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Chapter 1

Modelling and Perturbation Methods

Mathematical modelling is an art. It is the art of portraymgeal, often physical, problem mathemat-
ically, by sorting out the whole spectrum of effects thatypda may play a role, and then making a
judicious selection by including what is relevant and esalg what is too small. This selection is
what we call amodelor theory Models and theories, applicable in a certain situatioa, retiso-
lated islands of knowledgerovided with a logical flag, labelling italid or invalid. A model is never
unique, because it depends on the type, quality and accofamyswers we are aiming for, and of
course the means (time, money, numerical power, matheshaliils) that we have available.

Concept of hierarchy (turbofan engine)

Normally, when the problem is rich enough, this spectrumffafoés does not simply consist of two
classesmportantandunimportant but is a smoothly distributed hierarchy varying fressentialef-
fects viarelevantandrather relevantto unimportantandabsolutely irrelevaneffects. As a result, in
practically any model there will be effects that are smatirmt small enough to be excluded. We can
ignore their smallness, and just assume that all effectxthstitute our model are equally important.
This is the usual approach when the problem is simple encugdnalysis or a brute force numerical
simulation.
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There are situations, however, where it could be wise tesatthe smallness of these small but im-
portant effects, but in such a way, that we simplify the peablwithout reducing the quality of the
model. Usually, an otherwise intractable problem becomésble and (most importantly) we gain
great insight in the problem.
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Perturbation methods do this in a systematic manner by tistngharp fillet
knife of mathematics in general, and asymptotic analygmiticular. From
this perspective, perturbation methods are the continwaii modelling by
other means and are therefore much more important for therstashding
and analysis of practical problems than they're usuallgitee with. David
Crightortcalled “Asymptotics - an indispensable complement to thought,
computation and experiment in applied mathematical moagl|

Examples are numerous: simplified geometries reducingpigas dimen-
sion, small amplitudes allowing linearization, low velies and long time
scales allowing incompressible description, small redatiiscosity allow-
ing inviscid models, zero or infinite lengths rather thantémengths, etc.

The question is: how can we use this gradual transition mtweodels of different level. Of course,
when a certain aspect or effect, previously absent from agath) is included in our model, the change
is abrupt and big: usually the corresponding equations are romplex and more difficult to solve.
This is, however, only true if we are merely interested inotxa numericallyexactsolutions. But an
exact solution of an approximate model is not better tharpanoximate solution of an exact model.
Sothere is absolutely no reason to demand the solution tmbe emact than the corresponding model.
If we accept approximate solutions, based on the inhereall smlarge modelling parameters, we do
have the possibilities to gradually increase the compteddita model, and study small but significant
effects in the most efficient way.

The methods utilizing systematically this approach aréedaderturbations methoddJsually, a dis-
tinction is made between regular and singular perturbatidr(loose definition of a) regular perturba-
tion is one in which the solutions of perturbed and unpegdrproblem are everywhere close to each
other.

We will find many applications of this philosophy in contilgomechanics (fluid mechanics, elas-
ticity), and indeed many methods arose as a natural tool derstand certain underlying physical
phenomena. We will consider here four methods relevantmtirmeous mechanics: (1) the method of
slow variation and (2) the method of Lindstedt-Poincaré&asmples of regular perturbation methods;
then (3) the method of matched asymptotic expansions anthédnethod of multiple scales (with
as a special case the WKB method) as examples of singularrpatibn methods. In (1) the typical
length scale in one direction is much greater than in thersihvehile in (2) the relevant time scale is
unknown and part of the problem. In (3) several approxinmati@oupled but valid in spatially distinct
regions, are solved in parallel. Method (4) relates to atd in which several length scales act in the
same direction, for example a wave propagating throughvelysharying environment.

In order to quantify the used small effect in the model, wd alilvays introduce a small positive
dimensionless parameter Its physical meaning depends on the problem, but it is adwhg ratio
between two inherent length scales, time scales, or ottaacteristic problem quantities.

1p.G. Crighton. “Asymptotics — an indispensable complenterthought, computation and experiment in applied math-
ematical modelling.” InProceedings of the Seventh European Conference on Mattosniatindustry, March 2-6, 1993,
Montecatinj A. Fasano and M. Primicerio, editors, volume ECMI 9, pagekd3 Stuttgart, 1994. European Consortium for
Mathematics in Industry, B.G.Teubner.
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Chapter 2

Modelling and Scaling

2.1 Theory

2.1.1 Whatis a model? Some philosophical considerations.

Mathematics has, historically, its major sources of iregmn in applications. It is just the unexpected
question from practice that forces one to go off the beatackirAlso it is usually easier to portray
properties of a mathematical abstraction with a concredenge at hand. Therefore, it is safe to say
that most mathematics is applied, applicable or emerges &aplications.

Before mathematics can be applied to a real problem, thdgmoimust be described mathematically.
We need a mathematical representation of its primitive efgsand their relations, and the problem
must be formulated in equations and formulas, to render é@rethle to formal manipulation and to
clarify the inherent structure. This is called mathematicadelling. An informal definition could be:

Describing a real-world problem in a mathematical way by wsacalled amode| such
that it becomes possible to deploy mathematical tools $osatution. The model should
be based on first principles and elementary relations antidugd be accurate enough,
such that it has reasonable claims to predict both quarititgand qualitative aspects of
the original problem. The accuracy of the description sddag limited, in order to make
the model not unnecessary complex.

This is evidently a very loose definition. Apart from the dimswhat is meant with: a problem being
described in a mathematical way, there is the confusingdoarshat we only know the precision
of our model, if we can compare it with a better model, but thester model is exactly what we
try to avoid as it is usually unnecessarily complex! In gaheve do not know a problem and its
accompanying model well enough to be absolutely sure tesdhight description is both consistent,
complete and sufficiently accurate for the purpose, andawofarmidable for any treatment. A model
is, therefore, to a certain extent a vague concept. Nevegtemodelling plays a key réle in applied
mathematics, since mathematics cannot be applied to ahyodd problem without the intermediate
steps of modelling. Therefore, a more structured appraachdessary, which is the aim of the present
chapter.



2WAKO - EMI CKP ASYMPTOTISCHETECHNIEKEN - 2018

Some people definmodellingas the process of translating a real-world problem into eratitical
terms. We will not do so, as this definition is too wide to ird#uthe subtle aspects of “limited pre-
cision” (to be discussed below). Therefore we will introdube wordmathematisingdefined as the
process of translating a real-world problem into matherahtierms. It is a translation in the sense
that we translate from the inaccurate, verbose “everydagfjliage to the language of mathematics.
For example, the geometrical presence and evolution ottshje space and time may be described
parametrically in a suitable coordinate system. Any prigeor fields that are expected to play a role
may be formulated by functions in time and space, expligtlimplicitly, for example as a differential
equation.

Mathematising is an elementary but not trivial step. In,faébrms probably the single most important
step in the progress of science. It requires the distincti@ming, and exact specification of the
essential relevant elementary objects and their intdiveks, where mathematics acts as a language
in which the problem is described. If theory is available tlie mathematical problem obtained this
way, the problem considered may be subjected to the stgat &f mathematics, and reasoning in this
language will transcend over the limited and inaccuratenargt language. Mathematising is therefore,
apart from providing the link between the mathematical @ahd the real world, also important for
science in general.

A very important point to note is the fact that such a mathe&edtformulation isalwaysat some
level simplified. The earth can be modelled by a point or a e astronomical applications, or
by an infinite half-space or modelled not at all in problemshofman scale. Based on the level of
simplification, sophistication or accuracy, we can aste@a inherent hierarchy to the set of possible
descriptions. A model may be too crude, but also it may be &med. It is too crude if it just
doesn’t describe the problem considered, or if the numbgr®duces are not accurate enough to be
acceptable. It is too refined if it includes irrelevant effethat make the problem untreatable, or make
the model so complicated that important relations or treedsin hidden.

The ultimate goal for mathematising a problem is a deepeenstahding and a more profound anal-
ysis and solution of the problem. Usually, a more refined lgrobtranslation is more accurate but
also more complicated and more difficult — if not impossiblgb analyse and solve than a simpler
one. Therefore, not every mathematical translation is agom®. We will call a good mathematical
translation anodelor mathematical modsf it is lean or thrifty in the sense, that it describes our
problem quantitatively or qualitatively in a suitable ogu&red accuracy with aninimal number of
essentially different parameters and variables. (We sageftially different”, in view of a reduction
that is always possible by writing the problem in dimensiss| form. See Buckingham’s Theorem
below.) Again, this definition is rather subjective, as gty depends on the context of the problem
considered and our knowledge and resources. So there vélyiae one “best” model. At the same
time, it shows that modelling, even if relying significantiy intuition, is part of the mathematical
analysis.

10 09-02-2018
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2.1.2 Types of models

We will distinguish the following three classes of models.

e Systematic models.

Other possible names amsymptotic modelsr reducing modelsand it is the most important
type for us here. The starting point is to use available cetephodels, which are adequate,
but over-complete in so far that effects are included whighiaelevant, uninteresting, or
negligibly small, making the mathematical problem unneagly complex. By using avail-
able additional information (order of magnitude of the paegers) assumptions can be made
which minimize in a systematic way ttever-completanodel into agood model by taking

a parameter that is already large or small to its asymptiotiit: Ismall parameters are taken
zero, large parameters become infinite, an almost symmetgrbes a full symmetry.

Examples of systematic models are found in particular intbk-established fields of con-
tinuum physics (fluid mechanics, elasticity). An ordinagwflis usually described by a model
which is reduced from the full,e. compressible and viscous, Navier-Stokes equations.

An example is the convection-diffusion problem describgdhe “complete” model

aT
E-}—U-VT = a V2T,

which is difficult to solve, but may be reduced to the much $emp

oT
— VT =0
a,[—Fv

if we have reasons to believe that diffusion texVi°T is small compared to convection.
Another example is the (again difficult) nonlinear pendulegquation
d?0 g .
— = —=1SIné,
dt2 L
which may be reduced to the much simpler linear equation
@6 g
daz L’
if we know or conjecture that angteis small and sif ~ 6.

¢ Constructing models

Another possible name muilding block modelsHere we build our problem description step
by step from low to high, from simple to more complex, by addaffects and elements
lumped together in building blocks, until the required aecy or adequacy is obtained. This
type of model is usually the first if a new scientific discigirs explored.

An example is the 1D Euler-Bernoulli model of a flexible battwsmall displacements and
where the bending moment is assumed to be a linear functitireafdius of curvature.

11 09-02-2018
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e Canonical models.

Another possible name haracteristic model®r quintessential modelddere an existing
model is further reduced to describe only the essence oftaicaaspect of the problem.
These models are particularly important if the mathembéinalysis of a model from one of
the other categories is lacking available theory. The agment of such theory is usually
hindered by too much irrelevant details. These models afilfor the understanding, but
usually far away from the original full problem setting amitefore not suitable for direct
industrial application.

