
= q

D
,
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(1 = ∇2, D is a plate constant, measured in Nm), plus boundary conditions

x = ±a w = ∂2w

∂x2
= 0,

y = ±b
∂2w

∂y2
+ ν ∂

2w

∂x2
= 0,

∂3w

∂y3
+ (2− ν) ∂

3w

∂x2∂y
= 0,

(ν is Poisson’s ratio, ν ≈ 0.3 (dimensionless)).

i) Scale the spatial coordinates like x = ax̂ and y = bŷ, and the sag like w = (qa4/D)ŵ, and

introduce ε = a/b ≪ 1.

ii) Determine asymptotically for small ε (to leading order) an outer expansion w0 of w.

iii) Argue why boundary conditions can be applied at x = ±1 but not at y = ±1.

iv) Determine position and thickness of the boundary layers y = ±1 + δ(ε)η, and formulate the

equations for an inner expansion of w. Solve this to leading order by splitting w = w0 + W and

assuming the Fourier representation W =∑∞n=0 fn(η) cos(λnx), where λn = (n + 1
2
)π .

(Splitting off w0 from w is advantageous because this avoids non-uniform convergence problems

of the Fourier series near x = ±1.)

6.2.21 Heat conduction along cylinder walls

A circular infinitely long cylinder is applied with a thin thermally conducting outer layer, with inner

radius R1 and outer radius R2 (R = 1
2
(R1 + R2), δ = 1

2
(R1 − R2), d/R = δ ≪ 1). The interface

between the cylinder and the layer is thermally isolated. r and θ are polar co=ordinates in a cross

sectional plane of the cylinder. z is the axial co-ordinate. The cylinder rotates with constant angular

velocity ω (measured in rad/sec) along the z-as.

The purpose of this layered cylinder is to transport heat from one place to another. While the outer

layer is heated at one side, the same amount of heat is removed at the opposite side. This is modelled

as follows:

• at the outer wall r = R2 is along the part of the boundary given by 0 < θ < γ , (γ ∈ (0, 1
2
π) a

positive, constant and uniform heat flux q prescribed;

• at the outer wall r = R2 is along the part of the boundary given by π < θ < π + γ a negative,

constant and uniform heat flux −q prescribed;

• along the rest of the outer wall the flux is zero.

At t = 0 the layer has a uniform temperature T0.

The temperature T we are looking for is independent of z, so T = T (r, θ, z) and satisfies the following

equation with initial and boundary conditions:

∂T

∂t
+ ω∂T

∂θ
− κ

(∂2T

∂r2
+ 1

r

∂T

∂r
+ 1

r2

∂2T

∂θ2

)
= 0, R1 < r < R2, 0 6 θ < 2π, t > 0;
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(κ = k/ρc is the thermal diffusion coefficient, measured in m2/sec)

T (r, θ, 0) = T0, R1 < r < R2, 0 6 θ < 2π;
∂T

∂r
(R1, θ, t) = 0, 0 6 θ < 2π, t > 0;

k
∂T

∂r
(R2, θ, t) = q, 0 < θ < γ,

= −q, π < θ < π + γ,
= 0, γ < θ < π, ∨ π + γ < θ < 2π;

(k measured in kg m/K sec3), plus the condition of periodicity

T (r, θ + 2π, t) = T (r, θ, t).

As we are mainly interested in the temperature variation in θ , rather than in r , we introduce the mean

temperature T̄

T̄ (θ, t) = 1

2d R

∫ R2

R1

rT (r, θ, t) dr.

Show that integration in r-direction of the above system (after multiplication by r) after neglecting of

O(δ)-terms, yields

∂ T̄

∂t
+ ω∂ T̄

∂θ
− κ

R2

∂2T̄

∂θ2
= Q(θ), 0 6 θ < 2π, t > 0;

with

Q(θ) = Rq

ρc
h(θ),

and

T̄ (θ, 0) = T0, T̄ (θ + 2π) = T̄ (θ, t).

Non-dimensionalisation according to

t̂ = ωt, T̂ = ρcω

Rq
(T − T0), en

κ

ωR2
= ε,

eventually leads to

∂ T̂

∂t
+ ∂ T̂

∂θ
− ε ∂

2T̂

∂θ2
= h(θ), 0 6 θ < 2π, t > 0,

and

T̂ (θ, 0) = 0, T̂ (θ + 2π, t) = T̂ (θ, t),

with

h(θ) = 1, 0 < θ < γ,

= −1, π < θ < π + γ,
= 0, γ < θ < π ∨ π + γ < θ < 2π.

Assume in the following 0 < ε ≪ 1.
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i) Determine to leading order the outer expansion of T (≡ T̂ ). Where do we observe in this

solution irregularities? Hint: consider the gradient in θ-direction of T . So where do we expect

boundary layers?

ii) Determine for one of these boundary layers (the other is similar) its thickness and the corre-

sponding inner expansion.

6.2.22 Cooling by radiation of a heat conducting plate

Consider the stationary 2D-problem of a heat conducting semi-infinite plate, which is being heated at

the short side, while along the long sides the heat disappears slowly by weak radiation (see figure).

T = f (y2)

x = 0

y = 1

y = −1

Ty = −εT 4

T→0

We make lengths dimensionless by half of the thickness of the plate, and the (absolute!) temperature

by a characteristic temperature at the short side.

From symmetry we consider only the upper half. In dimensionless variables the problem is then given

by

0 < x, −1 < y < 1 : ∇2T = 0

x = 0, T = f (y2) = O(1)

y = 1,
∂T

∂y
= −εT 4 (0 < ε ≪ 1)

y = 0,
∂T

∂y
= 0

x→∞ T→0

i) As the radiation is small, the temperature decays slowly in positive x–direction. Assume that the

corresponding length scale is X = δ(ε)x . Determine δ(ε) by assuming a “thin layer” approxima-

tion, and balancing the radiation with the changes in x–direction.

ii) Rewrite the problem in X en y. This is a singularly perturbed problem with a boundary layer of

thickness O(δ) at x = 0.

iii) Finish i), by determining the leading order outer solution (up to a constant). Use the fact that

T→0 for X→∞.

iv) Determine the boundary layer problem, and determine the leading order boundary layer solution

in the form of a Fourier expansion. (Assume for simplicity that f (y2) = ∑∞
n=0 an cos(nπy).)

Determine by matching the unknown constant of iii).

v) What is the second order scaling function of the boundary layer solution, in other words, what is

λ1 in T = T0 + λ1T1. Write down the equation and boundary conditions for T1. The solution is

very simple.

Compare now the influx at x = 0 with the outflux at y = 1.
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6.2.23 The stiffened catenary

A cable, suspended between the points X = 0, Y = 0 and X = D, Y = 0, is described as a linear

elastic, geometrically non-linear inextensible bar of weight Q per unit length.

(0, 0) (D, 0)

−H ←−
1
2

QL ↑
−→ H

↑ 1
2

QL

Figure 6.1: A suspended cable

At the suspension points the cable is horizontally clamped such that the cable hangs in the vertical

plane through the suspension points.

The total length L of the cable is much larger than D, while the bending stiffness E I is relatively

small, such that the cable is slack.

In order to keep the cable in position, the suspension points apply a reaction force, with horizontal

component H resp. −H , and a vertical component V , resp. QL−V . From symmetry we already have

V = 1
2

QL , but H is unknown.

With s the arc length along the cable, ψ(s) the tangent angle with the horizon, and X (s),Y (s) the

cartesian co-ordinates of a point on the cable, the shape of the cable is given by

E I
d2ψ

ds2
= H sinψ − (Qs − V ) cosψ

ψ(0) = ψ(L) = 0

X (L) =
∫ L

0

cosψ(s) ds = D

Y (L) =
∫ L

0

sinψ(s) ds = 0

a. Make dimensionless with L: s = Lt , X = Lx , Y = Ly, D = Ld, and introduce ε2 = E I/QL3,

h = H/QL .

b. Solve the resulting problem asymptotically for ε→0. Assume d = O(1), h = O(1).

As posed, d is known and h is unknown, and so h = h(ε, d). It may be more convenient to deal

with the inverse problem first, where h is known, and d results. Of course, then is d = d(ε, h).

Finally, after having found the relation between d and h (asymptotically), we can solve this for

h and given d.
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6.2.24 A boundary layer problem with x-dependent coefficients

Suppose that y(x) with 0 < ε ≪ 1 satisfies the boundary value problem

εy′′ + a(x)y′ + b(x)y = 0, y(0) = A, y(1) = B,

while a(x) and b(x) are analytic in [0, 1] (i.e. have convergent Taylor series in any point ∈ [0, 1].

a. If a > 0, find an approximate solution and show that it has a boundary layer at x = 0.

b. If a < 0, find an approximate solution and show that it has a boundary layer at x = 1.

c. Finally, if a(x0) = 0 for x0 ∈ (0, 1), where a < 0 for x < x0 and a > 0 for x > x0, show

that no boundary layer at the end points can exist, and therefore an interior layer must exist at x0.

Define β = b(x0)

a′(x0)
, and show that as x ↓↑ x0, the outer solutions in x < x0, resp. x > x0 satisfy

y ≃ c±|x − x0|−β,

where the constants c± are known, but in general are not the same.

Hence show by rescaling x and y as

y(x) =
( ε

a′(x0)

)− 1
2
β

Y (X), x = x0 +
( ε

a′(x0)

) 1
2

X,

the equation can be approximately written in the transition region as

Y ′′ + XY ′ + βY = 0

with matching conditions

Y ∼ c±|X |−β as X→±∞.
Solve this problem for β = −1. (Use Maple or Mathematica.)

6.2.25 A catalytic reaction problem in 1D

Consider the steady-state catalytic reaction problem of the book, section 16.8, but now in one dimen-

sion. This yields, for the concentration c, the scaled equation with boundary conditions

d2c

dx2
= λ c

α + c
, 0 < x < 1

c(1) = 1, c′(0) = 0.

Study carefully the 3D leading order asymptotic solution for α→0 while λ = O(1), given in section

16.8.3, and determine the analogous solution for 1D.

Solve the inner solution (implicitly) and find integration constants by matching. See also the note on

page 546, above 16.6.5.
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6.2.26 A cooling problem

Consider a synthetic fibre, shaped like an infinite cylinder of radius R, with density ρf , specific heat

capacity cf and thermal conductivity κf . At t = 0 the fibre has uniform temperature T = T0. Inside

the fibre the temperature Tf is described by

ρf cf

∂Tf

∂t
− κf ∇2Tf = 0.

Outside the fibre is air with corresponding parameters ρa , ca and κa, and a temperature Ta given by

ρaca

∂Ta

∂t
− κa∇2Ta = 0.

At t = 0 the air temperature is equal to T∞. For r→∞, Ta→T∞. At the interface r = R, we have

continuity of temperature and heat flux:

Tf = Ta, κf n·∇Tf = κan·∇Ta.

Assume that

δ = κa

κf

≪ 1, ε = κf

ρf cf

ρaca

κa

≪ 1

Assume cylindrical symmetry, such that T = T (r, t), while

∇ = er

∂

∂r
, ∇2 = 1

r

(
r
∂

∂r

)
.

a) Scale T = T∞ + T0θ , r = Rx , and t = (R2ρaca/κa)τ , because we are interested in the behaviour

on the time scale of the heat diffusion in air.

b) Make a suitable choice to express δ = δ(ε). Note: it is very hard to completely analyse a multi-

small parameter problem asymptotically. Therefore it is always wise to reduce the problem to a

single parameter problem by expressing one into the other.

c) Find an asymptotic approximation of θa and θf for ε→0.

6.2.27 Visco-elastic fibre spinning

The continuous stretching of viscous and elasto-viscous liquids to form fibres is a primary manufac-

turing process for textiles and glass fibres. The melt spinning process for the manufacture of fibres is

shown schematically in the figure. Molten material is extruded through a small hole into cross-flowing

ambient air at a temperature below the solidification temperature of the material. The solidified poly-

mer or glass is wound up on a reel moving at a higher speed than the mean extrusion velocity, resulting

in thinning of the filament.
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z

r
Mean axial speed W0 at z = 0

2R0

L

Solidification point z = L

w = DRW0

Spinline force F

Conservation of momentum for a Maxwell model, ignoring inertia, surface tension, air friction and

gravity, yields

τzz + λ
[
w

dτzz

dz
− 2τzz

dw

dz

]
= 2η

dw

dz
,

τrr + λ
[
w

dτrr

dz
+ τrr

dw

dz

]
= −ηdw

dz

where w is the cross-wise averaged axial velocity, η denotes the coefficient of dynamic viscosity, λ

denotes the coefficient of elastic relaxation, and w(0) = W0 is the initial axial velocity. Note that in

practice W0 is not given but a result from the drawing force F applied at an end position z = L (the

solidification point).