An example is Burgers’ equation, originally formulated asanphysically” reduced version
of the Navier-Stokes equations in order to study certaidlénmental effects,

au au 92u
— — =v—s.
ot X NG

Note that an asymptotic model may start as a building-blockleh which is only found at a later
stage to be too comprehensive. Similarly, a canonical mwdsl reduce from an asymptotic model
if the latter appears to contain a particular, not yet uriders effect, which should be investigated in
isolation before any progress with the original model camlagle.

The type of model which is most relevant in the context of gsgtic techniques, is thasymptotic
or systematiegnodel. In the following we will explain this further.

2.1.3 Perturbation methods: the continuation of modellingoy other means

We have seen above that a real-world problem described dystematianodel, is essentially de-
scribed by a hierarchy of systematic models, where a higivel model is more comprehensive and
more accurate than one from a lower level. Now suppose thatwe a fairly good model, describing
the dominating phenomena in good order of magnitude. Angpasg that we are interested in im-
proving on this model by adding some previously ignored etsper effects. In general, this implies a
very abrupt change in our model. The equations are more &napld more difficult to solve. As an
illustration, consider the simple “modet? = a2, and the more complete “modet? +¢x® = a2. The
first one can be solved easily analytically, the second otfemiich more effort only numerically. So
it seems that the relation between solution and model is owtirtuous in the problem parameters.
Whatever smalk we take, from a transparent and exact solution of the simpldainate = 0, we
abruptly face a far more complicated solution of a model ihaitst a little bit better. This is a pity,
because certain type of useful information (parametriceddpncies, trends) become increasingly
more difficult to dig out of the more complicated solution bétcomplex model. This discontinuity
of models in the parametermay therefore be an argument to retain the simpler model.

The (complexity of the) model is, however, only discontinsaf we are merely interested in exact
or numerically “exact” solutions (for example for reasoifid®enchmarking or validation of solution
methods). This is not always the case. As far as our modetliyjgctives are concerned, we have
to keep in mind that also the improved model is only a next stefhe modelling hierarchy and
not exact in any absolute sense. So there is no reason toedhaisolution to be more exact than
the corresponding model, @ exact solution of an approximate model is not better than a
approximate solution of an exact modelMoreover, theypeof information that analytical solutions
may provide (functional relationshipsic.) is sometimes so important that numerical accuracy may
be worthwhile to sacrifice.

12 09-02-2018
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Let us go back to our “fairly good”, improved model. The effeave added are relatively small.
Otherwise, the previous lower level model was not fairly gj@s we assumed, but just completely
wrong. Usually, this smallness is quantified by small dinn@mess parameters (see below) occurring
in the equations and (or) boundary conditions. This is theege situation. The transition from a
lower-level to a higher-level theory is characterized bg #ppearance of one or more modelling
parameters, which are (when made dimensionless) smalkrge,land yield in the limit a simpler
description. Examples are infinitely large or small geomstwith circular or spherical symmetry
that reduce the number of spatial dimensions, small ana@gwallowing linearization, low velocities
and long time scales in flow problems allowing incompressitgscription, small relative viscosity
allowing inviscid modelsgtc. In fact, in any practical problem it is really the rule ratltban the
exception that dimensionless numbers are either smalfge.la

If we accept approximate solutions, where the approximdtidoased on the inherently small or large
modelling parameters, we do have the possibility to grdguatrease the complexity of a model,

and study small but significant effects in the most efficieaywrhe methods utilizing this approach
systematically are called “perturbation methods”. Theragipnation constructed is almost always an
asymptotic approximation,e. where the error reduces with the small or large parameter.

Usually, a distinction is made betweeggular and singular perturbations. A (loose definition of a)

regular perturbation problem is where the approximate Iprolis everywhere close to the unper-
turbed problem. This, however, depends of course on the idoohanterest and, as we will see, on
the choice of coordinates. If a problem is regular without aaed for other than trivial reformula-

tions, the construction of an asymptotic solution is stifiyward. In fact, it forms the usual strategy
in modelling when terms are linearised or effects are négtkeclhe more interesting perturbation
problems are those where this straightforward approaéh fai

We will consider here four methods relevant in the presentedelling problems. The first two are
examples of regular perturbation methods, but only aftewitalsle coordinate transformation. The
first is called the method of slow variation, where the typepdal length scale is much greater than
the transverse length scale. The second is the Lindstéded#té method or the method of strained
coordinates, for periodic processes. Here, the intririgie scale (~ the period of the solution) is
unknown and has to be found. The other two methods are of Isingerturbation type, because
there is no coordinate transformation possible that rentiher problem into one of regular type. The
third one is the method of matched asymptotic expansionsEMAo render the problem into one
of regular type, different scalings are necessary in dpatigstinct regions (boundary layers). The
fourth singular perturbation method considered here isntle¢hod of multiple scales and may be
considered as a combination of the method of slow variatt@hthe method of strained coordinates,
as now several (long, short, shorter) length scales occpaiallel. This cannot be repaired by a
single coordinate transformation. Therefore, the probienemporarily reformulated into a higher
dimensional problem by taking the various length scalestaphen the problem is regular again, and
can be solved. A refinement of this method is the WKB methoarevthe coordinate transformation
of the fast variable becomes itself slowly varying.

13 09-02-2018
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2.1.4 Energy consumption of a car

Consider a car of masa in positionx(t) and velocityv(t) = x'(t) at timet, moving along a straight
horizontal road of lengtiv in time T, subject to acceleration foreev’, air drag%,oACDv|v| (where

o is the density of airA is the car’s frontal area, an@p is its drag coefficient), and engine thrust
F(t), such that (with always positive velocity)

mv’ +bv? = F(t), b= 31pCpA

1. Suppose that the fordeis constant (like gravity in free faF = mg). What is the final velocity
in steady state?

2. Suppose that the pow® = Fuv is constant (like typical engine). What is the final velocity
in steady state?

From here on we will not assume a giveén but assume a resulting for which the required is
given by the equation.

We are interested in the extra energy consumption due taitaelfbuctuations. So we compare the
energy consumption in case of a steady velogifit) = Vo = L/T and in case of a velocity that
fluctuates around the average\Gf for example like

va(t) = Vo + asin(wt).

Let's assume for convenience thatorresponds to an integer multiple of 2v such that

T T T
Sin(wT) =0, / sin(wt) dt = 0, / sinf(ot) dt = 3T, / sin*(wt) dt = 0.
0 0 0

Since the energy is the time-integral of the powet)v(t), we find
T T
Eo = / Fovodt = / bV dt = bVST = bVZL
0 0
and
T T

Es = / Favadt = / (Muyva + bvg) dt = %m(vg(T) — vg(O))
0 0
T

+b / Vg + 3VEasin(wt) + 3Voa’ sin(wt) + a®sin(wt) dt = bL(V¢ + 3a).
0

The extra energy consumption is then
Ea — Eo = 3ba’L.

This is a rather neat result. Note, for example, that it igpehdent of mags. Can we generalise this
result? Assume

T
va(t) = Vo +vi(t), v1(0) = v1(T) =0, / vi(t)dt = 0.
0

1. .crude approximation of a ...

14 09-02-2018
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Then
T T
Ea= / Favadt = / (Mujva + bvd) dt = ImEA(T) — v3(0))
0 0

T T T
+ b/ (V3 + 3VZua(t) + 3Vova(t) + v3(t)) dt = bLVZ + 3bV0/ v2(t) dt + b/ v3(t) dt
0 0 0

and so T T
E.— Eo= 3bv0/ v2(t) dt + b/ v3(t) dt
0 0

This is clearly not such a nice result, and more difficult tasgr.

We obtain more structure if we use the fact thats small compared t&,. But how do we do that?
We write
v1(t) = eVou(t)

whereu ande are dimensionless, is small, andu is scaled such that it is of order 1. Then we obtain
T T
Es — Eo = 3be?V3 / u?(t) dt + be3Vv§ / ud(t) dt.
0 0
Sincee is small, we can approximate

.
Ea — Eo ~ 3bs2V3 / u?(t) dt
0

which is almost of the same form as the former result if weiseahata = ¢Vy. The main unusual

term is .
/ u?(t) dt.
0

This, however, is of dimension time and being the integra fafnction ofO(1) over an intervall , it
must be a number dD(T). So if we divide byT it is dimensionless and dD(1). Moreover, we are
free to scalau (only the productu is relevant) such that this quadratic average is unity

107,
= t)dt = 1.
T./o o

Then we have in the end again a transparent result
Ea — Eo ~ 3bs?VZL.

So scaling and non-dimensionalisation is useful for cleaults. We scaled and non-dimensionalised
vy, but not timet and the other variables. Furthermore, we made only dimelesis afterwards, while
it is more systematic to do it right from the start with thefeliéntial equation.

A time scale of the problem is obviously. (Is this the most natural time scale? Are there other
possible?) Let's introduce
t=Tr

and redefine
v(t) =VoU(r), F@t)=bVZf(r), E=bVzLe.
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(Is this the natural scaling fdf and E? Are there other possible?) Then we Have

m\

?OU’ + bV2U2 = bV2H,

which is then m
U +U?=f, = .

o + o bL

The problem has apparently one dimensionless paramet€he energy consumed is now
1 1
€ :/ fU dr = $a(U?(1) — U%(0)) +/ u3dr
0 0
We can introduce fluctuations of a constant mean velocitplisis
1
U=1+-¢u, / udr =0, u() =u(l =0,
0
with the assumption that = O(1), but otherwise we can normalise it as we may find conveniiet, |
1
/ u?dt = 1.
0
Altogether we find
1
€q — €0 = / 14 3eu+ 32u? + 3uddr — 1 = 3% + O(e®) ~ 32
0

A much cleaner result!

2If v(t) = VoU (r) = VoU (+), then with the chain rule
d d t Vo d Vo
! = — = — — )= —— = U’
V) = r =VogU () = T gUm = FU@.
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2.1.5 Nondimensionalisation
Buckingham’s IT-Theorem:

If a physical problem is described by variables and parameters lindimensions, the number of
dimensionless groups is at least r. Exactlyn —r if all r dimensions play a role. More than-r if
some dimensions are redundant, or occur in the same conaloinkt that case is effectively smaller.

Note mol, rad or dB danot count, because they are dimensionless units.

A way to see this theorem intuitively is as follows.

From the problem variables, parameters, and their combimatve can construct time, length, etc.
scales. They follow from the problem and are therefore dailtderent (length, time) scales. For
example, from a velocity/ and a lengthL we have a timd./V. These new scales can be used for
measuring, instead of meters or seconds. In this way we gadacesthe originat dimensions by
new dimensions from (combinations af)variables. These variables, when measured in the new
dimensions, are by definition equal to unity, and play noblésrole anymore. The remainimg— r
variables, on the other hand, may be expressed in the newsdioms to constitute the essential (and
nondimensional) problem parameters.