We may assume that, due to surface tension, the cross-sectional shape of the fibre is circular, of radius

(say) R = R(z). We define R0 = R(0).

The normal components of the stress tensor n·σ vanish at the surface r = R(z), leading to

σrz − Rzσzz = 0, σrr − Rzσrz = 0 at r = R.

For small Rz (the assumption of a slowly varying diameter) it follows that σrr = (Rz)
2σzz ≃ 0.

Furthermore, when we integrate along a cross section

∫ 2π

0

∫ R

0

[
∂σzz

∂z
+ 1

r

∂

∂r

(
rτrr

)]
r drdθ = 2π

d

dz

∫ R

0

σzzr dr + 2πRz

[
−rσzz + rσrz

]
r=R
=

2π
d

dz

∫ R

0

σzzr dr = 0

For σzz practically constant along a cross section this leads to

πR2σzz = F.
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To make the problem tractable we ignore possible entrance effect and assume τrr = 0 at z = 0.

Altogether we have

σzz = −p + τzz =
F

πR2
,

σrr = −p + τrr = 0.

Conservation of mass of incompressible flow yields the axial volume flux

Q = πR2w = πR2
0W0.

We make dimensionless

w = W0v, z = Ly, τzz = T
F

πR2
0

, τrr = P
F

πR2
0

and introduce the dimensionless parameters

q = ηπR2
0 W0

F L
, ε = λW0

L

where q = O(1) is the ratio between viscous and axial forces and ε is called the Weissenberg number.

We will analyse asymptotically the problem of small ε.

Noting that R2
0/R2 = w/W0 = v, we have

T − P = v,

T + ε
[
v

dT

dy
− 2T

dv

dy

]
= 2q

dv

dy
,

P + ε
[
v

dP

dy
+ P

dv

dy

]
= −q

dv

dy

with

v(0) = 1 and P(0) = 0.

a) Eliminate P and d
dy

T to find

v + εv′(2v − 3T ) = 3qv′

where v′ = d
dy
v.

b) Eliminate T to find the single equation for v

ε
(
v2v′′ − v(v′)2

)
+ 2ε2v(v′)3 − vv′ + 3q(v′)2 = 0

Note that this is a 2d-order autonomous ordinary differential equation.

c) Introduce φ(x) = v′(y) and x = ln(v) and reformulate the equation for v into a 1st-order non-

autonomous ordinary differential equation with boundary conditions, for φ = φ(x, ε).
d) Solve this equation by matched asymptotic expansions for small ε up to and including terms of

O(ε). It is more work, but it is possible to get also the O(ε2)-terms. Note that a boundary layer at

x = 0 may be anticipated.

e) Rewrite the leading order outer solution into a solution for v. This is the solution for a purely

viscous fibre, with negligible elastic effects.
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6.2.28 The weather balloon

In this exercise we will consider a simple model of the dynamics of a weather balloon in a non-uniform

but stationary atmosphere. In order to make analysis possible, we consider the Standard Atmosphere

which is explicitly given. We start with some preliminary information.

Ideal Gas

In the ideal gas model the relation between pressure p, density ρ and absolute temperature T is

approximated by

p = ρRT

where R is constant, the so-called gas constant.

From known reference values at a pressure of p = 101.325 kPa we can derive the respective gas

constants for air, helium and hydrogen as follows

Air : T = 288.15 K, ρ = 1.22500 g/l → Ra = p/ρT = 287.053

Helium: T = 273.15 K, ρ = 0.1786 g/l → Rh = p/ρT = 2076.99

Hydrogen: T = 273.15 K, ρ = 0.08988 g/l → Rw = p/ρT = 4127.17

Table 6.1: Gas constants

Standard Atmosphere

A simplified model of the atmosphere, know as the Standard Atmosphere, is useful as reference. It

starts with a simple relation between temperature T and height h (above sea level), the assumption of

hydrostatic equilibrium dp/dh = −gρ and the ideal gas law.

In the troposphere (0 6 h 6 11 km) the air temperature T is assumed to decay linearly, such that

pressure and density at height h above sea level are given by

T = T0

(
1− h

L

)
K with T0 = 288.15 K, L = 103T0/6.5 = 44331 m

p = p0

(
T

T0

)α
Pa, with p0 = 101325 Pa, g = 9.81 m/s2, α = gL

T0 R
= 5.256

ρ = ρ0

(
T

T0

)α−1

kg/m3, with ρ0 = 1.225 kg/m3.

The Balloon

A balloon of mass m and negligible own weight is filled with a gas of density ρg (helium or hydrogen).

The volume of the balloon is V = m/ρg. We assume that the balloon is made of arbitrarily flexible

and extensible material such that it always attains a spherical shape. If the radius is r , the volume is

V = 4
3
πr3 and the cross sectional surface A = πr2.
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The weight of the balloon is gm, while the Archimedean upward force is gρa V . The balloon is released

at time t = 0 from stationary state at sea level h = 0 in a steady atmosphere, describable by the

Standard Atmosphere. We are interested in its height h and velocity
.
h at time t .

As the balloon surface is perfectly flexible, it does not add extra pressure, and the pressure inside and

outside the balloon are equal: pa = pg . (In reality, no balloon is of course perfectly flexible, and at

some point the surface will not expand further. This is where the balloon stops rising.)

The temperature inside the balloon will be the temperature outside with some delay, to be modelled by

a temperature diffusion model which we will not include here. One extreme is to model Tg = T0 for

very fast balloons and the other extreme is to model Tg = Ta for very slow balloons. For mathematical

convenience we will consider the second assumption, but the other case is similar.

The Forces

The balloon is subject to inertia −m
..
h, buoyancy force gρaV − gm and air drag − 1

2
ρa

.
h

2

Cd A, where

drag coefficient Cd is for a sphere (of not too low and not too high Reynolds number) in the order of

0.5 [Batchelor 1967, p. 341].

Together these forces cancel out each other, so altogether we have the following equation for the

dynamics of the balloon

m
d2h

dt2
= gρa V − gm − 1

2
ρa

(
dh

dt

)2

Cd A.

Simplifying the problem to obtain a model

By using the above relations we find

m
d2h

dt2
= gm

ρa

ρg

− gm − 1

2
πCdρa

(
3V

4π

)2/3 (
dh

dt

)2

d2h

dt2
= g

(
ρa

ρg

− 1

)
−

1
2
πCd

m
ρa

(
3m

4πρg

)2/3 (
dh

dt

)2

d2h

dt2
= g

(
ρa

ρg

− 1

)
−

1
2
πCd

m1/3

(
3

4π

)2/3
ρa

ρ
2/3
g

(
dh

dt

)2

Now we use the equal pressures inside and outside

1 = pa

pg

= ρa RaTa

ρg RgTg

= ρa Ra

ρg Rg

such that

ρg =
Ra

Rg

ρa.

If we further introduce q = 1
6
(α − 1) = 0.7093, we have

d2h

dt2
= g

(
Rg

Ra

− 1

)
− 1

2
πCd

(
3Rg

4πRa

)2/3 (ρa

m

)1/3
(

dh

dt

)2

,
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and eventually an equation in h

d2h

dt2
= g

(
Rg

Ra

− 1

)
− 1

2
πCd

(
3Rg

4πRa

)2/3 (ρ0

m

)1/3
(

1− h

L

)2q (
dh

dt

)2

.

Non-dimensionalisation

We make dimensionless by assuming

h = ℓH, t = τ s

such that

ℓH ′′

τ 2
= g

(
Rg

Ra

− 1

)
− 1

2
πCd

(
3Rg

4πRa

)2/3 (ρ0

m

)1/3
(

1− ℓ

L
H

)2q (
ℓH ′

τ

)2

.

A possible lengthscale could be a radius r , for example at t = 0, but this is obviously for the global

dynamics only relevant in a very indirect way. The most natural, inherent, length scale for h is obvi-

ously ℓ = L . A reference time scale is less obvious. If the buoyancy and drag are dominating for most

of the time, we choose τ such that these forces balance:

τ =
√

1

2
πCd

Ra

Rg − Ra

(
3Rg

4πRa

)2/3
L2

g

(ρ0

m

)1/3

.

For 1 kg helium this characteristic time is τ = 6235.47 s or 104 minutes. For 1 kg hydrogen, it is

τ = 5352.07 s or 89 minutes.

The relative importance of inertia against the other forces is characterised by the parameter

ε =
L

τ 2

g
(

Rg

Ra
− 1

) = 2

πCd

(
4πRa

3Rg

)2/3
1

L

(
m

ρ0

)1/3

,

which amounts here to ε = 1.86 · 10−5 for 1 kg helium and ε = 1.18 · 10−5 for 1 kg hydrogen. So ε

is a small parameter and most of the time inertia is unimportant. Hence, τ is the typical time it takes

for h to vary by an amount comparable with L .

We finally obtain the model in its most transparent form

εH ′′ = 1− (1− H )2q(H ′)2

with initial conditions H (0) = H ′(0) = 0. Because of these we may assume that H ′(s) > 0.

This dimensionless form of the problem confirms that the inertial forces εH ′′ are negligible during

most of the balloon’s flight. Neglecting this term altogether, on the other hand, reduces the order of

the differential equation from two to one, which is not possible since we have two initial conditions.

The answer is of course that there exists a boundary layer near the starting time s = 0. We will solve

this problem therefore by application of the Method of Matched Asymptotic Expansions.

Asymptotic analysis

Solve this problem asymptotically for small ε up to first and second order.
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6.2.29 A chemical reaction-diffusion problem (singular limit)

Reconsider the chemical reaction-diffusion problem of problem 3.3.8 (page 49)

1

r2

d

dr

(
r2 dc

dr

)
= φ2cn, 0 < r < 1,

c(1) = 1, c′(0) = 0,

but now for the asymptotic behaviour of c when ε = φ−1 → 0. Solve first the exact solution for n = 1

to guess the general structure. Find the leading order inner and outer solution.

Hint. Introduce y = rc.

6.2.30 An internal boundary layer (Oxford, OCIAM, 2003)

The function y(x, ε) satisfies the equation

εy′′ + yy′ − y = 0 for x ∈ (0, 1)

Consider the following singularly perturbed boundary value problems for ε→ 0.

a) Suppose that y(0) = 0 and y(1) = 3. Show that a solution can be found with a boundary layer

at x = 0. Give leading order approximations for the inner and outer expansions.

b) Suppose that y(0) = − 3
4

and y(1) = 5
4
. Show that a solution is possible having an interior

layer where y jumps from −M to M , for some M . Find the leading order matched asymptotic

expansions.

6.2.31 The Van der Pol equation with strong damping

By a suitable coordinate transformation we can write Van der Pol’s equation with strong damping as

εy′′ + y − (1− y2)y′ = 0 ε→ 0.

We are interested in a periodic solution, so the choice of the initial conditions is part of the problem.

By seeking appropriate “outer” and “transition” layers, show that an approximate periodic solution

can be constructed to leading order in the form of matched asymptotic expansions. Show that the

period is approximately 3− 2 ln 2.

6.2.32 A beam under tension resting on an elastic foundation

An elastic beam of bending stiffness E I is resting on an elastic foundation of modulus k(s), while it

is under tension T and under a distributed downward force per length p(s). The distance along the

beam is s. The small vertical deflection w of the beam satisfies the ordinary differential equation

E I
d4w

ds4
− T

d2w

ds2
+ kw = p

Assume that there is an inherent length scale L , such that we can scale s = Lx . Assume that k is

typically of order K , i.e. k(s) = Kκ(x), p is typically of order P , i.e. p(s) = P f (x), and w is

typically of order W , i.e. w(s) = W y(x).
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a) Show, by choosing suitable lengths L and W that the above equation can be written in dimension-

less form as

ε2(y′′′′ + κy)− y′′ = f.

b) Suppose that the beam rests on a foundation with modulus that varies linearly along the length of

the beam, i.e. κ(x) = 1 + mx . Other than the tension, there is no external forcing, i.e. f (x) = 0.

Model the beam as semi-infinite along x ∈ [0,∞), with a horizontally clamped, prescribed

deflection at x = 0 and (due to the increasing foundation modulus) no deflection for x → ∞.

We arrive then at the differential equation and boundary conditions

ε2(y′′′′ + (1+ mx)y)− y′′ = 0, y(0) = 1, y′(0) = 0, y(x), y′(x)→ 0 (x →∞).

If m = O(1) and ε → 0, find a first-order asymptotic approximation of y based on a boundary

layer structure near x = 0.