Example. A problem with the 4 variables forde, lengthL, velocity V and viscosity; are expressed
in 3 dimensions kg, m and s %] = kg m/s%, [L] = m, [V] = m/s and[n] = kg/ms.

With the inherent unit of lengti., inherent unit of timel/V and inherent unit of masgL?/V, the
variablesL, V andn become simply 1 (timek, V andn, respectively). Only forc& becomes some
(dimensionless) numbef times the new units as follows:

nL2
= L F

F=%.-Y _ _%.LVp  inotherwords % =——.
LVnp

A more formal way to obtain this is by utilizing a bit lineamgabra. We have for any dimensionless
quantity G the condition that it should satisfy for some combinatiom et (a1, oo, a3, og)
[G] = [F*tL%2V%y*] = moitaetas—as kga1+a4 g 2m—az—as 0 kgo L —1

In other words we have = 3 equations fon = 4 unknowns

11 1 -1\ |* 0
10 0 1][1%]=|o
2 0 -1 -1/ |* 0

Since all equations are independent, this system has=aBk the number of equations and so
4 — 3 = 1 linearly independent solutions. Therefore, there is dmedsionless variabl&. (If some
rows are dependent, the rank would have been lessrtlzanal the number of independent solutions
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more tham — r.) Solving this system yields the solutien= (1, —1, —1, —1), or any multiple of it.
The corresponding dimensionless number is then

F
LVnp’

which confirms the above result witB = . Note that other forms, likés2, /G, 1/G etc. are
equally possible dimensionless numbers, equivalefi.to

Weber’s Law.

Normally, we have in the problems studied several variadhebparameters of the same unit (dimen-
sion), which act as each others reference to compare wit.opposite situation, when thererie
reference available, is also meaningful.

When a variable is perceived for which there is no referenatity available to compare with, c.g. to
scale on, the actual value of the variable itself will be tsference. The resulting logarithmic relation
(see below) is known ad/eber’s Law.

Take for example the perceived loudness of sound. Sinceatigerof our human audible sensitivity
is incredibly large (18" in energy), the loudest and quietest levels are practidgafigitely far away.
Therefore, we have no reference or scaling level to compéte wther than the actually perceived
sound itself.

As a result, variations in sound loudneds dre perceived proportional telative variations of the

physical sound intensityld' :

dL = Kdl—l,

for a suitably chosen constalit After integration we obtain thdt varies logarithmically inl .
L=Lo+ Klogl

with Lg a conveniently chosen reference level.

As the intensity (the time-averaged energy flux)s, for a single tone, proportional to the mean
squared acoustic pressupg,., we have the relatioh = K log(p2,) + Lo. If

L=2 |Oglo( Prms/ Po)

for a reference valugy = 2 -10~° Pascal is taken, we cdll the Sound Pressure Level in Bells. The
usual unit is one tenth of it, the decibel.

3Ernst Heinrich Weber, 1834
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2.2 Exercises

2.2.1 A car with viscous friction and hills

Repeat the analysis of section (2.1.4) for

a) an engine with linear (viscous) friction, leading to thedal:mv’ 4+ bv? + cv = F(t).
b) aroad varying in height(x), leading to the modemv’ + bv? + mgh(x) = F(t).

Think about the various possible scalings and nondimeagations.

2.2.2 Membrane resonance

The resonance frequenayof a freely suspended membrane (like a frame drum, a skitte&d over
a frame without a resonance cavity) is determined by the manebtensionl, membrane surface
densityo, membrane diameter, air densityp, and sound speeg}. In other words, there is a relation

w= f(T,o0,a, pa, Ca).

According to Buckingham, this relation can be reduced tolatioe between three dimensionless
groups:

frequency w, dimension 1/s

memb. tension T, ” kg/s?

memb. density o, " kg/m? : . o .

memb. diameter a . ” m Buckingham: 6- 3 = 3 dimensionless groups

air density Pas kg/m?®
air soundspeed ¢, , ” m/s

— LT O2 0304 05 A0
G = 0" T*0%a* pg°cy

1\ (kg (KG\D  (kg ) myes
e-(3) () () ™) &)

— m—2<x3+<x4—3(x5+<x6S—(xl—Zaz—aekgoz2+a3+a5 — mOSOkgO

a) Give (mutually independent) examples of the 3 possibteedsionless numbef(s.
b) Show that it is possible to write the functional depengebetween the frequency and the other
parameters as

G, = F(G1, Go)

whereG,, is the only parameter that depends @nYou may introduce for convenienag, =
1 . . . .
(T/o)?2, the propagation speed of transversal waves in the membrémeabsence of air loading.
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2.2.3 Ship drag: wave and viscosity effects

A ship of typical sizeL, moving with velocityV in deep water of density and viscosityn, feels a
drag D due to gravity waves and due to viscous friction, apart fransity, velocity and geometry

effects. Symbolically, we have
D=f(,np VL)

Nas Ty v
lg - L - 7],/0

According to Buckingham, this relation can be reduced tolatiom between three dimensionless
groups:

drag D, dimension kgmA

length L, ” m

velocity vV, ” m/s _ . o _

viscosity 7 . kgms [ Buckingham: 6- 3 = 3 dimensionless groups
gravity g, "’ m/s?

water density p, ” kg/m3

G = D*L*2V %% g% p%s

o= () (3" () ) (58)°

— ma1+a2+a37a4+a573a6872a17a37a472a5kga1+a4+a6 — mOSOkgO

a) Give (mutually independent) examples of the 3 possibteedsionless numbef(s.
b) Show that it is possible to write the functional dependeetween the drag and the other param-

eters as
Gp = F(Gg, Gy)

whereGp is a parameter that depends Drbut not ong or , G¢ depends oy but not onD or
n, andG, depends om but not onD or g.

20 09-02-2018



2WAKO - EMI CKP ASYMPTOTISCHETECHNIEKEN - 2018

2.2.4 Sphere in viscous flow

Work out in detail — using Buckingham's theorem — scaling ama-dimensionalisation of the problem
of the viscous air resistance (dr&g velocity V) of a sphere (radiuR) in a fluid (densityp, viscosity
n). What would be a suitable scaling if viscosity dominates tasistance? And what if pressure
difference dominates?

length R, dimension m

vV velocity V, ” m/s
drag D, ” kg m/s? D= f(p,V,n R
viscosityn, ” kg/ms
density p, ” kg/m®

Sphere in viscous fluid

2.2.5 Cooling of a cup of tea

The total amount of thermal energy in a cup of tea of volWheavater density, specific heat and
temperaturd attimet is E(t) = pcV T(t). According to Newton’s cooling law, the heat flux through
the surfaceAisq = —h A(T — T,,) with heat transfer coefficiefit. What is the dimension df? Make
the problem dimensionless and determine the charactetiiste scale of the problem.

Confirm this by solving the equation for the decaying tempueedr (t)

dE
— = TO =T,.
Gt q, ()] 0

2.2.6 The velocity of a rowing boat.

Determine the functional dependence of the velocibf a rowing boat on the numberof rowers by
using the following modelling assumptions.

The size of the boat scales with the number of roweestheir volume) but has otherwise the same
shape. So if the volume per rower@ the volume of the boat i¥ = nG. Furthermore, the volume
of the boat can be written as a lendttiimes a cross sectioA = ¢2 andL = A¢ for a shape factox.

The drag only depends on the water pressure distributiorisafaal high enough Reynolds numbers
given byD = %vaACD, wherep is the water density an@p the drag coefficient, which is a constant
as it depends only on the shape of the boat.

The required thrust is therefofe = D, while the necessary power to maintain the veloeiig then
P =4 [ Fdx' = Fv. The available power per rower is a fixgd
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2.2.7 Travel time in cities

A simple model for the travel time by car between two addregsa big city is: the tim& in minutes
is equal to the distance in kilometers plus the numbe of traffic lights passed,

T=L+N.

a) What is this formula if time is measured in hours and distan miles?
b) Generalise the formula for arbitrary units of time andjkin
c) Make this last version dimensionless in a suitable way.

2.2.8 A sessile drop with surface tension.

The heighth of a drop of liquid at rest on a horizontal surface with theeffof gravity being balanced
by surface tension is a function of liquid densjty volume L3, acceleration of gravity, surface
tensiony and contact anglé. As [h] = m, [p] = kg/m?, [L] = m, [g] = M/, [y] = kg/¥, and
[0] = 1, we have 6- 3 = 3 dimensionless numbers. One is of course the already diomdesso.
The second dimensionless number is the Bond number, knowwortool this kind of problems, and
is given by

pgL?

S

The third is a dimensionless number containmdeading to a functional relationship given by

B

h=¢F(B,?#),

whereF is dimensionless andis an inherent length scale. We have practically two usdioiaes
for £. One is suitable wheB is small (high relative surface tension) and the drop becospéerical.
The other is the proper scaling wheénis large (low relative surface tension), such that the drdp w
spread out, flat as a pancake, dnek L. In particular,h/L = O(B~1/?)

Find these two (mutually independent) possiblend{,.
2.2.9 The drag of a plate sliding along a thin layer of lubricant

A flat plate of lengthL and widthW, slipping with constant velocity along a thin layer of lubricant
of thicknessh and viscosityy, experiences a draly. Assume that the drag is linearly proportional to
the wetted surfack x W. Find a functional relation betwedn and the other problem parameters.

length L, dimension m

width W, " m
velocity V, ” m/s
viscosity 7, ” kg/ms
thicknessh, " m
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2.2.10 The stiffened catenary

A cable, suspended between the poi¥ts= 0,Y = 0andX = D, Y = 0, is described as a linear
elastic, geometrically non-linear inextensible %af bending stiffnessE | and weightQ per unit
length.

QL1 1 30L
—H «— — H
(0, 0) (D, 0)

Figure 2.1: A suspended cable

At the suspension points the cable is horizontally clampexh shat the cable hangs in the vertical
plane through the suspension points. The total lehgti the cable is larger thaB, so the cable is
not stretched.

In order to keep the cable in position, the suspension paippy a reaction force, with horizontal
component-H resp.H, and a vertical componet, resp.QL — V. From symmetry we already have
V=QL-VsoV = %Q L is known. On the other han#{, the force that keeps the cable ends apart,

is unknown.
Lets be the arc length along the cable, ai¢) the tangent angle with the horizon. Then the cartesian

co-ordinateg X(s), Y (s)) of a point on the cable are given by
S

X(s) :/ cosyr(s)ds, Y(s) :/ siny (s) ds'.
0 0

The shape of the cablg(s) and the necessary ford¢é, are determined by the following differential
equation and boundary conditions

dy _
EI@ = Hsiny — (Qs— V) cosy
¥(0) =0, ¥(L)=0, X(L)=D, Y(L)=0.

a. Make the equations and boundary conditions dimenswiescaling all lengths oh.
How many (and which) dimensionless problem parameters doave?
b. Under what conditions can we approximate the equation by

0= Hsiny — (Qs— V) cosy.