HINT. Don’t be fooled by the form of the equation. The outer variable is not necessarily x , and

should be found from a judicious balancing of terms of the equation.
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Chapter 7

Multiple Scales, WKB and Resonance

7.1 Theory

7.1.1 Multiple Scales: general procedure

Suppose a function ϕ(x, ε) depends on more than one length scale acting together, for example x ,

εx , and ε2x . Then the function does not have a regular expansion on the full domain of interest,

x 6 O(ε−2) say. It is not possible to bring these different length scales together by a simple coordinate

transformation, like in the method of slow variation or the Lindstedt-Poincaré method, or to split up

our domain in subdomains like in the method of matched asymptotic expansions. Therefore we have

to find another way to construct asymptotic expansions, valid in the full domain of interest. The

approach that is followed in the method of multiple scales is at first sight rather radical: the various

length scales are temporarily considered as independent variables: x1 = x, x2 = εx, x3 = ε2x , and the

original function ϕ is identified with a more general function ψ(x1, x2, x3, ε) depending on a higher

dimensional independent variable.

ϕ(x, ε) = A(ε) e−εx cos(x − θ(ε)) becomes ψ(x1, x2, ε) = A(ε) e−x2 cos(x1 − θ(ε)). �

Since this identification is not unique, we may add constraints such that this auxiliary function ψ does

have a Poincaré expansion on the full domain of interest. After having constructed this expansion, it

may be associated to the original function along the line x1 = x, x2 = εx, x3 = ε2x .

The technique, utilizing this difference between small scale and large scale behaviour is the method

of multiple scales. As with most approximation methods, this method has grown out of practice,

and works well for certain types of problems. Typically, the multiple scale method is applicable to

problems with on the one hand a certain global quantity (energy, power), which is conserved or almost

conserved, controlling the amplitude, and on the other hand two rapidly interacting quantities (kinetic

and potential energy), controlling the phase. Usually, this describes slowly varying waves, affected by

small effects during a long time. Intuitively, it is clear that over a short distance (a few wave lengths)

the wave only sees constant conditions and will propagate approximately as in the constant case, but

over larger distances it will somehow have to change its shape in accordance with its new environment.
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7.1.2 A practical example: a damped oscillator

We will illustrate the method by considering a damped harmonic oscillator

d2 y

dt2
+ 2ε

dy

dt
+ y = 0 (t > 0), y(0) = 0,

dy(0)

dt
= 1 (7.1)

with 0 < ε ≪ 1. The exact solution is readily found to be

y(t) = e−εt
sin
(√

1− ε2 t
)

√
1− ε2

. (7.2)

A naive approximation of this y(t), for small ε and fixed t , would give

y(t) = sin t − εt sin t + O(ε2), (7.3)

which appears to be useful for t = O(1) only. For large t the approximation becomes incorrect:

1) if t > O(ε−1) the second term is of equal importance, or larger, as the first term and nothing is left

over of the slow exponential decay;

2) if t > O(ε−2) the phase has an error of O(1), or larger, giving an approximation of which even

the sign may be in error.

We would obtain a far better approximation if we adopted two different time variables, viz. T = εt

and τ =
√

1− ε2 t , and changed to y(t, ε) = Y (τ, T, ε) where

Y (τ, T, ε) = e−T sin(τ )√
1− ε2

.

It is easily verified that a Taylor series of Y in ε yields a regular expansion for all t .

If we construct a straightforward approximate solution directly from equation (7.1), we would get the

same approximation as in (7.3), which is too limited for most applications. However, knowing the

character of the error, we may try to avoid them and look for the auxiliary function Y , instead of y.

As we, in general, do not know the occurring time scales, their determination becomes part of the

problem.

Suppose we can expand

y(t, ε) = y0(t)+ εy1(t)+ ε2y2(t)+ · · · . (7.4)

Substituting in (7.1) and collecting equal powers of ε gives

O(ε0) : d2 y0

dt2
+ y0 = 0 with y0(0) = 0,

dy0(0)

dt
= 1,

O(ε1) : d2 y1

dt2
+ y1 = −2

dy0

dt
with y1(0) = 0,

dy1(0)

dt
= 0.

We then find

y0(t) = sin t, y1(t) = −t sin t, etc.

which reproduces indeed expansion (7.3). The straightforward, Poincaré type, expansion (7.4) breaks

down for large t , when εt > O(1). It is important to note that this caused by the fact that any yn is ex-

cited in its eigenfrequency (by the “source”-terms −2dyn−1/dt), resulting in resonance. We recognise
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the generated algebraically growing terms of the type tn sin t and tn cos t , called secular terms (defi-

nition 5.1.1). Apart from being of limited validity, the expansion reveals nothing of the real structure

of the solution, and we change our strategy to looking for an auxiliary function dependent on different

time scales. We start with the hypothesis that, next to a fast time scale t , we have the slow time scale

T = εt. (7.5)

Then we identify the solution y with a suitably chosen other function Y that depends on both variables

t and T

Y (t, T, ε) = y(t, ε).

There exist infinitely many functions Y (t, T, ε) that are equal to y(t, ε) along the line T = εt in

(t, T )-space. So we have now some freedom to prescribe additional conditions. With the unwelcome

appearance of secular terms in mind it is natural to think of conditions, to be chosen such that no

secular terms occur when we construct an approximation.

Since the time derivatives of y turn into partial derivatives of Y , i.e.

dy

dt
= ∂Y

∂t
+ ε ∂Y

∂T
,

equation (7.1) becomes for Y

∂2Y

∂t2
+ Y + 2ε

(∂Y

∂t
+ ∂2Y

∂t∂T

)
+ ε2

(∂2Y

∂T 2
+ 2

∂Y

∂T

)
= 0. (7.6)

Assume the expansion

Y (t, T, ε) = Y0(t, T )+ εY1(t, T )+ ε2Y2(t, T )+ · · · (7.7)

and substitute this into (7.6) to obtain to leading orders

∂2Y0

∂t2
+ Y0 = 0,

∂2Y1

∂t2
+ Y1 = −2

∂Y0

∂t
− 2

∂2Y0

∂t∂T
,

with initial conditions

Y0(0, 0) = 0,
∂

∂t
Y0(0, 0) = 1,

Y1(0, 0) = 0,
∂

∂t
Y1(0, 0) = − ∂

∂T
Y0(0, 0).

The solution for Y0 is easily found to be

Y0(t, T ) = A0(T ) sin(t − θ0(T )) with A0(0) = 1, θ0(0) = 0.

This gives a right-hand side for the Y1-equation of

−2
(

A0 +
∂A0

∂T

)
cos(t − θ0)+ 2A0

∂θ0

∂T
sin(t − θ0).
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No secular terms occur (no resonance between Y1 and Y0) if these terms vanish:

A0 +
∂A0

∂T
= 0 yielding A0 = e−T ,

∂θ0

∂T
= 0 yielding θ0 = 0.

Together we have indeed constructed an approximation of (7.2), valid for t ≤ O(ε−1).

y(t, ε) = e−εt sin t + O(ε).

Note (this is typical of this approach), that we determined Y0 only on the level of Y1, but without

having to solve Y1 itself.

The present approach is by and large the multiple scale technique in its simplest form. Variations on

this theme are sometimes necessary. For example, we have not completely got rid of secular terms.

On a longer time scale (t = O(ε−2)) we have again resonance in Y2 because of the “source” e−T sin t ,

yielding terms O(ε2t). We see that a second time scale T2 = ε2t is necessary. From the exact solution

we may infer that these longer time scales are not really independent and it may be worthwhile to try

a fast time of strained coordinates type: τ = ω(ε)t = (1+ε2ω1+ε4ω4+ . . .)t . In the present example

we would recover ω(ε) =
√

1− ε2.

7.1.3 The air-damped resonator.

In dimensionless form this is given by

d2 y

dt2
+ εdy

dt

∣∣∣∣
dy

dt

∣∣∣∣+ y = 0, with y(0) = 1,
dy(0)

dt
= 0. (7.8)

By rewriting the equation into the form

d
dt

[
1
2
(y′)2 + 1

2
y2
]
= −ε(y′)2|y′|

and assuming that y and y′ = O(1), it may be inferred that the damping acts on a time scale of O(ε−1).

So we conjecture the presence of the slow time variable T = εt and introduce a new dependent

variable Y that depends on both t and T . We have

T = εt, y(t, ε) = Y (t, T, ε),
dy

dt
= ∂Y

∂t
+ ε ∂Y

∂T
,

and obtain for equation (7.8)

∂2Y

∂t2
+ Y + ε

(
2
∂2Y

∂t∂T
+ ∂Y

∂t

∣∣∣∣
∂Y

∂t

∣∣∣∣
)
+ O(ε2) = 0

Y (0, 0, ε) = 1,
( ∂
∂t
+ ε ∂

∂T

)
Y (0, 0, ε) = 0.

The error of O(ε2) results from the approximation ∂
∂t

Y + ε ∂
∂T

Y = ∂
∂t

Y + O(ε), and is of course only

valid outside a small neighbourhood of the points where ∂
∂t

Y = 0. We expand

Y (t, T, ε) = Y0(t, T )+ εY1(t, T )+ O(ε2),

104 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

to find for the leading order

∂2Y0

∂t2
+ Y0 = 0, with Y0(0, 0) = 1,

∂

∂t
Y0(0, 0) = 0.

The solution is given by

Y0 = A0(T ) cos(t − θ0(T )), where A0(0) = 1, θ0(0) = 0.

For the first order we have the equation

∂2Y1

∂t2
+ Y1 = −2

∂2Y0

∂t∂T
− ∂Y0

∂t

∣∣∣∣
∂Y0

∂t

∣∣∣∣

= 2
dA0

dT
sin(t − θ0)− 2A0

dθ0

dT
cos(t − θ0)+ A2

0 sin(t − θ0)| sin(t − θ0)|,
with corresponding initial conditions. The secular terms are suppressed if the first harmonics of the

right-hand side cancel. For this we use the Fourier series expansion

sin(t) | sin(t)| = − 8

π

∞∑

n=0

sin(2n + 1)t

(2n − 1)(2n + 1)(2n + 3)
.

We obtain the equations

2
dA0

dT
+ 8

3π
A2

0 = 0 and
dθ0

dT
= 0,

with solution θ0(T ) = 0 and

A0(T ) =
1

1+ 4
3π

T
.

Altogether we have the approximate solution

y(t, ε) = cos(t)

1+ 4
3π
εt
+ O(ε).

This approximation appears to be remarkably accurate. See Figure 7.1 where plots, made for a parame-

ter value of ε = 0.1, of the approximate and a numerically “exact” solution are hardly distinguishable.

A maximum difference is found of 0.03.

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Figure 7.1: Plots of the approximate and a numerically “exact” solution y(t, ε) of the air-damped

resonator problem for ε = 0.1.
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7.1.4 The WKB Method: slowly varying fast time scale

The method of multiple scales fails when the slow variation is caused by external effects, like a slowly

varying problem parameter. In this case the nature of the slow variation is not the same for all time,

but may vary. This is demonstrated by the following example. Consider the problem

..
x + κ(εt)2x = 0, x(0, ε) = 1,

.
x(0, ε) = 0,

where κ = O(1). It seems plausible to assume 2 time scales: a fast one O(κ−1) = O(1) and a slow

one O(ε−1). So we introduce next to t the slow scale T = εt , and rewrite x(t, ε) = X (t, T, ε). We

expand X = X0+ εX1+ . . ., and obtain X0 = A0(T ) cos(κ(T )t − θ0(T )). Suppressing secular terms

in the equation for X1 requires A′0 = κ ′t − θ ′0 = 0, which is impossible.

Here, the fast time scale is slowly varying itself

and the fast variable is to be strained locally by a

suitable strain function. This sounds far-fetched,

but is in fact quite simple: we introduce a fast time

scale via a slowly varying function.

Often, it is convenient to write this function in the

form of an integral, because it always appears in

the equations after differentiation. For a function

ω to be found

τ =
∫ t

0

ω(εt ′, ε) dt ′ = 1

ε

∫ T

0

ω(z, ε) dz, where T = εt,

while for x(t, ε) = X (τ, T, ε) we have

.
x= ωXτ + εXT and

..
x= ω2 Xττ + εωT Xτ + 2εωXτT + ε2 XT T .

After expanding X = X0 + εX1 + . . . and ω = ω0 + εω1 + . . . we obtain

ω2
0 X0ττ + κ2 X0 = 0,

ω2
0 X1ττ + κ2 X1 = −2ω0ω1 X0ττ − ω0T X0τ − 2ω0 X0τT . (7.9)

The leading order solution is X0 = A0(T ) cos(λ(T )τ − θ0(T )), where λ = κ/ω0. The right-hand side

of (7.9) is then

2ω0 A0λ(ω1λ+ λT τ − θ0T ) cos(λτ − θ0)+ (A0λ)
−1(ω0 A2

0λ
2)T sin(λτ − θ0).