Can we keep all the boundary conditions? Which would you Re@an you solve the remaining

equation?
c. Under what conditions can we approximate the equation by
d?y
El— =Hy — (Qs— V).
4o = HV —(Qs-V)

Can we keep all the boundary conditions? Do we have to adgbdming it in line with the used
approximation? Can you solve the remaining equation (upnionaerical evaluation)?

4A so called Euler-Bernoulli bar.
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2.2.11 Electrically heated metal

A piece of metak2 of sizeL is heated, from an initial stafB(x, t) = 0, to a temperature distribution
T by applying att = 0 an electric field with potential> and typical voltagev (Fig. 2.2). This heat

Figure 2.2: A piece of metal heated by an electric field.

source, the energy dissipation of the electric field, ismivg the inhomogeneous tem V|2 in the
following inhomogeneous heat equation

aT
CE =k VT +0|Vy |2

The edges are kept @t = 0, yielding a dissipation of thermal energy. As time procedide tempera-
ture distribution will converge to a steady state corresirnto an equilibrium of heat production by
the source and heat loss via the edges. We are interested typibal time this takes and the typical

final temperature.

If we introduce the formal scalin§ = Tou, t = tgr, X = L&, andy = V¥, then we get

CTodu KT0V2u+ ov2IV e
tp ot L2 & Lz fTl
a. If we take the final (steady state) situation as referembat would then be our choice fag?

b. What is then the choice for the tinyg®
c. Note that the boundary conditions are rather importdithel edges were thermally isolated, we

would, at least initially, have no temperature gradiengisg onL, and the diffusion terre V2T
would be negligible. Only the storage ter;h%T would balance the source term, and there would
be no other temperature to scale on thart,/C L. In other words, the temperature would rise

approximately linearly in time.

2.2.12 The Korteweg-de Vries equation

A version of the Korteweg-de Vries equation (an equationcttain types of water waves) is given

by
Agt + ngxx+ Cgé‘x =0

Rescale theé = Ao, X = ezandt = Sz, such that the remaining equation has only coefficientslequa
to 1.
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2.2.13 Traffic waves

A simple (but nonlinear) one-dimensional wave equatioedugor example) to model traffic flow
densityp at positionx and timet, is

ap ap
— +C(p)— =0 0) = F(X).
i (p)ax : p (X, 0) (X)

Since dimensional quantities must include an inherenesea can write (with dimensionless shape
functionsg and f)

Cw=Cog(£).,  Fo=pnf ().

a. Make the problem dimensionless in a sensible way. Whhtisdmaining dimensionless param-
eter?
b. Show that the solutiop is implicitly given by
p=FX—=C(p)t).

It is sufficient to consider the original equation. The disienless solution is similar.

2.2.14 The pendulum

Consider a pendulum consisting of a bob of masssuspended from a fixed, massless support of
length L. The acceleration of gravity ig. Depending on time variable the pendulum angular dis-
placement (t) swings between anglea ando.

angle ¢, dimension -

angle «, -
time t, ” S
mass m, " kg
length L, ” m
gravity g, " m/s?

a) What is the inherent time scale of the problem?
b) The motion is given by the equation
d’¢ :
mL— 4+ mgsing = 0.
Using a), make this equation dimensionless.
¢) Under what condition can we approximate the dimensisréggiation by
¢ 1,3
dz T8 =0
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2.2.15 Anequation

x satisfies the following equation
) X
ax? + bf (—) —0
+ L
with parameters, b andL, and dimensionless functioh with dimensionless argument, whilg] =
meters andb] = seconds.

a) What are the dimensions afandL?
b) Find, by scalingxk = A X for some suitable. and collecting parameters in dimensionless groups
R, equivalent equations of the form

X2+ Rf(X)=0, X?°+ f(RX)=0.

¢) Under what conditions can the original equation be agprated by
X
f(L)=0

2.2.16 Heat convection and diffusion

Consider a steady flow field = v(x) of air of uniform densityp and specific heat capacity and
temperaturel = T (X, t) at positionx and timet. The heat is convected by the flow and diffused by
Fourier’s law for heat conduction, leading to the equations

aT
pC (E + v-VT) =—-V.q, q=—«VT,

whereq is the heat flux density andis the coefficient of conductivity.

Assume that the typical velocity of the velocity fieldUl, and the length scale of the variation of
both the flow field and the temperature fieldlisNeglecting transient effects we have thus a typical
time scale ofL /Uq.

temperature T, dimension K
length scale L, ” m
velocity U, " m/s
density 0, ” kg/m?®
heat flux density  q, ” W/m?
specific heat capacity, ” J/kgK
conductivity K, " W/mK

a) Under what conditiond.é. for which small parameter) can the diffusion be neglectedhghat

we obtain the simplified equation
oT
— VT =0
ot +v
b) Show that (under these conditions) the temperature istanhalong any streamline = &(t),

given by
V= d&
Codt’
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2.2.17 Falling through the center of the earth.

Although it is unlikely that such a tunnel will ever be excea in the near future, we assume a
vacuum straight tunnel right through the center of the edrttonnects two opposite points on the
earth’s surface, separated by the earth’s diamd®erf2the earth’s mass density is uniform, then
according to Newton’s law of gravitation any object in tharial at radial positiom is attracted only
by the part of the earth’s mass that is inside the concenptiere of radiug. The proportionality
constant is the universal gravitation consté@nt

At timet = 0 at positionr = R we drop a stone of negligible mass (compared to the mass of the
earth) with zero initial speed. We wait until the stone retuat timet = T (about 84 minutes).

The problem parameters and variables, according to our Inege

radius R, dimension m
position r, ” m

time t, " S

return time T, " S
density 0, " kg/m?
gravity constan(, " m3/s’kg

Show by dimensional arguments thitdepends only op and G, and not onR. In other words, at
whatever depth we release the stone, the return time is the.sa

2.2.18 Heat conduction in along bar

A semi-infinite isolated metal bar, given byQx < oo, is heated by a uniform heat source of constant
flux densityQ atx = 0, starting fromt = 0. Assume that the initial temperatufe= 0, such thafl

is linearly proportional taQ. The bar metal has a specific heat capaciand conductivity«. Due to
the uniform source and the isolation, the temperature adormgss section is uniform.

temperature T, dimension K
length X, ” m
time t, " S
density 0, " kg/m?®
specific heat capacity, ” J/kgK
conductivity K, ” W/mK
heat source Q, ” W/m?

a) According to Buckingham’s Pi theorem, there are 8 = 2 dimensionless groups possible (note
thatT o« Q, soT/Q is to be considered as one variable). Give examples of suhpgr
b) Show, by using a), that the most general formTak, t) is®

2
T, 1) =%F (,/XK’)C),

5The seemingly different (x, t) = (Qt/pCX)G(\/XZ,OC/Kt) is in reality of the same form. WritE (n) = n*ZG(n).
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c) Assume thal satisfies the equation

T 92T

c— = ,
Poot T axe

and define theimilarity variablen = /x2pc/«t. Derive the (ordinary) differential equation in
the variabley for function F () of b). Use the chain rule carefully when differentiatifigo x and
t. Make sure that the final equationly depends om and contains n& ort dependence anymore.

The solution of this equation is not standard but can be fqfmdexample) by Mathematica or
Wolfram Alpha.

2.2.19 A Simple Balloon

A balloon rises in the atmosphere of densitysuch that it is at heighi(t) at timet. The balloon

of massm, fixed volumeV and cross sectional surfadeis subject to inertia—mh’, Archimedean
(buoyancy) forceyo,V, weight—mgand air drag-302Cq A(h')2, whereg = 9.8 m/s is the acceler-
ation of gravity, and drag coefficie@y depends on the geometry but is for a sphere (and high enough
Reynolds number) in the order off)

Together these forces cancel out each other, so altogethdrave the following equation for the
dynamics of the balloon

2 dt

Assume thah(0) = 0 andh’(0) = 0. The atmospheric air density will vary (in the troposphé
for 0 < h < 11 km) with the height according to

d?h 1 /dh\?
mW =0paV —gM— Spa| — ) CdA

h o
pa(h) = po (1 — E) kg/m®, with po = 1.225kg/n?, L = 4433km o« = 4.256

In practice a flexible balloon will grow in size with the deasing atmospheric pressure, but we will
ignore this and assume that the material is very stiff. Whahé maximum attainable heigtite.
whereh’ = h” = 0?

Make the equation dimensionless on the inherent lengthiar@dcales. There are two natural length
scales in the problem (the atmospheric variatioand the diameter of the balloon V32, ~ AY?),
What seems to be the most sensible one? Try both if you hesithe suitable time scale can be found
by assuming that the dynamics is dominated by the balaneesbatthe buoyancy and the drag. When
is this possibly not the case?

Introduce convenient dimensionless parameters and (icabe ofo,) shape function. Can you inter-
pret these parameters? For what conditions can we negkeabehtia term? Is this reasonable for a
balloon ofm = 1 kg,V = 2 m® and A = 1.9 n?. What about the initial conditions? Can you solve
the remaining equation, at least implicitly?
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2.2.20 A pulsating sphere

The radially symmetric sound field of a pulsating sphrete ag+a(t) (with a small) in a medium with
mean densitypg and sound speet) is described by the following (linearised) equations fargsure
perturbationp, density perturbatiop and velocity perturbatiomn.

0 ov v

ot ar
v ap

4+ F o,
Poat T ar

p—cop=0.

while

oa atr
V= — = ap.
ot %

If the sphere pulsates harmonically with frequengywe write for convenience
a=Rea€e"), p=Repe), v =Reade), p = Re(p ).
leading to the equations (we elimingig
iwﬁ+m%(3§+2?)=a
or r

1 ¢
i + —=0.
@pov ar
with
V=iwad at r =ay.
The proper solution of the equations can be shown to be

é e—ikr
r

p_L A (1+ i) gk
poCo I ikr

with constantA to be determined, and the acoustic wavenumber

o
Il

K_®_ %
G A

wherex is the free field wavelength.

a. DetermineA by applying the boundary condition mt= ag.

b. Since the perturbations depend linearly on the pulsaiplitude, we scalgp and v on a/a.
Furthermore, we make dimensionlegson pc3 and § on c,. Altogether we rewrite therefore
p = pc3(4/ap)p andd = co(4/ag)v (where p andv are not the dimensional quantities of the
original problem, but we left the notation just for converie). Lengths can be scaled ayand
on 1/k. Do both. Their ratio, dimensionless numiget kay, is called Helmholtz number.

c. Simplify the formulas for small source size (known aapact sourcgi.e.e = kgy < 1. What
do you get in each case of scaling? Can you interpret thets@sul
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Chapter 3

Asymptotic Analysis

3.1 Basic Definitions and Theorems

We will be interested to analyse the behaviour of a functiearra particular poiny,, sayy — Vo,
especially when this point is a singularity of some kind. &l we have to distinguish between the
behaviour on the right side.€. y | Yo) and on the left sidei.e. y 1 yo). On the other handy, can
always be assumed to be 0. If it is finite, it can be identified toy the transformatiom = y — yo
ore = yp— Y. Ifitis £oo, it can be identified to 0 by the transformatien= 1/y ore = —1/y. In
general, we consider therefofde) or f (X, ¢) fore | 0.