Suppression of secular terms requires λT = 0. Without loss of generality we can take λ = 1, or ω0 =
κ . Then we need ω1 = θ0T , which just yields that λτ −θ0 = τ −θ0 = ε−1

∫ T
ω(z) dz −

∫ T
ω1(z) dz =

ε−1
∫ T
ω0(z) dz + O(ε). In other words, we may just as well take ω1 = 0 and θ0 = γ a constant.

Finally we have ω0 A2
0λ

2 = κA2
0 = a a constant1 , or A0 = a/

√
κ . Altogether we have

x(t) ≃ a√
κ(εt)

cos
(∫ t

0

κ(εt ′) dt ′ − γ
)

1A conserved slow-time quantity like κA2
0

is called an adiabatic invariant.
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The introduction of a slow time scale together with the slowly varying fast time scale, is generally

associated with the WKB Method (after Wentzel, Kramers and Brillouin). Usually, the WKB As-

sumption (Ansatz, Hypothesis) is restricted to the context of waves, and assumes the solution to be of

a particular form. This is further explained below.

For linear wave-type problems we may anticipate the structure of the solution and assume the so-called

WKB Ansatz or ray approximation

y(t, ε) = A(T, ε) e iε−1
∫ T

0 ω(τ,ε) dτ . (7.10)

The method is again illustrated by the example of the damped oscillator (7.1), but now in complex

form, so we consider the real part of (7.10). After substitution and suppressing the exponential factor,

we get

(1− ω2)A + iε
(

2ω
∂A

∂T
+ ∂ω
∂T

A + 2ωA
)
+ ε2

(∂2 A

∂T 2
+ 2

∂A

∂T

)
= 0,

Re(A) = 0, Re(iωA + εA′) = 0 at T = 0.

Unlike in the multiple scales method the secular terms will not be explicitly suppressed, at least not to

leading order. The underlying additional condition here is that the solution of the present type exists

in the first place and that each higher order correction is no more secular than its predecessor. The

solution is expanded as

A(T, ε) = A0(T )+ εA1(T )+ ε2 A2(T )+ · · ·
ω(T, ε) = ω0(T )+ ε2ω2(T )+ · · · .

Note that ω1 may be set to zero since the factor exp(i
∫ T

0
ω1(τ ) dτ) may be incorporated in A. By a

similar argument, viz. by re-expanding the exponential for small ε, all other terms ω2, ω3, . . . could

be absorbed by A (this is often done). This is perfectly acceptable for the time scale T = O(1), but

for larger times we will not be able to suppress higher order secular terms. So we will find it more

convenient to include these terms and use them whenever convenient.

We substitute the expansions and collect equal powers of ε to obtain to O(ε0)

(1− ω2
0)A0 = 0

with solution ω0 = 1 (or −1, but that is equivalent for the result). To O(ε1) we have then

A′0 + A0 = 0 with Re(A0) = 0, Im(ω0 A0) = −1 at T = 0,

with solution A0 = −i e−T . To order O(ε2) the equation reduces to

A′1 + A1 = −i( 1
2
+ ω2) e−T , with Re(A1) = 0, Im(ω0 A1) = Re(A′0) at T = 0,

with solution

ω2 = − 1
2
, A1 = 0.

Note that if we had chosen ω2 = 0, the solution would be A1 = − 1
2
T e−T . Although by itself correct

for T = O(1), it renders the asymptotic hierarchy invalid for T > O(1/ε) and is therefore better

avoided. The solution that emerges is indeed consistent with the exact solution.
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7.1.5 Weakly nonlinear resonance problems

Similar arguments may be applied to certain weakly nonlinear resonance problems. Consider first the

following slightly damped2 harmonic oscillator with harmonic forcing

y′′ + ω2
0 y + 2ω0 sin θy′ = ε cos(ωt), y(0) = y′(0) = 0, (7.11)

(with sin θ > 0 small) which has the solution

y(t) = ε e−ω0t sin θ (ω
2 − ω2

0) cos(ω0t cos θ)− tan θ(ω2 + ω2
0) sin(ω0t cos θ)

(ω2 − ω2
0)

2 + (2ωω0 sin θ)2

− ε (ω
2 − ω2

0) cos(ωt)− 2ωω0 sin θ sin(ωt)

(ω2 − ω2
0)

2 + (2ωω0 sin θ)2
.

When sin θ is very small, we can distinguish an initial regime where the solution becomes approxi-

mately

y(t) ≃ ε cos(ω0t)− cos(ωt)

ω2 − ω2
0

= 2ε
sin
(
ω−ω0

2
t
)

sin
(
ω+ω0

2
t
)

ω2 − ω2
0

and the steady state regime for t →∞ where the solution becomes

y(t) ≃ −ε cos(ωt)

ω2 − ω2
0

.

We are interested in the behaviour near resonance, when ω ≈ ω0. Let us assume, for definiteness, that

ω,ω0 = O(1) and ω − ω0 = O(ε). Note that this implies that the factor ω2 − ω2
0 = O(ε).

Initially, we have two time scales, viz. a fast time (ω+ω0)t = O(t) and a slow time (ω−ω0)t = O(εt).

As long as (ω − ω0)t = O(ε), solution y is of the order of magnitude of its driving force, namely

y = O(ε). However, once we are in the steady state, the solution grows an order of magnitude higher

and becomes y = O(1).

It is important to realise that near resonance we are not able to assess the order of magnitude of y from

the driving force alone. We have to be more careful.

Consider these arguments to obtain (as a typical example) the steady state, near resonance solution of

the weakly non-linear, harmonically driven oscillator

y′′ + ω2
0 y + εay3 = εC cos(ωt), ω = ω0(1+ εσ ), ω, ω0, a,C, σ = O(1) (7.12)

asymptotically for ε→ 0. (Note that σ and a do not need to be positive.)

In steady state, the solution will follow the periodicity of the driving force and will therefore be

periodic with frequency ω. In other words, y will be a function f (ωt) of ε-dependent argument ω(ε)t .

Like in the Lindstedt-Poincaré and Multiple Scales methods, an asymptotic expansion in powers of ε

(assuming a smooth f ) will include secular terms like

f (ωt) = f (ω0t)+ εσ t f ′(ω0t)+ . . .
2By writing the friction coefficient 2ω0 sin θ in this way, the solution has a neater form.
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and so spoil any regular expansion on a time scale larger than O(1). It is therefore better to absorb the

ε-dependent ω into a new time variable τ = ωt . Next to this, it is convenient to rescale a and y

τ = ωt, a = αω6
0

C2
, y(t) = C

ω2
0

φ(τ)

to obtain

(1+ εσ )2φττ + φ + εαφ3 = ε cos τ. (7.13)

Neglecting for the moment the non-linear term, we have seen above that away from resonance, y

follows the driving force and remains y = O(ε), but near resonance it grows to become at steady

state y = O(ε/(ω − ω0) = O(1). So we assume φ = O(1) and assume the Poincaré expansion

φ = φ0 + εφ1 + . . .

which we substitute in the equation. By collecting corresponding orders we obtain in the usual way

φ′′0 + φ0 = 0,

φ′′1 + φ1 + 2σφ′′0 + αφ3
0 = cos τ.

Initially, φ0 is totally undetermined, and we can say little more than the general solution

φ0(τ ) = A0 cos τ + B0 sin τ.

We may see that A0 and B0 is determined at the next order, but it is not immediately clear how. First

order φ1 is driven by both the external force cos τ and terms inherited from leading order φ0, and we

need to know φ0 before we can proceed at all. So the situation looks rather hopeless.

There is, however, information that we haven’t used yet. While, on the one hand, φ1 is excited at

resonance (by the external force and the cos τ and sin τ terms from φ0) leading to algebraic growth

by secular terms, we are, on the other hand, looking for a steady state solution such that εφ1 remains

O(ε) and does not grow to O(1).

In other words, the secular terms of φ1 should not be present and have to be suppressed. This provides

us with the consistency condition that yields the missing equations to determine A0 and B0.

From the driving terms of φ1

φ′′1 + φ1 = cos τ − 2σφ′′0 − αφ3
0

=
[
1+ 2σ A0 − 3

4
αA0(A

2
0 + B2

0)
]

cos τ +
[
2σ B0 − 3

4
αB0(A

2
0 + B2

0)
]

sin τ

− 1
4
α
[
A0(A

2
0 − 3B2

0) cos(3τ)+ B0(3A2
0 − B2

0) sin(3τ)
]

we obtain the conditions that suppress the secular terms

1+ 2σ A0 − 3
4
αA0(A

2
0 + B2

0) = 0,

2σ B0 − 3
4
αB0(A

2
0 + B2

0) = 0.

It is immediately clear that B0 = 0, while A0 is found from a (real) root of the 3rd-order polynomial

4x3 − λ(3x + 1) = 0, x = 2
3
σ A0, λ = 128σ 3

81α
(7.14)
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We find 1 root for λ < 1, 2 roots for λ = 1 and 3 roots for λ > 1.

–2

–1

0

1

2

3

4

5

6

y

–1 –0.5 0.5 1 1.5
x

λ=−0.8
λ=0.6

λ=1.2 4x3

Figure 7.2: Examples of intersection points of y = 4x3 and y = λ(3x + 1).

We can go on to determine φ1. Again this will contain undetermined coefficients, which have to be

determined at the next order.
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7.2 Multiple Scales, WKB and Resonance: Assignments

7.2.1 Non-stationary Van der Pol oscillator

Consider the weakly nonlinear oscillator, described by the Van der Pol equation, for variable y =
y(t, ε) in t :

y′′ + y − ε(1− y2)y′ = 0

asymptotically for small positive parameter ε. (Check the phaseplane figure 8.2 in section 8.1.)

Construct by means of the method of multiple scales a first-order approximate solution. You are free

to choose convenient (non-trivial) initial values.

7.2.2 The air-damped, unforced pendulum

For sufficiently high Reynolds numbers, the air-damped pendulum may be described by

m
..
φ +C

.
φ |

.
φ | + K sinφ = 0, φ(0) = ε,

.
φ (0) = 0,

where ε > 0 is small and problem parameters m, K and C are positive. Assume that C/m = O(ε).

Use the method of multiple scales to get an asymptotic approximation of φ = φ(t, ε) for ε→ 0.

7.2.3 The air-damped pendulum, harmonically forced near resonance

When an oscillator of resonance frequency ω0 is excited harmonically, with a frequency ω near ω0,

the resulting steady state amplitude may be much larger than the forcing amplitude. Nonlinear effects

may be called into action and limit the amplitude, which otherwise (in the linear model) would have

been unbounded at resonance. In the following we will study an air-damped oscillator with harmonic

forcing near resonance. The chosen parameter values are such that the resulting amplitude is just large

enough to be bounded by the nonlinear damping.

a) Consider the damped harmonic oscillator with harmonic forcing

m
..
φ +Kφ = F cos(ωt).

Parameters m, K and F are positive. Find the steady state solution, i.e. the solution harmonically

varying with frequency ω.

b) Consider the air-damped version

m
..
φ +C

.
φ |

.
φ | + Kφ = F cos(ωt),

where problem parameters m, K ,C and F are positive. C and F are small in a way that F = εK

and C = εmβ where ε is small. The resonance frequency of the undamped linearised problem

is ω0 =
√

K/m, while ω/ω0 = � = 1 + εσ with detuning parameter σ = O(1). We are

interested in the (bounded) steady state, and initial conditions are unimportant. Use similar tech-

niques as used with the methods of multiple scales and Lindtedt-Poincaré to get an asymptotic

approximation of φ = φ(t) for ε→ 0.

Hint: make t dimensionless by τ = ωt . Write the leading order solution in the form φ0 =
A0 cos(τ − τ0) and find A0 as a function of σ from φ1. Note that A0(σ )→ 0 if σ → ±∞, which

is in agreement with (a).
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c) The same problem as above but with a nonlinear restoring force K sin φ, i.e.

m
..
φ +C

.
φ |

.
φ | + K sinφ = F cos(ωt),

while we now choose F = ε3K , C = εmβ and ω/ω0 = � = 1 + ε2σ . Note that we have to

rescale φ.

The main difference with (b) is that A0 cannot be expressed explicitly in σ , but if we plot σ as a

function of A0, we can recognise the physical solutions that satisfy A0(σ )→ 0 if σ →±∞.

7.2.4 Relativistic correction for Mercury

The relativistic correction in the calculation of the advance of the perihelion of Mercury.

In the relativistic mechanics of planetary motion around the Sun, one comes across the problem of

solving

d2u

dθ2
+ u = α(1+ εu2) for 0 < θ <∞,

where u(0) = 1 and u′(0) = 0. Here θ is the angular coordinate in the orbital plane, u(θ) = 1/r ,

where r is the normalized radial distance of the planet from the Sun, and α is a positive constant. Note

that if ε = 0 then one obtains the Newtonian description.

a) Find a first-term approximation of the solution that is valid for large θ .

b) Using the results of part (a), find a two-term expansion of the angle 1θ between successive peri-

helions, that is, the angel between successive maxima in u(θ).

c) The parameters in the equation are

ε = 3
( h

crc

)2

, α = rc

a(1− e2)
,

where h is the angular momentum of the planet per unit mass, rc is a characteristic orbital distance,

c is the speed of light, a is the semi-major axis of the elliptic orbit, and e is the eccentricity of the

orbit.

For the planet Mercury, h/c = 9.05 · 103 km, rc = a = 57.91 · 106 km, and e = 0.20563

(Nobili and Will, 1986). It has been observed that the precession of Mercury’s perihelion, defined

as 1φ = 1θ − 2π , after a terrestrial century is 43.11′′ ± 0.45′′ (note that Mercury orbits the sun

in 0.24085 years). How does this compare with your theoretical result in (b)?

The problem is classic, and formed one of the famous experimental evidences of Einstein’s theory of

relativity. Make sure to do the deceivingly trivial calculations correctly. The results will agree!
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7.2.5 Weakly nonlinear advection-diffusion

Consider the following advection problem with weak diffusion:

∂u

∂t
+ ∂u

∂x
= ε ∂

2u

∂x2
, for −∞ < x <∞, 0 < t,

where u(x, 0) = f (x). Using multiple scales, find a first-term approximation of the solution that is

valid for large t . Assume (and use) the fact that f is Fourier transformable:

f̂ (α) =
∫ ∞

−∞
f (x) eiαx dx, f (x) = 1

2π

∫ ∞

−∞
f̂ (α) e−iαx dα.

Apply the formal result to

f (x) = e−
1
2

x2

, f̂ (α) =
√

2π e−
1
2
α2

.

7.2.6 Golden Ten: an application of multiple scales

Golden Ten [35] is a modified version of Roulette, played with a small ball moving in a relatively large

conical bowl. At the end of the game the ball falls in one of 26 numbered compartments placed along

the number ring. In contrast to Roulette, Golden Ten is a so-called observation game: the players have

to stake only after the ball has reached a certain level at the bowl. It is claimed that the possibility to

observe a part of the orbit of the ball enables the player to make a better than random guess on the

outcome.

er

ez

R

O

g

r

α

sphere (radius a)

Figure 7.3: The Golden Ten bowl; cross-sectional view

To construct a mechanical model (equations of motion) for the motion of the ball the following basic

assumptions are made:

i) the ball is a homogeneous sphere (mass m, radius a);

ii) the bowl is rotationally symmetric and purely horizontal (angle of inclination: α);
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iii) the ball rolls without slipping (the surface of the bowl is rather smooth, but rough enough to

prevent the ball from slipping);

iv) the motion of the ball is completely deterministic (of course, in reality there are, inevitably, ran-

dom effects, but they are not taken into account in our mechanical model);

v) the ball is launched along a vertical rim (radius Rrim) at the top of the bowl (after rolling a few

laps alongside the rim the ball smoothly leaves the rim, and gradually spirals down the bowl).

b

er
eϕ ϕ

v

Figure 7.4: Top-view of the bowl with moving sphere

A frame {Oe1e2e3}, moving with the ball, is introduced as shown in Fig. 7.4. The origin O is fixed

in the apex of the bowl, but the frame rotates with angular velocity
.
ϕ about a vertical axis through O,

such that the point of contact P between ball and bowl is always on the e1-axis (distance O P = r).

Hence, the angular velocity of the frame is

� = .
ϕ sinαe1+

.
ϕ cos αe3 , (7.15)

(note that
.
ei= �× ei ) and the position vector of the centre o of the ball is

xo = re1 + ae3 . (7.16)

For later use, we introduce the distance R from o to the vertical through O, i.e.

R = r cos α − a sin α . (7.17)

The velocity vo =
.
xo and the acceleration ao =

.
vo=

..
xo of o can now be expressed in the variables R

and ϕ and their derivatives (all further details of the derivations are omitted here).

The angular velocity ω of the ball must be derived from the condition that the ball rolls, implying that

the velocity of the point P of the ball that is momentarily in contact with the bowl must be zero. This

yields

ω = − R
.
ϕ

a
e1 +

.
R

a cos α
e2+

.
ψ e3 , (7.18)

114 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

where
.
ψ= (ω, e3) is the so-called spin. So the ball rolls in e1-(radially, downwards) and e2-(tangential)

direction and spins about the normal on the drum surface.

The equations of motion for the ball follow from the law of momentum and the law of moment of

momentum (Newton-Euler equations), reading

.
p= m

..
xo= F, and

.
D= I

.
ω= Mo , (7.19)

where I = 2
5
ma2, the central moment of inertia of the ball. Furthermore, F and Mo are the total force

and the total moment about o on the ball, respectively.

Four distinct forces act on the ball:

i) the gravitational force in o

Fg = −mg sinαe1 − mg cos αe3 ; (7.20)

ii) the resistive force in o due to air friction (a linear air resistance model is chosen here, so the

coefficient f is constant)

Fa = −m f vo , (7.21)

(the coefficient of resistivity is written as: m f for convenience);

iii) the normal force in P

Fn = Ne3, (N > 0) ; (7.22)

iv) the frictional force in P due to dry friction

Fd = D1e1 + D2e2 ; (7.23)

(here: N , D1 and D2 are unknown).

Note that of these four forces only Fd contributes to Mo by a moment equal to

Md = (−ae3 × Fd) = aD2e1 − aD1e2 .

We neglect resistive moments due to rolling and spinning of the ball. Thus,

F = Fg + Fa + Fn + Fd, Mo = Md .

With use of the preceding results in the Newton-Euler equations (7.19) and after the elimination of

the unknowns N , D1 and D2, the following three equations of motion for R(t), ϕ(t) and ψ(t) emerge

..
R = − 5

7
f

.
R +R

.
ϕ

2
cos2 α + 2

7
a

.
ϕ

.
ψ sinα cos α − 5

7
g cos α sinα , (7.24a)

..
ϕ = − 5

7
f

.
ϕ − 2

R

.
R

.
ϕ , (7.24b)

..
ψ = −1

a

.
R

.
ϕ tanα . (7.24c)
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For the initial conditions we assume that the ball rolls along the rim for t < 0, and looses contact with

the rim at t = 0 (smoothly). When the ball rolls along the rim, as well as on the bowl, the following

relation must hold

a
.
ψ cos α + R

.
ϕ (1− sinα) = 0 , (for t 6 0) . (7.25)

At the moment of loosening t = 0 there is no force acting between the ball and the rim. Hence, at

t = 0 it is as if the ball moves, momentarily, in a circular orbit with

R = R0 = Rrim − a,
.
R=

..
R= 0,

.
ϕ= ωo,

.
ψ= �0 ,

with ω0 and �0 still unknown.

From these considerations the following set of initial conditions can be derived (the details are left to

the student)

R(0) = R0 = Rrim − a,
.
R (0) = 0 ,

ϕ(0) = 0,
.
ϕ (0) = ω0 =

√
5g sin α

R0(7 cos α − 2(1− sinα) tanα)
,

.
ψ (0) = �0 = −

R0ω0

a cos α
(1− cos α) .

(7.26)

Here, ϕ(0) is arbitrarily chosen zero, because only the relative difference (ϕ(t)− ϕ(0)) is relevant.

With (7.24) and (7.26) the motion of the ball is completely described. These equations can not be

solved analytically; only by numerical integration R(t), ϕ(t) and ψ(t) can be determined. Here, we

shall try to find some asymptotic results: one for the total path of the ball from the rim to the number

ring and a more local one, restricted to one orbit (“ellipse”) of the ball around the vertical axis.

parameter value unit parameter value unit

m 0.0383 kg a 0.0175 m

Rrim 0.487 m R0 0.469 m

Rnum 0.205 m α 0.0831 rad

g 9.81 m/sec2 f 0.014 sec−1

total time for one game t f ≈ 116 sec

Table 7.1: Numerical values for parameters of Golden Ten.

Normalization of the equations of motion

If f = 0 (no air resistance) the equations of motion (7.24) permit the following two first integrals:

R2
.
ϕ= C1 = R2

0ω0 , (7.27)

and

a
.
ψ −R

.
ϕ tanα = C2 =

R0ω0

cos α
, (7.28)
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(both are examples of conservation of moment of momentum, the first being Kepler’s law; also the

total mechanical energy is conserved, but we shall not use this here).

We should note that if f is positive but small, the changes in the functions introduced in the left-hand

sides of (7.27) and (7.28) will be small too. Therefore, we introduce the new variables

y1(t) =
R2

.
ϕ

R2
0ω0

, y2(t) =
−a

.
ψ cos α + R

.
ϕ sinα

R0ω0

, y3(t) =
R(t)

R0

. (7.29)

In observations of the real motion of the ball (i.e. in playing Golden Ten) the angle ϕ is the more

natural variable compared to the time t . Therefore, let us replace the variable t by ϕ, by use of

d

dt
= .
ϕ

d

dϕ
= ω0

u2

v

d

dϕ
, (7.30)

where

u(ϕ) = 1

y3

, and v(ϕ) = 1

y1

. (7.31)

Finally, we call y2 = w(ϕ), and we introduce the new dimensionless parameters (which both are small

according to Table 7.1)

ε = 5 f

7ω0

, δ = sinα . (7.32)

With all this (and with g sinα cos α = ω2 R0(7 − 2 sin α − 5 sin2 α)/5) the system (7.24)-(7.26) can

be rewritten as

dv

dϕ
= ε v

2

u2
,

dw

dϕ
= −δε 1

u
,

d2u

dϕ2
= −(1− 5

7
δ2)u + (1− 2

7
δ − 5

7
δ2)
v2

u2
+ 2

7
δvw ,

u(0) = v(0) = w(0) = 1,
du

dϕ
(0) = 0 .

(7.33)

In this form the system is adequate for asymptotics. However, in order to keep the now following two

exercises manageable (and only for that reason!) we shall neglect in (7.33) all terms containing δ. This

results in the following reduced system, in which also the influence of the spin, represented by w(ϕ),

is disappeared,

dv

dϕ
= ε v

2

u2
, v(0) = 1 ,

d2u

dϕ2
+ u − v

2

u2
= 0, u(0) = 1,

du

dϕ
(0) = 0 .

(7.34)

Although this system is a (too) strong simplification of (7.33), we will see that it still contains most of

the characteristic features of the motion of the ball in the bowl.

Solve the above system of equations by a multiple scales analysis (to leading orders only).
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7.2.7 Modal sound propagation in slowly varying ducts

Consider the problem of sound propagation in a cylindrical duct of slowly varying cross section and

slowly varying sound speed. The radius is given by r = R(εx), and the sound speed is given by

c0 = c0(εx).

Note that sound speed c0, mean pressure p0 and mean density ρ0 are related by ρ0c2
0 = 1.4 · p0 (in air).

The mean pressure is under usual atmospheric circumstances constant. Therefore, the mean density is

also slowly varying.

The walls of the duct are soft and sound absorbing, as the wall is an impedance wall, also with (in axial

direction) slowly varying impedance. We consider sound waves of a fixed frequency ω and rewrite the

sound pressure by introducing the complex pressure p as

physical sound pressure = Re(p(x, r, ϑ) eiωt ).

The modified reduced wave equation for p is

∇·(c2
0∇ p

)
+ ω2 p = 0.

The impedance boundary condition is (rewritten to the pressure)

(
∇ p· En) = − iωρ0

Z
p at r = R

with Z = Z(εx) the complex impedance of the wall, and the normal vector is given by

En = Eer − εR′Eex√
1+ ε2 R′2

It is convenient to introduce the slowly varying function ζ = −iωρ0/Z .

i) Observe that for a straight duct with uniform mean flow and walls (ε = 0) the sound field can be

written as a sum over modes, given by

ψmµ = Jm(αmµr) e−imϑ e−ikmµx

where m and αmµ are so-called eigenvalues (they are eigenvalues of the transverse Laplace prob-

lem, but this is not important here). m is an integer, while αmµ satisfies α J ′m(αR) = ζ Jm(αR).

The axial wave number kmµ can be expressed in ω/c0 and αmµ.

ii) Consider now the multiple scales problem for small ε of a slowly varying mode propagating

through the duct. Determine analogous to the example in the SIAM book the shape of such a

quasi-ductmode to leading order.

Eventually, the following integral of Bessel functions can be used:

∫
Jm(αr)2r dr = 1

2

(
r2 − m2

α2

)
Jm(αr)2 + 1

2
r2 J ′m(αr)2.
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7.2.8 A nearly resonant weakly nonlinear forced harmonic oscillator

Consider the system governed by the equation of motion

y′′ + y + αy3 = ε3/2 cosωt.