1. O (Big0O)
f(e) = O(p(e)) as ¢ — 0 if there are positive constanks ande; (both independent of)
such that
[f(e)] < Klo(e)| for 0 < ¢ < &;.

Intuitive interpretation f can be embraced completely y (up to a multiplicative constant)
in a neighbourhood of 0. A crude estimate (for example sinO(1/¢)) is not incorrect, but a
sharp estimate is more informative.

Examples sine = O(g), (1 —¢)~1 = O(1), sin(l/e) = OL), (¢ +&2)1 =01,
IN((L+&)/e) = O(Ing).

2. 0 (small o)
f(e) = o(p(e)) as e — 0 if forevery § > 0, there is arz; (independent of) such that

[ f(e)] <38lpe)] for 0 < & < é;.

Intuitive interpretation f is always smaller than any multiple (however small)¢gfin a neigh-
bourhood of 0. Again, a crude estimate is not incorrect, lslzap estimate is more informative.
Examplessin(2e) = o(1), cose = 0(¢~ 1), &/ = o(e") for anya > 0 and anyn.

3. O (sharp O)
f(e) = Os(p(e)) ase — 0 if f(e) = O(p(e)) and f(e) # o(p(e)).

Intuitive interpretation f is behaves exactly the same (up to a multiplicative constes in
a neighbourhood of 0.

Examples2 sine = Og(s), 3cose = Og(1), but there iso nsuch that I = Og(e™).
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4. Similar behaviour. Implications (ii), (iii) and (iv) often serve as the definiti of O, 0 and Os:

O If f=o(p) then f = O(p).

.. ) f(e) B B

(i If I|€r110 m =L € [0, o0) then f = O(p).

i f(e) _ _

(iii) If I|£r7¢10 (@) =0 then f = o(p).

i) If im |~ Z L c©0.00) then f = Oue)
el0 | (e)| ’ B

() If f=0() and ¢ = O(f) then f = Og(g).

5. Asymptotic approximation.
@(e) is an asymptotic approximation t(e) ase — 0, denoted byf ~ ¢, if

f(e) = g(e) +0(p(e)) ase— 0,

Intuitive interpretation If Iim0 f/o =1thenf ~¢. Note: f~ 0 isonly possible iff = 0.
Examplessine ~ ¢, (¢ + &%)t ~ 1/¢, In(ag) ~ Ine for anya > 0.

6. Pointwise asymptotic approximation.
(X, &) is a pointwise asymptotic approximation t@x, ¢) ase — 0 if

f(x,e) ~p(x,e) forfixed x.

Intuitive interpretation f (X, ¢) is approximated asymptotically better and betteply, ¢) for
& — 0 andx fixed We don’t know anything yet if we allow to become small or large (within
the domain).

Examplessin(x + ¢) ~ sinx and sinx # 0, 1/(e + X) ~ 1/x andx # 0. Note that in the last
example the approximation fails if we would scale= ¢"t for anyn > 1.

7. Uniform asymptotic approximation.
The continuous functiop (X, ¢) is a uniform asymptotic approximation to the continuouscfun
tion f (x, &) for x € D ase — 0, if the wayp approached is the same for alk.
More precisely: if for any positive numbérthere is are; (independent ok ande) such that

[T(X,e) — X, )| <S8lpX,e)] for xe D and O< ¢ < &;.
Intuitive interpretation
f (x, &) is approximated uniformly by(x, ¢), if the approximation is preserved with any scal-
ing of X = a(e) + b(e)t, valid in the domain off . In formulas (with a scalingg = ¢t € [0, K]
as an example):

if f(x,e) ~ @, &) and p(et, ¢) ~ g(t, e), thenalso f (et, &) ~ g(t, ).
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10.

Examples
coge) + €% ~ 1 only pointwise forx € (0, oo). Not uniform: takex = et.
coge) + e~ 1 pointwise and uniformly fok € [a, c0), a > 0.

coge) +et ~14+et uniformly fort e [0, 0o).

sin(ex +¢) ~e(x+1) only pointwise forx € (—oo, 00). Takex = t/s.
sin(ex +¢) ~e(x+ 1) uniformly forx € [—a,a], 0 < a < 0.
24 sin(t +¢) ~ 2+ sin(t) uniformly fort € (—o0, 00).

2+ € sin(t + et) ~ 2+ sin(t) only pointwise fort € R. Note that siiit + ¢t) = sint + O(et).
2+ € sin(t) ~ 2+ sin(t) uniform fort € R. Note that we rescaled = (1 + e)t.

Uniform implies pointwise but the reverse is not necessarily true. See the above ésamp

If f andg are absolutely integrable, anfdx, &) ~ ¢(X, &) uniformly on a domainD, while
[ leldx = O(f, edx), then [, f(x, &) dx ~ [ ¢(X, &) dx.

. Asymptotic sequence.

The sequencéun(e)} is called an asymptotic sequenceuif,; = o(u,) ase — 0 for each
n=20,1,2, ---. Thisis denoted symbolically

Mo > (1 2> U2 2> - 2> Un > ..

Common examples ane, = ¢", or more generallyt, = 8(¢)" if §(¢) = o(1). Combinations
of ¢ and In(e) yield the sequencg, x = £"In(e)%, wherek = n, - - -, 0 and

Ine > 1> eln(e) > &> &2In(e)? > &2Ine) > 2> ...

Asymptotic expansion.
If {un(e)} is an asymptotic sequence, thée) has an asymptotic expansion Mf+ 1 terms
with respect to this sequence, denoted by

N
f(&) ~ Y anpun(e),
n=0

where the coefficienta, are independent af, if foreachM =0,..., N
M
f(e) = D @nun(e) = O(um(e)) ase— 0.
n=0

un(e) is called agauge functionor order function.

If un(e) = &, we call the expansion an asymptotic power series. Any Tagdes inc around
¢ = 0is also an asymptotic power series.
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Asymptotic expansions, based on Taylor expansion$ ,inf elementary functions:

€=1+c+36°+...
Sin(8)=8—%83+...
coge) =1— 2%+ ...

=14e+e’+...

1--¢
|n(1—8)=—8—%82—%83—...
|n(1+8)=8—%82+%83—...
(1+e)* =1+ae+ 3a(@—De’+...

Examples of combinations (which are sometimes not Taylpagsions ire")

g =gt = 1+8|n8+%82(|n8)2+...

. _ _l 2
In(sine) =Ine — e+ ...

In(cose) = —3e% — Let + ...
1 B 2 ) _

11. How to determine the coefficients.
The coefficientsa, of an asymptotic expansion can be determined uniquely ff@ngs,(¢))
by the following recursive procedure

f(e) - f(e) —aguole)

f _ N-1
ag=lim & g — jim 1 &)~ @@ iy 1) = 2nmp aka(®)
e—0 Mo(é‘) e—0 Ml(g) e—0 MN(g)

’

providedu, are nonzero foe near 0 and each of the limits exist.

12. Convergent and asymptotic.
Let {un(e)} be an asymptotic sequence, wjth = 1 ands > 0, and let

N
f(e) = ) anun(e) + Ru(e).

n=0

If the series converges fdd — oo, then limy_, ., Ry(e) = 0. If the series is an asymptotic
expansion foe — 0, then lim._.o Ry (¢) = 0. A convergent power series (like a Taylor series)
is also an asymptotic expansion. An asymptotic expansiantimecessarily convergent.

13. Asymptotically equal
Two functions f andg are asymptotically equal up td terms, with respect to the asymptotic

sequencéun}, if f —g=o(un).

14. The fundamental theorem of asymptotic expansions [10]
An asymptotic expansion vanishes only if the coefficientssta, i.e.

{aomo(e) + arpa(e) + aua(e) +...=0 (¢ > 0} & {ag=ar=a,=...=0}.
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15. Poincaré expansion.
Let{un(e)} be an asymptotic sequenceartler functions. If f (X, ¢) has an asymptotic expan-
sion with respect to this sequence, given by

N
(X, 8) ~ Y a0 un(e),

n=0
where theshape functionsa, (x) areindependentof ¢, then this expansion is called a Poincaré
expansionNote a Poincaré expansioniieverPoincaré anymore after (nontrivial) rescalixng

16. Regular and singular expansion.
If a Poincaré expansion is uniform inon a given domai this expansion is called a regular
expansion. Else, the expansion is called a singular expansi

Note A typical indication for non-uniformity is a scaling, sutimat the asymptotic ordering of
the terms is violated. In other words, a scakeg: x(g) with a;(X)u1(e) € ag(X)uo(e), etc.

17. Role of scaling.
A Poincaré expansion and its region of uniformity dependsofag other things) on the chosen
scalingx = %o + 8(¢)& and the domaimD.

For exampleg™/¢ 4 sin(x 4 &) = sin(x) + O(e) is regular on any positive intervgh, b] with
a, b = O(1) butis singular or0, b], whilee™ + sin(et 4+¢) = et +-e(t+1) + O(e3) is regular
on any finite fixed interval.

18. Manipulations of asymptotic expansions.
Let f(x, ) andg(X, ) have Poincaré expansions @nwith asymptotic sequendgu,(¢)}

f(X, &) = no(e)ap(X) + pua(e)ag(x) + - - -
g(X, &) = o(e)bo(X) + m1(e)br(X) + - -

Addition. Then the sum has the following asymptotic expansion
f +9 = po(a +bo) +pa(@r +by) +---

Multiplication. If {uxun} can be asymptotically ordered to the asymptotic sequéngewith
Yo = MS Y1 = o1, Y2 = O(uoms + M{), etc., then the product has the asymptotic expansion

fg = (nodo + paay + - - - ) (uobo + p1by + - - ) = yoaoghbo + y1(agby + aibo) + yo(---) + - --

Integration.If the approximation is uniformf, ag, a;, etc. are absolute-integrable @n while
[ @ dx # O, then we can integrate term by term and obtain the asyrog®tiansion

/ f(x, &) dx =M0/ ao(x)dx+u1/ a(x)dx + ---
D D D
Differentiation. This is the least obvious. If both and f’ have asymptotic expansions @h
f(x, &) = no(e)ap(x) + pa(e)ar(x) +---, (X, &) = po(e)qo(X) + p1(e)qu(X) + - -
then the derivative of the expansion bfis the expansion of derivativé’, and satisfy
Qo=2, Gh=2a, etc

Counterexamplef (x, &) = $x? + & cog%) = 2x2 + O(e), but f'(x, &) # X + O(e).
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3.2 Asymptotic expansions applied

3.2.1 General procedure for algebraic equations

The existence of an asymptotic expansion yields a class tfads to solve problems that depend on
a parameter which is typically small in the range of inter&tch methods are callggbrturbation
methodsThe importance of these methods are two-fold. They proaigdytic solutions to otherwise
intractable problems, and the asymptotic structure of tietisn provides instant insight into the
dominating qualities.

If X(¢e) is implicitly given as the solution of an algebraic equation
F(xX,e)=0 (3.1)
we may solve this asymptotically fer— 0 in the following steps.

(i) Firstwe prove, make plausible, or check in one way or heothat a solutiorxists and try to
find out if this solution is unique or there are more. This i$ re@lly an asymptotic question,
but important because the approximations involved latdrérsolution process may fool us: the
approximated equation may have no solutions while the malghas, or the other way round.
Sometimes the existence of solutions is obvious straigitalaut sometimes global arguments
should be invoked.

(i) Then we have to find the order of magnitude of the soughitem, sayx(e) = y (¢) X(¢) with
X = 0Os(1). Unless we have scaled the problem already correctly, thé@ois not necessarily
0O(1). Often, we cannot decide with certainty, and we have to madutable assumption that
is consistent with all the information we have, and proceecbinstruct successfully a solution
or until we encounter a contradiction.

Another point of concern is the fact that there may be monetisols with different scalings.

The scaling functiory (¢) is found such that it yields a meaningfl = Og(1) in the limit
¢ — 0. This is called aistinguished limitwhile the reduced equation f&t(0), i.e. Fo(X) = 0,
is called asignificant degeneratiofthere may be more than one.) We can res@al@ndx such
F(x,e) = 0becomeg (X, e) = 0while g(X,0) = O(1).

(iii) The final stage is to make an assumption about an asyinmgpansion of the solutioiX for
smalle

X(e) = Xo + pa(e) X1 + p2(e) Xo + . ..

This isonly an assumption, based on a successful and consistent atiostriater. If we en-
counter a contradiction, we have to go back and correct er tile assumed expansion.

If both X (&) and4.(X, &) have an asymptotic series expansion with the same gaugtofusic
X(e) may be determined asymptotically by the following perttidramethod. We expani,
substitute this expansion fi, and expand; to obtain

G(X, &) = $o(Xo) + n1(e)G1(X1, Xo) + p2(8)§2(Xz2, X1, Xo) + ... =0.

From the Fundamental Theorem of asymptotic expansiond)&.1ollows that each terng,
vanishes, and the sequence of coefficiéits) can be determined by induction:

9,0()(0) = O, 9,1(X1, Xo) = O, 9,2()(2, Xl, Xo) = 0, etc. (32)
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It should be noted that finding the sequence of gauge furgtjof) is of particular importance.
This is in general done iteratively, but sometimes a goosggaéso works. For example,gfis

a smooth function of, in particular ine = 0, then in most cases an asymptotic power series
will work, i.e. un(e) = &".

We have to realise that a successful construction is pab@f for its correctness. Strictly math-
ematical proofs are usually very difficult, and in the contefkmodelling not common. Suc-
cessfully finding a consistent solution is normally the sgr@st indication for its correctness we
can obtain.

3.2.2 Example: roots of a polynomial

We illustrate this procedure by the following example. Gdesthe roots foe — 0 of the equation
x3 —ex?+2e3x 4+ 265 = 0.

Since the polynomial is ofBorder, and is negative for = —1 (ande small), positive inx = &£,
negative inx = —3¢, and positive ik = 1, there are exactly 3 real solutior$’, x®, x®,

From the structure of the equation it seems reasonable tmnasthat the order of magnitude of the
solutions scale like a power of We write

X =¢"X(e), X =042

We have to determine exponemffirst. This is done by balancing terms, and then seek sutttat
produce a non-trivial limit under the limit — O: thedistinguished limitof step (ii) above.
We compare asymptotically the coefficients in the equatia temain after scaling

83nX3 _ 81+2nx2 4+ 283+nx + 286 =0
Consider now the order of magnitude of the coefficients:
3n 14+2n 3+n 6

ev, ety egvt, g

By dividing by the biggest coefficient (this dependsmnwe can always make sure that one coeffi-
cientis 1 and the others are smaller. For example = 0 we have

If n =2 we have
If n =4 we have

If none balance (like fon = 0 andn = 4), the asymptotically biggest, with coefficient 1, would
be zero on its own, which thus implies to leading order #at 0. However, this isiot Q;(1) and
therefore not a valid scaling. So at least two should be os#ime order of magnitudend dominate
(like with n = 2).
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[/

1 2 3
Figure 3.1: Analysis of distinguished limits.

In other words: in order to have a meaningful (or “signifi¢adiegenerate solutioX (0) = Os(1), at

least two terms of the equation should be asymptoticallyvatgnt, and at the same time of leading
order where — 0.

So this leaves us with the task to compare the exponentsi2n, 3+n, 6 as a function oh. Consider

the Figure 3.1. The solid lines denote the exponents of theemofe, that occur in the coefficients
of the equation considered. At the intersections of theses|idenoted by the open and closed cir-
cles, we find the candidates of distinguished limits, the points where at least two coefficients are
asymptotically equivalent. Finally, only the closed @<lare the distinguished limits, because these
are located along the lower envelope (thick solid line) dretefore correspond to leading order terms
wheneg — 0. We have now three cases.

n=1.
X3 — X2 426X +2:°=0, or X3P-X?42eX+2:5=0.
From the structure of the equation it seems reasonable tomasthatX has an asymptotic
expansion in powers of. If we assume the expansiof= Xq + ¢ X1 + ..., we finally have
X3—X3=0, 3X3Xy—2XoX1+2X,=0, etc.
and soXp = 1, andX; = —2, etc.leading tox(s) = ¢ — 2¢® + ... Note that solutionXg = 0
is excluded because that would change the order of the gtalin
n=2

X3 — X2+ 265X + 265 =0, or eX®3—X?4+2X +2:=0.

From the structure of the equation it seems reasonable tonasthatX has an asymptotic
expansion in powers of. If we assume the expansiofi= Xgo + ¢ X1 + ..., we finally have

—X34+2Xo=0, X3—2XoX1+2X;4+2=0, etc.

and soXg = 2, X1 = 5, etc., leading tox(e) = 262 + 53 + . ..
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" e9X3 —e"X? 4+ 25X +2:°=0, or &X3—eX?+2X+2=0.
From the structure of the equation it seems reasonable tonasthatX has an asymptotic
expansion in powers of. If we assume the expansiofi= Xgo + ¢ X1 + ..., we finally have
2Xo+2=0, —X3+2X;=0, etc.
and soXo = —1, X; = —3, etc., leading tox(e) = —&° — 1e4 + ... O
Epilogue

The presented method of finding the distinguished limitsedelg greatly on the power-law scaling
function ¢, inherent in polynomial equations. This will not be possibibr more general algebraic
equations where it will not always be so easy to guess thergefioem of the scaling function or the
gauge functions of the asymptotic expansion. In generalstaling function or functions will have
to found by careful ad-hoc balancing arguments, while thmdeof the expansion will have to be
estimated iteratively by a similar process of balancinge tBe exercises.
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3.3 Exercises

3.3.1 Asymptotic expansions irz

3.3.1.1 What values ofy, if any, yield (i) f = O(e%), (ii) f = o(e%), (iii) f = Os(e*) ase—07?

@ f=v1+e?

(b) T =esin(e)

© f=@1-e)"

(d) f=In1+e)

(e) f =¢ln(e)

(fH f =sin(1/e)

(@) f =X+e where0< x <1

(h) f =e**¢ wherex >0

3.3.1.2 Determine asymptotic expansions fer— 0 of

(@) ¢/ tane,

(b) e/(1—¢%),

(c) 1/(log(e) — ),
(d) log(sineg).

(€ A—e+e%lne)/(L—celne —e +£%Ine).

3.3.1.3 Assumingf ~ ag* + bef 4 ..., finda, B (with < 8) and nonzera, b for the following
functions:

(@ f=101-#¢)
(b) f =sinh(v/14¢ex)for0 < X < oo.
(c) f =[5 sin(x + ex?)dx
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3.3.2 Asymptotic sequences

3.3.2.1 Are the following sequenceasymptotic sequencdsr ¢—0. If not, arrange them so that
they are or explain why it is not possible to do so.

@oph=01A—-e5"forn=0,1,23,...

(b) ¢n = [2sinh(e/2)]Y?forn=0,1,2,3,...

(€) ¢n=1/eV"forn=1,23, ...

d) ¢1 =1 ¢2=e,¢3 =2 ¢ps = cIn(e), 5 = £2In(e), g6 = £ In’(e), 7 = £2In?(e).
€) gph=c™forn=0,1,23,...

(f) gn=c"forn=0,1,23, ...

3.3.3 Asymptotic expansions irx and ¢

3.3.3.1 Find a one-term asymptotic approximation, fe# 0, of the formf (x, €) ~ ¢ (x) that holds
for —1 < x < 1. Sketchf (x, ¢) and¢, and then explain why the approximation is not uniform for

-1<x <1

(@) f(x, &) =x+exp((x*—1)/¢)
(b) f(x,e) =x+tanh(x/e)

(c) f(x,e) =x+ 1/coshx/e)

3.3.3.2 Determine, if possible, regular expansions.{niform Poincaré expansions) fer— 0 and
x € [0, 1] of

(@) sinex),

(b) /(e +x),

(c) xlog(ex),

(d) e—sin(x)s’

(e) e sin(x)/e .

(f) 2log(1+ x)/(x2 + &2).
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3.3.4 Solving algebraic equations asymptotically

3.3.4.1 Find a two-term asymptotic expansion, for-0, of each solutiorx of the following equa-
tions.

(@) ex3 —3x+1=0,

(b) ex® —x+2=0,

(c) x*t* =1/(x + 2¢), (x > 0).

(d) x2 — 14 etanh(x/e) =0

(e) x = a+ exk for x > 0. Consider O< k < 1 andk > 1.
(H1-2x+x>—-ex3=0.

3.3.4.2 Derive step by step, by iteratively scalimge) = po(e)Xo + r1(e)Xy + u2(e)Xo + ... and
balancing, that a third order asymptotic solution @or> 0) of the equation

In(ex) + x = a,

is given by
X(e) =Ine™* —In(Ine™) + a+ o(D).

Find a more efficient expansion based on an alternative asyimgequence of gauge functions by
combininge™@¢.

3.3.4.3 Analyse asymptotically for — 0 the zeros ofe™>/ 41X —e.

3.3.4.4 Solve then-th solutionx = x, of
X = tanx

asymptotically for largen.

Hint: for large n and ¥ > 0, X, = tan(X,) is large, and so x must be near (in fact: just before) a
pole oftan If we count the trivial first solution asy= 0, then x >~ (n+ %)n. Writee ! = (n+ %)n,
andx =1 —ye)withO <y < %Jr such thatan(x) = cot(y). Solve asymptotically for smadl

Generalise this result to the solutions of
X = o tanx

for @ > 0. Note the slight difference between> 1 anda < 1.
3.3.4.5 Find an asymptotic approximation, fer>0, of each solution of

Y+ A+e+x)y+x=0, for 0<x <1,

and determine if it is uniform ixx over the indicated interval.
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3.3.5 Solving differential equations asymptotically

3.3.5.1 Find a two-term asymptotic expansion, tor0, of the solution of the following problems.

(@) y'+ey —y=1, wherey(0) = y(1) = 1.