We are interested in the stationary solution due to the driving force, so initial conditions are not

important and solutions of the homogeneous equation are ignored. Find, asymptotically for ε→0 and

α = O(1), the solution up to second order.

a) for ω2 = 1+ O(1), i.e. away from resonance;

b) for ω2 = 1+ εµ, i.e. near resonance.

Hint: For part (b), introduce the variable τ = ωt and use similar techniques as encountered with the

method of multiple scales and Lindstedt-Poincaré.

7.2.9 A non-linear beam with small forcing

The equation of a non-linear beam with a small forcing is

∂4

∂x4
u − κ ∂

2

∂x2
u + ∂2

∂t2
u = f (t) sin(πx)

for 0 < x < 1 and t > 0, where u = ∂2

∂x2 u = 0 at x = 0, x = 1. The (time dependent)

coefficient κ is defined by

κ = 1

4

∫ 1

0

( ∂
∂x

u
)2

dx .

Assume u(x, t, ε) = U (t, ε) sin(πx).

a) Find the first-term of an asymptotic expansion for small ε of the solution for f (t) = ε sin(t). We

do not apply any initial conditions but assume that the solution consists only of the part that is

driven by the source f (t).

b) Using again f (t) = ε sin(t), solve as multiple scales problem the first two terms of an expansion

of the solution, satisfying the initial conditions u(x, 0) = ∂
∂t

u(x, 0) = 0.

Hint: note that any combination of the type sin(π2t) sin(t) = 1
2

cos(π2 − 1)t − 1
2

cos(π2 + 1)t

will never be in resonance with vibrations of a frequency of any multiple of π2 because π2 is an

irrational number.

c) If we take for the driving force f (t) = ε
3
2 sin(π2 + ω0ε)t , find the first-term of an asymptotic

expansion of the solution that valid for large t . The general solution of the slow variable problem

is difficult to find. Consider only stationary solutions. Can you determine the type of stability of

these stationary points?
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7.2.10 Acoustic rays in a medium with a varying sound speed

Show that acoustic rays follow circular paths if the sound speed varies linearly in space:

(a) Rewrite the eikonal equation (♯) of Example 15.37 in characteristic form by using Theorem (12.6).

(b) Prove that in a medium with a linearly varying sound speed the path of rays are circles.

Hint: make sure that the parameter s, along the curve x = ξ(s) that represents the ray, corresponds

with the curve arc length. In that case t = d
ds

ξ is the unit tangent vector and κ = d2

ds2 ξ is the curvature

vector. Assume that c0 varies linearly in direction n, i.e. c0 = q+α(x·n). Show that t×κ is constant,

and conclude that the torsion is zero and the curve lies in one plane. Show that |κ| is a constant, and

conclude that the curve is a circle.

7.2.11 Homogenisation as a Multiple Scales problem

Consider a slow flow (like groundwater) or diffusion of matter in a medium with a fine local structure,

of which the properties (porosity etc.) vary slowly on a larger scale. Usually we are eventually inter-

ested in the large scale behaviour. In this case it makes sense to separate the small and large scales,

and see if the effect of the small scale behaviour can be represented by a large scale medium property,

by way of a local averaging process of the small scale medium properties. This approach is called

homogenisation, and can be considered as an application of the method of multiple scales.

Take the following model-problem of diffusion of a concentration u in a medium with a fast varying

property a, driven by a slowly varying external source f .

d

dx

(
1

a

d

dx
u

)
= f (x).

a varies quickly (in x/ε) with a slowly (in x) varying averaged value. For definiteness we will assume

a to be of a particular form. Introduce the slow variable Z = x and the fast variable z = x/ε, such

that Z = εz. Hence
d

dz

(
1

a(z, ε)

d

dz
u(z, ε)

)
= ε2 f (εz)

A more general theory is possible for a(z, ε) = α(Z)+ β(z, Z) such that

∫ z

0

β(τ, Z) dτ = integrable in z for z→∞.

For the moment we start with assuming α is constant and β = β(z). Assume the existence of the

regular (= uniform Poincaré) asymptotic expansion in the independent variables z and Z

u(z, ε) = U (z, Z , ε) = U0(z, Z)+ εU1(z, Z)+ ε2U2(z, Z)+ . . .

The crucial condition (a form of suppression of secular terms) is that regularity implies a uniform

asymptotic sequence of the terms, so U0,U1,U2, · · · = O(1) for Z 6 O(1) and z 6 O(1/ε).

Note: usually this is not uniform on an interval with boundary conditions. At the ends we will have

boundary layers x = O(ε). These will be ignored here.
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Derive the following homogenised equation in the slow variable only

U ′′0 (Z) = α f (Z).

Indicate how to proceed for higher orders.

7.2.12 The non-linear pendulum with slowly varying length

Consider a pendulum, moving in the (x, y)-plane, of a mass m that is connected to a hinge at (0, 0)

by an idealised massless rod of length L , which is varied slowly in time (slow compared to the typical

frequency of the fixed-length system). Denote by θ the angle between the rod and the vertical.

At time t the position (x, y), velocity (x ′, y′) and acceleration (x ′′, y′′) of the mass are given by

x = L sin θ, x ′ = Lθ ′ cos θ + L ′ sin θ, x ′′ = Lθ ′′ cos θ + 2L ′θ ′ cos θ − Lθ ′2 sin θ + L ′′ sin θ,

y = −L cos θ, y′ = Lθ ′ sin θ − L ′ cos θ, y′′ = Lθ ′′ sin θ + 2L ′θ ′ sin θ + Lθ ′2 cos θ − L ′′ cos θ.

The balancing forces are then inertia, equal to m times the acceleration, gravity gm in downward y-

direction, and a reaction force m R in the direction of the rod. If we regroup the forces in tangential

and longitudinal direction and divide by m, we obtain the equations

Lθ ′′ + 2L ′θ ′ + g sin θ = 0,

L ′′ − Lθ ′2 − g cos θ = R.

In the following we will try to find θ(t) as a function of time when L(t) is given, i.e. the first equation.

Note that reaction force R(t) then follows straightaway and is not part of the problem.

a) Assume that L is of the order of some L0, θ is of the order of
√
ε, where small parameter ε is

equal to the ratio between the inherent time scale of the pendulum
√

L0/g and the inherent time

scale (say, λ) of the variations of L . In other words:

L := L
( t

λ

)
, ε =

√
L0/g

λ

Make the problem dimensionless, scale the variables in an appropriate way, and expand the equa-

tions up to and including terms of O(θ3).

b) Solve for θ = θ(t) asymptotically for small ε by the WKB method.

Note: don’t use the WKB-Ansatz given in equation (7.10) on page 107, because the problem is

not linear. Apply Multiple Scales with a slowly varying fast time scale.

7.2.13 Asymptotic behaviour of solutions of Bessel’s equation

The equation

y′′ + 1

r
y′ +

(
α2 − m2

r2

)
y = 0

has solutions in the form of Besselfunctions of order m and argument αr .

Find asymptotic solutions of WKB-type for α→∞ and r = O(1) with r > m/α.

Consider (i) m2 = O(1), (ii) m2 = O(α) and (iii) m2 = O(α2).
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7.2.14 Kapitza’s Pendulum

Denote the vertical axis as y and the horizontal axis as x so that the

motion of the pendulum happens in the (x, y)-plane. The following

notation will be used: ω and A are the driving frequency and amplitude

of the vertical oscillations of the suspension, g is the acceleration of

gravity, L is the length of the rigid and light pendulum, m is the mass

of the bob and ω0 =
√

g/L is the frequency of the free pendulum.

Denoting the angle between pendulum and downward direction as φ,

the position x = ξ , y = η of the pendulum at time t is

A

Lφ

x

y

ξ(t) = L sinφ

η(t) = −L cosφ − A cosωt

The potential energy of the pendulum due to gravity is defined by its vertical position as

Epot = −mg(L cosφ + A cosωt)

The kinetic energy in addition to the standard term 1
2
mL2

.
φ2 describing the velocity of a mathematical

pendulum is the contribution due to the vibrations of the suspension

Ekin = 1
2
mL2

.
φ2 + m ALω sin(ωt) sin(φ)

.
φ + 1

2
m A2ω2 sin2(ωt)

The total energy is then E = Ekin+ Epot and the Lagrangian is L(t, φ,
.
φ ) = Epot− Ekin. The motion

of the pendulum satisfies the Euler-Lagrange equations

d

dt

∂L

∂
.
φ
= ∂L

∂φ

which is ..
φ= −L−1(g + Aω2 cosωt) sinφ.

Assume that the driving amplitude A is small compared to L and frequency ω is large compared to the

free frequency ω0, in such a way that Aω/Lω0 = O(1). We make this explicit by writing ε = ω0/ω

and A/L = εµ. If we rescale τ = ωt , we obtain

d2φ

dτ 2
= −(ε2 + εµ cos τ) sin φ.

From the structure of the equation we may infer that φ = φ(τ, T, ε) has a fast timescale τ and a

slow timescale T = ετ . Finish the analysis by assuming that φ can be written as the sum of a slowly

varying large part and a fast varying small part

φ(τ, T, ε) = φ0(T )+ εφ1(τ, T )+ ε2φ2(τ, T )+ . . .

Apply a consistency condition for φ2 being bounded for τ → ∞. Find an equation for φ0 and an

expression for φ1. Under what condition on µ are there two stationary solutions φ0? Try to analyse

the stability in φ0 = π , the inverted pendulum.
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7.2.15 Doppler effect of a moving sound source

The observed pitch of a moving sound source of frequency ω0 is higher if the source approaches the

observer and lower if it recedes from it. This frequency shift, called the Doppler effect, occurs if the

time scale of the tone ω−1
0 is much smaller than the time scale T of the motion, i.e. if ω0T ≫ 1.

a) Consider for smooth amplitude A and phase ω0Tφ the slowly varying, almost harmonic signal p

p(t) = A(t/T ) eiω0Tφ(t/T ), ω0T ≫ 1.

Its Short Time Fourier Transform (STFT) P is given by

P(ω; τ, σ ) =
∫ ∞

−∞
w(t − τ, σ )p(t) e−iωt dt,

where window function w(t, σ ) is a non-negative real function symmetric in t around 0, such that

it tends to zero fast enough outside of an interval of characteristic width σ . More precisely, we

will assume that w(t, σ )→ 1 for σ →∞ and w(σξ, σ )→ 0 for |ξ | → ∞.

Numerically convenient is the rectangular window w(t, σ ) = 1 for |t| 6 σ and = 0 elsewhere.

We will use here the analytically more convenient choice, that avoids high-frequent artefacts in P ,

of Gaussian window w(t, σ ) = e−t2/σ 2
, for which the STFT is called the Gabor transform.

The idea is that for small, but not too small σ we are able to filter out a time dependent Fourier-type

spectrum associated to the higher frequencies (∼ ω0) in signal p. In the present case, with a slow

time O(T ) of the amplitude and a fast time O(ω−1
0 ) of the phase, a suitable choice is σ = √T/ω0.

In order to single out in t the relevant σ -neighbourhood of τ we transform t = τ + σ z, where

z = O(1). Introduce the small parameter ε = (ω0T )−1 and make times t and τ dimensionless

on the short time scale. Obtain a form of p reminiscent of the WKB Ansatz for slowly varying

almost harmonic functions. Find a small-ε approximation of P , and understand whyω0φ
′ is indeed

sometimes called the instantaneous frequency.

b) If the sound field p(x, t) of a time-harmonic point source, of frequency ω0 and moving subsoni-

cally along the path x = xS(t), is given by the equation

c−2
0

∂2

∂t2 p −∇2 p = 4πq0 eiω0t δ(x − xS(t)),

then the solution in free field is given by the so-called Liénard-Wiechert potential

p(x, t) = q0 eiω0te

Re(1− Me cos θe)

where te = te(x, t) is the emission time. This is the time of emission of the signal that travelled

along a straight line with the sound speed c0 from the source in xS at time te to the observer in x

at time t . It is a function of x and t , implicitly given by the equation

t = te +
∥∥x − xS(te)

∥∥c−1
0 .

For subsonically moving sources, this equation has exactly one solution. Furthermore, the distance

(at emission time) Re between source and observer, the Mach number Me of the source speed, and
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the angle θe between the observer direction and the source velocity, are functions of te and given

by

Re =
∥∥x − xS(te)

∥∥, Me =
∥∥xS(te)

∥∥
c0

, cos θe =
(x − xS(te)) · .xS(te)∥∥x − xS(te)

∥∥∥∥ .
xS(te)

∥∥ .

Assuming that time variations due to the ω0 are much larger than those due to the varying source

position, what is the instantaneous frequency observed at position x and time τ?

7.2.16 Vibration modes in a slowly varying elastic beam

Small lateral deflections u(s, t) of a slender beam (a so-called Rayleigh beam) of density ρ, Young’s

modulus E , slowly varying cross sectional area A(s) and slowly varying moment of inertia I (s), is

described by the equation

ρA
∂2u

∂t2
− ρ ∂

∂s

(
I
∂3u

∂t2∂s

)
+ E

∂2

∂s2

(
I
∂2u

∂s2

)
= 0.

Assume for convenience a beam with A(s) = D(s)2 and I (s) = D(s)4.

a) Consider a straight bar, i.e. a configuration without slowly varying geometry. Investigate the pos-

sible harmonic waves u(s, t) = U eiωt−iks . What is k, for given ω?

b) Consider the varying bar. Assume a frequency ω such, that the typical corresponding real wave

length is of the order of magnitude of a diameter. Verify that this corresponds with k D0 = O(1)

and ω2 = O(E/ρD2
0).

Derive the differential equation for waves of the form u(s, t) = U (s) eiωt along the beam. Make the

problem dimensionless on ρ, E and a typical diameter D0. Write s = D0z, A = D2
0a, I = D4

0a2.

c) In axial direction, the beam parameters vary with length scale L which is much longer than D0.

Introduce the slenderness ε = D0/L ≪ 1. We have thus the slowly varying a = a(εz). Find a

WKB approximation of U (z) = 8(εz) exp
(
iε−1

∫ εz
κ(ξ)dξ

)
.

7.2.17 An aging spring

A mass M = M(t) is attached to a spring, with spring coefficient K = K (t). The position u = u(t)

is given by the equation

(Mu′)′ + Ku = 0

a) Assume that M = M0 is constant and the spring is slowly aging according to K (t) = K0 e−αt .

Make t dimensionless on the inherent time scale T of the oscillator when t ≈ 0. In order to

concretise the (relative !) slowness of the aging, we assume that T is much smaller than 1/α and

introduce the small parameter ε = αT . Solve the resulting equation asymptotically for ε→ 0 by

using the WKB method.

b) The same question for a constant spring coefficient K = K0 and a mass, slowly decaying accord-

ing to M(t) = M0 e−αt .
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Chapter 8

Some Mathematical Auxiliaries

8.1 Phase plane

Phase portrait and phase plots

A differentiable function φ(t), defined on some (not necessarily finite) interval t ∈ [a, b], can be

portrayed by the parametric curve (x, y) in R
2, where x = φ(t) and y = φ′(t). This curve is called a

phase portrait or phase plot of φ, and the (φ, φ′)-plane is called a phase plane.

Phase plots are particularly useful if φ is defined by a differential equation from which relations

between φ and φ′ can be obtained, but exact solutions are not or not easily found.

Important examples are

φ(t) = A cos(ωt), φ′(t) = −ωA sin(ωt), with ω2φ2 + φ′2 = ω2 A2,

leading to an ellipse as phase plot. A variant is

φ(t) = A e−ct cos(ωt), φ′(t) =
√
(ω2 + c2) A e−ct sin(ωt − arctan(ω/c)− 1

2
π)

leading to an elliptic spiral, converging to the origin if c > 0 and diverging to infinity if c < 0.

Phase plot to illustrate the solutions of differential equation

A differential equation like the harmonic equation

y′′ + ω2y = 0

is simple enough to be solved exactly by y(t) = A cos(ωt)+B sin(ωt), leading to periodic (circular or

elliptic) phase plots (see above). More difficult, in particular nonlinear, differential equations cannot be

solved exactly, and solutions have to be found (in general) numerically. The plot of a single solution,

however, does not tell us much about the whole family of all possible solutions. In such a case it is

instructive to create a phase plot. Take for example the Van der Pol equation

y′′ + y − ε(1− y2)y′ = 0.
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Figure 8.1: Elliptic (periodic) and spiral (damped) phase plots.

For small enough ‖(y, y′)‖, the nonlinear term is on average negative and acts as a source leading to

an increase. For large enough ‖(y, y′)‖, the nonlinear term is on average positive and acts as a sink

leading to a decay. From outside inwards and from inside outwards, these solutions converge to a

periodic solution with (for small ε) an amplitude of about 2.
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Figure 8.2: A phase plot of the Van der Pol equation, with ε = 0.1 and solutions starting form y′ = 0

with y = 1 (red) and y = 3 (blue), respectively.
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Stability of stationary solutions

One of the most important applications of the phase plot is the stability analysis of stationary solutions

of 2nd order autonomous ordinary differential equations. Consider the equation

y′′ = F(y, y′),

then we can rewrite this as a system by identifying x1 = y and x2 = y′ with

d

dt


x1

x2


 =


 x2

F(x1, x2)


 .

If the system has stationary solutions, they satisfy x2 = 0 and F(x1, 0) = 0. Assume a stationary

solution (x1, x2) = (X0, 0). Consider perturbation around it of the form x1 = X0 + ξ , x2 = η, where

‖(ξ, η)‖ is small. Then after linearisation

F(x1, x2) = aξ + bη + . . . , a = ∂

∂x
F(X0, 0), b = ∂

∂y
F(X0, 0),

we have
d

dt


ξ
η


 =


 η

aξ + bη


+ · · · =


0 1

a b




ξ
η


+ . . .

The matrix has (possibly complex) eigenvalues

λ1,2 = 1
2
b ±

√
a + 1

4
b2.

The solutions of the linearised system are typically a linear combination of eλ1t and eλ2t . Depending

on the signs of λ1,2, this results in local behaviour in the phase plane of ellipses (neutrally stable),

converging spirals (stable) or diverging spirals (unstable).

Van der Pol’s transformation

An interesting class of problems is the nonlinear oscillator

y′′ + k2 y + εy′g(y, y′) = 0.

With g(y, y′) = y2 − 1 is the Van der Pol equation a famous example. After transformation t := kt

and x1 = y, x2 = y′ we have

.
x1 = x2

.
x2 = −x1 − εx2 g(x1, x2).

Considerable progress can be made if we write the solution in polar coordinates of the phase plane:

x1 = r sin ϕ, x2 = r cos ϕ.

This leads to

.
r sin ϕ + r

.
ϕ cos ϕ = r cos ϕ

.
r cos ϕ − r

.
ϕ sin ϕ = −r sin ϕ − εr cos ϕ g̃(r, ϕ).
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After eliminating r and ϕ we have

.
r = −εr cos2 ϕ g̃(r, ϕ)
.
ϕ = 1+ ε sin ϕ cos ϕ g̃(r, ϕ).

Since εr cos2 ϕ > 0, the growth (
.
r> 0) or decay (

.
r< 0) of the solution depends entirely on the sign

of g̃. A consequence is that if g̃ is positive for large r and negative for small r (like the Van der Pol

equation), the expanding and contracting phase plots, not being able to cross each other, have to result

in (at least) one closed contour (a so-called limit cycle), i.e. a periodic solution.

8.2 Newton’s equation

An interesting equation that we encounter rather often is Newton’s equation

y′′ + V ′(y) = 0, y(0) = y0, y′(0) = y1,

where V (in mechanical context a potential) is a sufficiently smooth given function of y. The interest-

ing aspect is that the equation does not depend on y′ and therefore can be integrated to

1
2
(y′)2 + V (y) = E = 1

2
y2

1 + V (y0),

with integration constant E . In mechanical context this relation amounts to conservation of total en-

ergy E , being the sum of kinetic energy 1
2
(y′)2 and potential energy V (y).

Note that this relation between y and y′ is sufficient to construct phase plots for various values of E .

For those values of E , where these phase plots correspond to closed curves, we know in advance that

the corresponding solutions are periodic, which is important information.

We can eliminate y′ and obtain

y′ = ±
√

2
√

E − V (y).

Furthermore, we can even determine y implicitly formally

∫ y

y0

1√
E − V (s)

ds = ±
√

2 t

and with some luck we can integrate this integral explicitly. Note that a full integration may depend

on the value of E .

A simple but important example is

y′′ + k2 y = 0

with ellipses in the phase plane described by

1
2
(y′)2 + 1

2
k2 y2 = E = 1

2
y2

1 + 1
2
k2 y2

0

leading to
∫ y

y0

1√
E − 1

2
k2s2

ds =
√

2

k
arcsin

(
ks√
2E

)∣∣∣∣∣

y

y0

= ±
√

2 t.
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The integral describes one period (+ for one half and− for another half), that can be extended. Hence

we obtain the expected y = y0 cos(kt)+ y1k−1 sin(kt).

Another, less trivial example is

y′′ + y − y3 = 0

with
1
2
(y′)2 + 1

2
y2 − 1

4
y4 = E .

Elementary analysis (check when the zero’s of E − x + x2 are positive and real) reveals that this

relation yields in the phase plane closed curves around the origin if 0 < E 6 1
4
. Hence, there are

periodic solutions for those values of E .

8.3 Normal vectors of level surfaces

A convenient way to describe a smooth surface S is by means of a suitable smooth function S(x),

where x = (x, y, z), chosen such that the level surface S(x) = 0 coincides with S. So S(x) = 0 if

and only if x ∈ S. (Example: x2 + y2 + z2 − R2 = 0 for a sphere; z − h(x, y) = 0 for a landscape.)

Then for closely located points x, x + h ∈ S we have

S(x + h) = S(x)+ h·∇S(x)+ O(h2) ≃ h·∇S(x) = 0.

Since h is (for h → 0) a tangent vector of S, it follows that ∇S at S = 0 is a normal of S (provided

∇S 6= 0). We write n ∼ ∇S
∣∣

S=0
.
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8.4 A Systematic derivation of the Korteweg-de Vries Equation

Introduction

The Korteweg-de Vries equation describes weakly nonlinear, weakly dispersive long water waves, i.e.

surface waves with gravity as the restoring force on a inviscid, incompressible, irrotational steady

mean flow with negligible surface tension and a constant horizontal bottom.

The derivation of the equation is not trivial and the number of assumptions is quite large. In most

derivations given in the literature these assumptions are not all or not explicitly given.

The problem

Consider the two-dimensional space −∞ < x < ∞ and 0 < y < h + η(x, t) filled with water with

velocity v = ∇φ, constant density ρ0, pressure p and water surface y = h + η. The dynamics of the

water is given by the equations

φx x + φyy = 0 (8.1)

ρ0φt + 1
2
ρ0

(
φ2

x + φ2
y

)
+ p + ρ0gy = C(t) (8.2)

and boundary conditions

φy = 0 at y = 0 (8.3)

p = p0 at y = h + η (8.4)

φy = ηxφx + ηt at y = h + η (8.5)

where p0 is the assumed constant atmospheric pressure above the water surface.

Equation (8.1) results from mass conservation; equation (8.2) is Bernoulli’s equation or integrated

momentum equation with arbitrary integration constant C(t), which will be chosen here equal to

p0 + ρ0gh; condition (8.3) describes the hard walled bottom; condition (8.4) describes the conti-

nuity of pressure across the water surface; condition (8.5) describes the fact that the water surface

is a streamline. This last equation can be derived as follows. Assume a water particle with position

(x, y) = (X (t),Y (t)) following the surface streamline, and thus satisfying

Y (t) = h + η(X (t), t). (8.6)

Then condition (8.5) follows by differentiation and noting that

v(X (t),Y (t)) =
(

dX

dt
,

dY

dt

)
. (8.7)

Anticipating a smooth solution and relatively small perturbations, we expand the conditions at y =
h + η around η = 0 and convert them into conditions at y = h:

φy + ηφyy + 1
2
η2φyyy + · · · = ηxφx + ηηxφxy + · · · + ηt (8.8)

φt + ηφt y + 1
2
η2φt yy + · · · + 1

2
φ2

x + ηφxφxy + 1
2
η2
(
φ2

xy + φxφxyy

)
+ . . .

+ 1
2
φ2

y + ηφyφyy + 1
2
η2
(
φ2

yy + φyφyyy

)
+ · · · + gη = 0. (8.9)
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Scaling and non-dimensionalisation

Assume that the typical length scale in x-direction of the waves to be considered is L , and the typical

amplitude of the perturbed surface is a. Assume that a is small compared to water depth h, and h is

small compared to L , in such a way that aL2/h3 = O(1). In other words, if we introduce the small

parameters

ε = a

h
, δ =

(
h

L

)2

(8.10)

it is assumed that ε/δ = O(1).

We further assume that variation of φ in y scale on h. By trial and error it appears that typical variations

in time scale on

T = L√
gh

(8.11)

for the waves considered. With the above considerations we scale our variables to dimensionless form

φ := agTφ, η := aη, x := Lx, y := hy, t := T t (8.12)

as follows. First we have the boundary conditions at y = 1.