(b) y'+y+y*=0, wherey(0) = 0 andy(37) = ¢.

3.3.6 A quadratic equation

x satisfies the following equation
ax* +bx+c=0

with parameters, b andc, while [X] = meters andc] = seconds.

a) What are the dimensions afandb?
b) Find, by scalingc = L X for some suitabld. and collecting parameters in dimensionless groups
R, equivalent equations of the form

X2+ X+R=0, X?4+RX+1=0, RX*+X+1=0.
¢) Under what conditions can the original equation be apprated by
ax’*+bx=0 ax*+c=0, bx+c=0.

Is it systematic to allow the solutioxi= 0 of the first equation?

3.3.7 A cubic equation

x satisfies the following equation
g +ax’+bx+c=0
with parameters], a, b andc, while [x] = seconds ang] = meters.

a) What are the dimensions afb andc?
b) Find, by scalingk = T X for some suitabld and collecting parameters in dimensionless groups
R andp, equivalent equations of the form
RXC+pX24+X+1=0, R+ X?+pX+1=0, RX+X*4+X+p=0.
¢) Under what conditions can the original equation be agprated by

ax’ +bx+c=0.

43 09-02-2018



2WAKO - EMI CKP ASYMPTOTISCHETECHNIEKEN - 2018

3.3.8 The catenary

Consider the problem of the catenary. An inextensible cbéiength L, and mass-per-lengtim, is
suspended between the poirts= 0,y = 0 andx = D, y = 0. To keep the chain in position, at
each end a force is applied of which the vertical componeatjisl to half the weight of the chain
(%mg L), and the horizontal component equalko This H is unknown if D is given, but for the
present problem, we assume for simplicity thiats given, whileD is a result.

Parametrise the chain positian= X(s), y = Y (s) and the tensioif (s) and tangent anglg = v (s)
by the arclengtts, leading to

S S
X(s) = / cosyr(t)dt, Y(s) = / siny(t) dt.
0 0
Formulate from the balance of forces, applied to a small@eds, a set of equations foF, ¢, X and

Y:

(T +dT)cogy +dy) — T cosyr =0
(T +dT)sin(y + dyr) — T sinyy = mgds

From symmetry, the tangent angkr%L) and the vertical tension compone‘h(%L) sim//(%L) are
half way the chain equal to zero, while at each end the hat@dansion component is given by:
T(0)cosy(0) =T(L)cosy (L) =H.

Taking all together, we have finally

mo(s — %L))

T= \/ngz(s— L2+ H2, ¢ = arctar( o

Introduce the dimensionless parametes mgL/H. Find an approximate solution (if, ¥, X and
Y) for smalle.

Can you interpret the approximation physically?

3.3.9 A water-bubbles mixture

A mixture of water and air (in the form of bubbles) with volurfraction « air and volume fraction
1 — o water, has a mean densjtyand sound speetlgiven by

o 11—«

1
p =apa+ (1—a)py, — = + .
: PC2  paCZ | puC2

Typical values are,, = 1000 kg/mi, pa = 1.2 kg/m?, ¢, = 1470 m/s,c, = 340 m/s. Develop
strategies to approximatefor values ofa, based on an inherent small problem parameter. When is
¢ minimal? What is the effect of even a very small fraction af(@ommon in the wake of a ship’s
propeller, or in a fresh central heating system)?
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3.3.10 A car changing lanes
A car rides along a double lane straight road givenHay < X < oo, —2b < y < 2b. The position

of the car at time is given by
X=£&), y=n.

A
|
|
I

/

|
|
|
| :
—b 0 b

Figure 3.2: The trajectory of a car that changes lane

For x— — oo, the car is aly = —b, but nearx = 0 it changes lane and shifts smoothlyyto= b
according to a trajectory given by

n(t) = FE®),

whereF is given andt = £(t) is to be found under the condition that all along the trajggtine car
travels with the same spe&t] so

EN2+nM2=V2 andso £(1)2+ F'(§)2E(M)2 = V2.

Note that bothF and its argument have dimension “length”, so F describes a changes of the order
of b over a distance of the order tf we should be able to writE as

F(x) =bf(x/L)
for f = O(1). Take for definiteness(0) = 0, and

f(z) =tanh(z) where f'(z2)=1- f(2)%

We assume that the change of lane happens gradually, such tha

b<<1
&= — .
L
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a. Make the problem dimensionless by the inherent lengile band corresponding time scdgV .
Write £ = b X. Note the appearance of the small paramet&o you see the appearance of a term
of the form f'(¢ X)? If we expand this for small we obtain something like

f'(eX) = f/(0) + eXf"(0) + ...

which is already incorrect fok = O(1/¢), the order of magnitude we are interested in! Therefore
this choice is NOT clever. Indeel,is not the typical length scale fdr.

b. Make the problem dimensionless by the inherent lengtle dcaand corresponding time scale
L/V.Write¢ = LX andt = (L/V)r.

c. By separation of variables we can writas a function, in the form of an integral, ¥t Otherwise,
it is impossible to find an explicit expression & Therefore, we will try to find an asymptotic
expansion for smalt by assuming the Poincaré expansion

X(z, &) = Xo(1) 4+ £2X1(7) + O(?),

and substitute this in the equation, and expand the equalisorasymptotically. Find the first two
terms. Do you see why we can expand in powers’afther than (for example)?

Hint: note that for smal: v1+8=1+35+..., (148 *=1-8+..., anduse

/1 — tanh(x)? dx = tanh(x), /(1 — tanr(x)z)2 dx = tanh(x) — 1 tanh(x)*

3.3.11 A chemical reaction-diffusion problem (regular linit)

A catalytic reaction is a chemical reaction between reastaf which one — the catalyst — returns

after the reaction to its original state. Its réle is entiri enable the reaction to happen. An example
of a catalyst is platinum. The primary reactant is usuallygaitl or a gas. As the catalyst and the

reactant are immiscible, the reaction occurs at the cataly$ace, which is therefore made as large
as possible. A way to achieve this is by applying the catatysihe pores of porous pellets in a so-

called fixed bed catalytic reactor. The reactant diffusemfthe surface to the inside of the pellet.

Meanwhile, being in contact with the catalyst, the reactsobnverted to the final product.

Assume reactani reacts to produdB at the pellet pores surface via ati-order, irreversible reaction
AL B

with concentration inside the pell€t = [ A] mol/m?, production rat&C" mol/m®s and rate constant
k. This reaction acts as a sink term far Under the additional assumption of a well stirred fluid in
order to maintain a constant concentration= Cr at the outer surface of spherically shaped pellets,
we obtain the following instationary reaction-diffusioquation:

oC
E—V'(DVC):—kCn, O<I’~<R,t>0, 9=CR

Cr,00=0, O0<rf <R,

d
C(R,t) =Cg, ﬁC(O,t) =0 t>0,
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where D is the diffusion coefficient o inside the pellet. After sufficiently long time the concen-
tration C attains a steady state distribution within the pellet. Asislg spherical symmetry and a
constant diffusion coefficierlD, we have the stationary reaction-diffusion equation

1d,,dC ) )
ﬁ&(r ¥>_kC, 0<f <R

d
C(R) =Cg, EC(O) =0.

The net mass flux into the pellet, an important final resultijiien by 4¢ RZDg—rC(R) (Fick's law).
We make the problem dimensionless as follows:

C 3 , kRCR!?
C= -~ r= =] ¢ = =
Cr R D
such that
1d/,dc 2 n
r—ZE(I’ a)-(]ﬁc, O<r<1,

c(l) =1, ¢(0) =0,

where the primg ") denotes differentiation with respect itop ¢ is called the Thiele modulus, and
reactionorden=1,2,3,....

We are interested in the asymptotic behavioucdbr ¢ = ¢?> — 0. Assume a regular Poincaré
expansion ot in powers ofs and find the first three termelint. Introducey = rc.

3.3.12 The pivoted barrier

Consider a horizontal barrier of length free on one end and pivoted at the other end, such that it can
swivel horizontally around a vertical pivot. The hinge isistructed in such a way that the barrier is
fixed perpendicularly to the upper end of a vertical hollowrmer of diameteB and lengthH. This
upper end is closed, the other end is open. With this opentendyinder is placed over a vertical
axis which is firmly anchored in the ground. Of course, thglkrof the axis is more thaH and the
diameter of the axidy, is less tharB.

Depending on the clearance between cylinder and axis, &nérnigth of the cylinder, the free end of
the barrier (which is otherwise perfectly stiff) will leaman from the exactly horizontal position by
an anglex of the barrier with the horizon. The question is: how mucH thils be.

You may assume that the construction is reasonable. In wthets, the clearance will be small but
not very small, and the length of the cylinder is ample.

Show by elementary geometry that
B = H tana + bcosa.

We can immediately see thatifhappens to be small, such that tar: @ and cosx ~ 1, then

B—-b
P —

H
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Figure 3.3: Slightly tilted barrier

For many practical applications this may be good enoughthmuapproach is very ad-hoc and not
systematic. For example, how would we make higher ordeectans? We have two dimensionless
parameters (for examplB/H andb/H, or (B — b)/H andb/H, etc.) and it is of interest to see
by what process and which assumptions the approximatioeaappWe will consider two limits:
relatively smallB — b, and relatively smalb.

Reformulate the problem as one of finding a zero of a 4-th ggdgmomial equation irX = sina:
b?X* — 2HbX® + (H? + B? — 2b*)X? 4+ 2HbX + b? — B* = 0.

A formal solution is theoretically possible (Gerolamo Gard, 1545) but difficult and clumsy. We
will now try to make reasonable approximations to constamcadequate and transparent approximate
solution.

a) Divide the equation blg?. We assume tha is slightly larger tharb, while H is of the same order
of magnitude a$. This is made explicit by writing
H 2 2
A= B B °=b“(1+¢) whereO<e«x1.
(Using B2 andb? is for convenience later.) Assess the order of magnitudéekarious terms.
How big is X in terms ofe? RescaleX and find an approximate solutiok for smalle.
b) Divide the equation byd2. We assume thdi is much smaller thatd, while B is of the same
order of magnitude as. This is made explicit by writing

B b

M:B’ 8=ﬁ'

Assess the order of magnitude of the various terms. How bl iis terms ofs? RescaleX and
find an approximate solutiok for smalle.
¢) How does solution (a) compare with solution (b)? Show they are the same B ~ b.
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Chapter 4

Method of Slow Variation

4.1 Theory

4.1.1 General Procedure

Suppose we have a functignx, ) of spatial coordinateg and a small parameter, such that the
typical variation in one direction, say, is of the order of length scale™. We can express this
behaviour most conveniently by writing(x, vy, z, &) = ®(¢eX, Y, z, ). Now if we were to expand
for smalle, we might, for example, get something like

Dex,y,2,e) = D(0,y,z 0) + e(XxPx(0,y,2,0) + D.0,y,z0) + ...,

which is only uniform inx on an intervalO, L] if L = O(1), and the inherent slow variation on the
longer scale ok = O(e 1) would be masked. It is clearly much better to introduce tladestvariable
X = ¢X, and a (assumed) regular expansiogi, y, z, ¢)

DX, Y,2Z, &) = uo(&)po(X,y,2) + ... (4.2)

now retains the slow variation iX in the shape functions of the expansion. In other words,¢hked
variable X in combination with order functiop yields with lim,_, o u51CI> thedistinguished limir
significant degeneratioof ¢.