φy + εηφyy + 1
2
ε2η2φyyy + · · · = εδηxφx + · · · + δηt (8.13)

φt + εηφt y + 1
2
ε2η2φt yy + · · · + 1

2
εφ2

x + ε2ηφxφxy + 1
2
ε3η2

(
φ2

xy + φxφxyy

)
+ . . .

+ 1
2
εδ−1φ2

y + ε2δ−1ηφyφyy + 1
2
ε3δ−1η2

(
φ2

yy + φyφyyy

)
+ · · · + η = 0. (8.14)

Then we have the equation in −∞ < x <∞, 0 < y < 1

δφx x + φyy = 0 (8.15)

with boundary condition at y = 0

φy = 0. (8.16)

Asymptotic analysis

If we substitute the expansion

φ = φ0 + δφ1 + δ2φ2 + . . . (8.17)

we get

φ0,yy + δ(φ0,x x + φ1,yy)+ δ2(φ1,x x + φ2,yy)+ · · · = 0 (8.18)

With the hard-wall boundary condition this results into

φ0 = ψ(x, t) (8.19)

φ1 = A1(x, t) − 1
2

y2ψx x(x, t) (8.20)

φ2 = A2(x, t) − 1
2

y2 A1,x x + 1
24

y4ψx x x x(x, t) (8.21)

Substitute these results together with the expansion

η = η0 + δη1 + δ2η2 + . . . (8.22)

131 09-02-2018



2MMA30 - STORINGSMETHODEN EN MODELLEREN - LENTE 2018

into (8.13) and (8.14), then we obtain to leading orders

−ψx x − δA1,x x + 1
6
δψx x x x − εη0ψx x = εη0,xψx + η0,t + δη1,t (8.23)

ψt + δA1,t − 1
2
δψx xt + 1

2
εψ2

x + η0 + δη1 = 0. (8.24)

For notational convenience we introduce

w(x, t) = ψ(x, t)+ δA1(x, t), ζ(x, t) = η0(x, t) + δη1(x, t). (8.25)

Then we have to the same order of accuracy

ζt + wx x = 1
6
δwx x x x − εζwx x − εζxwx, (8.26)

ζ + wt = 1
2
δwx xt − 1

2
εw2

x . (8.27)

Further assumptions

It is easily verified that to leading order both ζ and w satisfy the wave equation

ζt t − ζx x = 0, wt t − wx x = 0 (8.28)

with solutions any linear combination of right running wave F(x−t) and a left running wave G(x+t).

For the nonlinear problem this is not productive because we look for slow modulations on a right or

left running wave, whereas a combination would produce kinematically non-essential fast variations.

So we limit ourselves to solutions of the form

ζ := ζ(z, τ ), w := w(z, τ ), where z := x − t, τ := δt, (8.29)

We obtain to the same order of accuracy

−ζz + δζτ + wzz = 1
6
δwzzzz − εζwzz − εζzwz, (8.30)

ζ − wz + δwτ = − 1
2
δwzzz − 1

2
εw2

z . (8.31)

Getting the equation

From (8.31) we have

wz = ζ + δwτ + 1
2
δwzzz + 1

2
εw2

z (8.32)

If we substitute this expression for wz into (8.30)

− ζz + δζτ + ζz + δwzτ + 1
2
δwzzzz + εwzwzz = 1

6
δwzzzz − εζwzz − εζzwz (8.33)

or

ζτ + wzτ + 1
3
wzzzz + εδ−1

(
wzwzz + ζwzz + ζzwz

)
= 0 (8.34)

and again use wz = ζ + . . . , we can eliminate w completely from the equation and obtain to the same

order of accuracy

ζτ + 1
6
ζzzz + 3

2
εδ−1ζ ζz = 0 (8.35)

which is (a version of) the celebrated Korteweg-de Vries equation. If we like clean equations, we can

transform in various ways

ζ(z, τ ) = λσ(αz, βτ) (8.36)

(for example λ = 1
9
δε−1, α = 1, β = 1

6
) to get

σ2 + σ111 + σσ1 = 0 (8.37)
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8.5 Trigonometric relations

The real or imaginary parts of the binomial series (eix ± e−ix)n = ∑n
k=0(±)k

(
n

k

)
ei(n−2k)x easily yield

trigonometric relations, useful for recognising resonance terms:

sin2x = 1
2
(1− cos 2x), sin3x = 1

4
(3 sin x − sin 3x),

sin x cos x = 1
2

sin 2x, sin2x cos x = 1
4
(cos x − cos 3x),

cos2x = 1
2
(1+ cos 2x), sin x cos2x = 1

4
(sin x + sin 3x),

cos3x = 1
4
(3 cos x + cos 3x),

sin4x = 1
8
(3− 4 cos 2x + cos 4x), sin5x = 1

16
(10 sin x − 5 sin 3x + sin 5x),

sin3x cos x = 1
8
(2 sin 2x − sin 4x), sin4x cos x = 1

16
(2 cos x − 3 cos 3x + cos 5x),

sin2x cos2x = 1
8
(1− cos 4x), sin3x cos2x = 1

16
(2 sin x + sin 3x − sin 5x),

sin x cos3x = 1
8
(2 sin 2x + sin 4x), sin2x cos3x = 1

16
(2 cos x − cos 3x − cos 5x),

cos4x = 1
8
(3+ 4 cos 2x + cos 4x), sin x cos4x = 1

16
(2 sin x + 3 sin 3x + sin 5x),

cos5x = 1
16
(10 cos x + 5 cos 3x + cos 5x).

Another way to understand these relations is as (finite) Fourier series expansions of the 2π -periodic

functions at the left hand side. In particular

f (x) =
∞∑

n=0

an cos(nx)+ bn sin(nx)

where

a0 =
1

2π

∫ 2π

0

f (x) dx, an =
1

π

∫ 2π

0

f (x) cos(nx) dx, bn =
1

π

∫ 2π

0

f (x) sin(nx) dx .
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8.6 Units, dimensions and dimensionless numbers

Basic units

Name Symbol Physical quantity Unit

meter m length m

kilogram kg mass kg

second s time s

ampere A electric current A

kelvin K temperature K

candela cd luminous intensity cd

mole mol amount of substance 1

hertz Hz frequency 1/s

newton N force, weight kg m/s2

pascal Pa pressure, stress N/m2

joule J energy, work, heat N m

watt W power J/s

radian rad planar angle 1

steradian sr solid angle 1

coulomb C electric charge A s

volt V electric potential kg m2/s3A

ohm � electric resistance kg m2/s3A2

siemens S electric conductance 1/�

lumen lm luminous flux cd sr

lux lx illuminance lm/m2
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Basic variables

Quantity Relation Unit Dimensions

stress force/area N/m2 = Pa kg m−1 s−2

pressure force/area N/m2 = Pa kg m−1 s−2

Young’s modulus stress/strain N/m2 = Pa kg m−1 s−2

Lamé parameters λ and µ stress/strain N/m2 = Pa kg m−1 s−2

strain displacement/length 1 1

Poisson’s ratio transverse strain/axial strain 1 1

density mass/volume kg/m3 kg m−3

velocity length/time m/s m s−1

acceleration velocity/time m/s2 m s−2

(linear) momentum mass × velocity kg m/s kg m s−1

force momentum/time N kg m s−2

impulse force × time N s kg m s−1

angular momentum distance × mass × velocity kg m2/s kg m2 s−1

moment (of a force) distance × force N m kg m2 s−2

work force × distance N m = J kg m2 s−2

heat work J kg m2 s−2

energy work N m = J kg m2 s−2

power work/time, energy/time J/s =W kg m2 s−3

heat flux heat rate/area W/m2 kg s−3

heat capacity heat change/temperature change J/K kg m2 s−2 K−1

specific heat capacity heat capacity/unit mass J/K kg m2 s−2 K−1

thermal conductivity heat flux/temperature gradient W/m K kg m s−3 K−1

dynamic viscosity shear stress/velocity gradient kg/m s kg m−1 s−1

kinematic viscosity dynamic viscosity/density m2/s m2 s−1

surface tension force/length N/m kg s−2
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Dimensionless numbers

Name Symbol Definition Description

Archimedes Ar g1ρL3/ρν2 particles, drops or bubbles

Arrhenius Arr E/RT chemical reactions

Biot Bi hL/κ heat transfer at surface of body

Biot Bi h D L/D mass transfer

Bodenstein Bo V L/Dax mass transfer with axial dispersion

Bond Bo ρgL2/σ gravity against surface tension

Capillary Ca µV/σ viscous forces against surface tension

Dean De (V L/ν)(L/2r)1/2 flow in curved channels

Eckert Ec V 2/CP1T kinetic energy against enthalpy difference

Euler Eu 1p/ρV 2 pressure resistance

Fourier Fo αt/L2 heat conduction

Fourier Fo Dt/L2 diffusion

Froude Fr V/(gL)1/2 gravity waves

Galileo Ga gL3ρ2/µ2 gravity against viscous forces

Grashof Gr β1T gL3/ν3 natural convection

Helmholtz He ωL/c = kL acoustic wave number

Kapitza Ka gµ4/ρσ 3 film flow

Knudsen Kn λ/L low density flow

Lewis Le α/D combined heat and mass transfer

Mach M V/c compressible flow

Nusselt Nu hL/κ convective heat transfer

Ohnesorge Oh µ/(ρLσ )1/2 viscous forces, inertia and surface tension

Péclet Pe V L/α forced convection heat transfer

Péclet Pe V L/D forced convection mass transfer

Prandtl Pr ν/α = CPµ/κ convective heat transfer

Rayleigh Ra β1T gL3/αν natural convection heat transfer

Reynolds Re ρV L/µ viscous forces against inertia

Schmidt Sc ν/D convective mass transfer

Sherwood Sh h D L/D convective mass transfer

Stanton St h/ρCP V forced convection heat transfer

Stanton St h D/V forced convection mass transfer

Stokes S ν/ f L2 viscous damping in unsteady flow

Strouhal Sr f L/V hydrodynamic wave number

Weber We ρV 2L/σ film flow, bubble formation, droplet breakup
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Nomenclature

Symbol Description Units

c sound speed m/s

CP specific heat J/kg K

D diffusion coefficient m2/s

Dax axial dispersion coefficient m2/s

E activation energy J/mol

f frequency 1/s

g gravitational acceleration m/s2

h heat transfer coefficient W/m2 K

h D mass transfer coefficient m/s

k wave number = ω/c 1/m

L length m

p,1p pressure Pa

R universal gas constant J/mol K

r radius of curvature m

T,1T temperature K

t time s

V velocity m/s

α = κ/ρCP thermal diffusivity m2/s

β coef. of thermal expansion K−1

κ thermal conductivity W/m K

λ molecular mean free path m

µ dynamic viscosity Pa s

ν = µ/ρ kinematic viscosity m2/s

ρ,1ρ density kg/m3

σ surface tension N/m

ω circular frequency = 2π f 1/s
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8.7 Quotes

1. The little things are infinitely the most important. (Sherlock Holmes.)

2. Entia non sunt multiplicanda praeter necessitatem = Entities should not be multiplied beyond

necessity ≈ Other things being equal, simpler explanations are generally better than more

complex ones. (W. Ockham.)

3. Formulas are wiser than man. (J. de Graaf.)

4. Nothing is as practical as a good theory. (J.R. Oppenheimer.)

5. An approximate answer to the right question is worth a great deal more than a precise answer

to the wrong question. (J. Tukey.)

6. An exact solution of an approximate model is not better than an approximate solution of an

exact model. (section 2.)

7. Never make a calculation until you know the answer: make an estimate before every calculation,

try a simple physical argument (symmetry! invariance! conservation!) before every derivation,

guess the answer to every puzzle. (J.A. Wheeler.)

8. The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas, like

the colours or the words must fit together in a harmonious way. Beauty is the first test: there is

no permanent place in the world for ugly mathematics. (G.H. Hardy.)

9. Divide each difficulty into as many parts as is feasible and necessary to resolve it. (R. Descartes.)

10. You make experiments and I make theories. Do you know the difference? A theory is something

nobody believes, except the person who made it. An experiment is something everybody believes,

except the person who made it. (A. Einstein.)

11. It is the theory which decides what we can observe. (A. Einstein.)

12. As far as the laws of mathematics refer to reality, they are not certain, as far as they are certain,

they do not refer to reality. (A. Einstein.)

13. Science is nothing without generalisations. Detached and ill-assorted facts are only raw mate-

rial, and in the absence of a theoretical solvent, have but little nutritive value. (Lord Rayleigh)

14. We need vigour, not rigour! (anonym.)

15. It is the nature of all greatness not to be exact. (E. Burke.)

16. The capacity to learn is a gift; The ability to learn is a skill; The willingness to learn is a choice.

(F. Herbert.)
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