This situation frequently happens when the geometry imalig slender. The theory of one dimen-
sional gas dynamics, lubrication flow, or sound propagatiohorns (Webster's horn equation) are
important examples, although they are usually derived ystesatically, without explicit reference

to the slender geometry. We will illustrate the method bathheat flow in a varying bar, quasi 1-D

gas flow and the shallow water problem.

4.1.2 Example: heat flow in a bar

Consider the stationary problem of the temperature digiah T in a long heat-conducting bar with
outward surface normal and slowly varying cross sectios. The bar is kept at a temperature dif-
ference such that a given heat flux is maintained, but is wikerisolated. As there is no leakage of
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heat, the flux is constant. With spatial coordinates maded#ionless on a typical bar cross section,
we have the following equations and boundary conditions

V2T =0, VT.n=0, // EclS:—Q.
40X

After integratingV2T over a slicex; < x < X», and applying Gauss's theorémve find that the axial
flux Q is indeed independent af

We will assume here the cross section and the temperatudecfiellar symmetric, but that is not
a necessary simplification for a manageable analysis. Asudtn@e have in cylindrical coordinates
(X, 1,0)

9°T 18(8T>_0 oT oT
a)

+ Ny+—n =0 Zn/RraTdr— Q
%2 rar ax o oar 7 o ox T

The typical length scale of diameter variation is assumelletanuch larger than a diameter. We
introduce the ratio between a typical diameter and thistleagale as the small parameteand write
for the bar surface

SX,r)y=r —R(X) =0, X =c¢X,

where(x, r, 8) form a cylindrical coordinate system (see Figure 4.1). Bitimg R as a continuous

Figure 4.1: Slowly varying bar.

function of slow variableX, rather tharx, we have made our formal assumption of slow variation
explicit in a convenient and simple way, sinBg = ¢Rx = O(e). From calculus (section 8.3) we
know, thatV Sis a normal of the surfac = 0. So we can write

n~VS, or nee+ne ~—¢cRxe+6.

The crucial step will now be the assumption that the tempegas only affected by the geometric
variation induced byR. Any initial or entrance effects are ignored or have disappé. As a result, in
the limit of smalle,

the temperature field (x,r, &) = T(X,r, ) is a function ofX,
rather tharx — in other wordsT yields the distinguished limit 6f —and
aT

oT
its axial gradient scales anas — = ¢— = O(¢).
g an %~ ax €]

1The integral of divergenc&- % over a volumeS is equal to the outward flux integral &f across its surface<:
JoV-vdx = f,,v-ndS.
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For simplicity we will write in the followingT, instead ofT . If we rewrite the equations from into
X, we obtain the rescaled heat equation

1
82Txx + r—(l’Tr)r =0. ()
At the wallr = R(X) the boundary condition of vanishing heat flux is
—&’TxRx + T, =0. (1)

The flux condition, for lucidity rewritten witlQ = 2w eq, is given by

This problem is too difficult in general, so we try to utilizZeet small parametes in a systematic
manner. From the flux condition, it seems thiat= O(1). Since the perturbation terms a@ge?), we
assume the asymptotic expansion of Poincaré-type (nataltharms are independent of)

T(X, 1, 8) = To(X, 1) + 2Ty (X, 1) + O(h).

After substitution in equation« and boundary condition (), further expansion in powers°aind
equating like powers of, we obtain to leading order the following equatiorrin

(rTor)r =0 with To, =0 atr = R(X) and regular atr = 0.
An obvious solution islp(X, r) is constant. Sinc& is present as parameter we have thus
To = To(X).
We can substitute this directly in the flux condition, to find

1 dTo
ZRA(X)— = —
>R 05 q

and therefore
q

—d
1

sR2(8)
We can go on to find the next teri, but this leading order solution contains already most ef th
physical information.

X
To(X) = T —/0 .

In summary: we assumed that the slowly varying bar inducdsvalys varying temperature distri-
bution. This is not always true, but depends on the type ofighy phenomenon. Then we rescaled
the equations such that we used this slow variation. Afteuméng an asymptotic expansion of the
solution we obtained a simplified sequence of problems. Thgnal partial differential equations
simplified to ordinary differential equations, which are éasier to solve.

It should be noted that we did not include in our analysis amynolary conditions at the ends of the
bar. It is true that the present method fails here. The fourgtisn is uniformly valid onR (since
R(X) is assumed continuous and independent)pbut only as long as we stay away from any end.
Near the ends the boundary conditions indyegradients ofO(1) which makes the prevailing length
scale agairx, rather thanX. This region is asymptotically of boundary layer type, ahdwdd be
treated differently (see below).
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4.2 Exercises

4.2.1 Heatfluxin2D

The same problem as before, but now strictly in 2D.

Consider the stationary two-dimensional problem of thepematureT in a long heat-conducting bar
of typical heightH, slowly varying (.e.on a length scal& > H) in diameter. The bar is thermally
isolated, but axially a temperature gradient is maintairied example by applying a temperature
difference at the ends. However, we will not consider thgmeburhood of the ends, and we will not
explicitly apply boundary conditions at the ends. Insteael will assume a given axial heat flux.

In dimensionaform, we have

9*T  9°T X H
W+a—y2=o on — oo < X < 00, O<y<Hh<E>, SZT

with ¢ small, shape functioh(¢) = O(1), and a given cross sectional heat flux (per m) equal to
Hh _ Hh 3
/ ¢-exdy=/ —k—Tdy=Q,
0 0 0X

where& :q—kVT is the heat flux density vector. The dimensions[drg= K, [H] = [L] = [X] =
[yl =m,[¢] = Wm2, [K] = Wm~KL, [Q] = WmL.

a) Write the boundary condition of thermal isolati@}, A = 0, explicitly in terms ofh.

b) Make the problem dimensionless by scaling lengths orc&ytiar heightH, and the temperature
on the intrinsic temperature of the problem. (Hint: makeesiimat the cross sectional heat flux
becomes unity.)

c) Apparently, the essential co-ordinate in (dimensia)lgsdirection isex, and significant changes
in x-direction are felt only on a length scate= O(¢~1), so we rewriteX = ex.

Assume that the field varies slowly in(i.e. essentially inX, while any end-effects are local and
irrelevant for thex’s considered).

Solve the problem to leading order of an assumed asymptgbansion of (dimensionless) tem-
peraturelT = T(X, Y, ¢) in powers ofe.
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4.2.2 Lubrication flow

Lubrication theory deals with an incompressible viscous b not-large Reynolds number, through
a narrow channel of slowly varying cross section.

Consider the Navier-Stokes equations in a two-dimensioaalow channel, with prescribed mass
flux. In practice this flux is created by a pressure differemcpressure gradient, but by using the flux
here, we can estimate the typical flow velocity and thus thenBlels number. We have

du  duy ap 3%u  9%u
p(u—-l—v—)—i——zu( + ;

ax o ay/ | ax axz ' ay2
p<ua—v+v@) 4P :M(a_z‘er&)
X oy oy ax2 -~ ay2)’
ou dv _
ax oy T

for the velocityv = (u, v), pressurep, densityp, and viscosityu in the channel
X X
— [ < —
00 < X < 00, Hg(L)\y\Hh<L).

(Neither end conditions i nor originy = 0 are important. If convenient you may assugne- 0
somewhere inside or near the channel.) Boundary conditicma vanishing velocity at the walls:

u=v=0 aty= Hg(%), andy = Hh(%)

and, due to an assumed pressure difference, a fixed mass flux

Hh
[ puxydy=F.
Hg

The dimensionless channel opening<th — g = O(1). We assume the typical length scalef the
channel variations large compared to the typical opeingoe = H/L is small. The mass fluk,

density p and viscosityu are such, that the resulting typical veloclily corresponds to a Reynolds
number Re= pU H/u of order 1 or less.

a) Make the problem dimensionless by scaling lengths orc@ygihannel heighH, the velocity on
the intrinsic velocity of the problem, and the pressure anittherent pressure required to have
flow at all. (Hint: make sure that the cross sectional massfacomes unity, and that the pressure
gradient balances the viscous terms.)

b) Apparently, the essential co-ordinate in (dimensia)lgsdirection isex, and significant changes
in x-direction are felt only on a length scate= O(¢™1), so we rewriteX = ex.

Assume that the field varies slowly in(i.e. essentially inX, while any end-effects are local and
irrelevant for thex’s considered).

Solve the problem to leading order of an assumed asymptgiansion of (dimensionless) ve-
locity ¥ = 9(X,y,¢) and pressurgp = P(X, Y, ¢) in powers ofe. (Hint: by construction is
u = 0O(1), butv and p will require rescaling ire).

As is common in incompressible flow problems, the pressuoalisdetermined up to a constant.
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4.2.3 Quasi 1D gas dynamics

Consider a compressible, subsonic inviscid irrotatiormal through a slowly varying cylindrical duct,
given byr = HR(x/L), with H « L. The flow is assumed nearly uniform. Because of symmetry,
it is assumed to be independent of the circumferential dnated. As the flow is irrotational, we
can assume a potentialfor the velocityv = V¢, leading to a Bernoulli integral of the momentum
equations. Due to the absence of friction and heat condueti® may assume adiabatic changes,
leading to a pressune of the formp = po(p/p0)?, Wherepy andpg are reference values apd= 1.4

is a dimensionless gas constfart related quantity is the sound speed giverchby= yp/p.

Inside the duct X r < HR(x/L) we have the equation of mass conservation
. b 19 -
V. (pv) = a—x(pu) + r_a_r(rpv) =0, wherev = V¢ = ue, + ve

and Bernoulli’'s equation

Nl
(S
)
_|_
I
m
(@}

y—1 =y§, %:(iy’

whereE is an integration constant, fixing the thermodynamical proes of the problem. The duct
walls, with normal vecton, are impermeable, so

v-Nn=V¢-n=0atr = HR(x/L),

while a mass flux= is given by

HR
271/ ourdr = F.
0

a) Make the problem dimensionless by scaling lengths oc#@ypiuct radiuH, pressure and density
on the reference valugs and pg, and the velocity on the corresponding reference soundispee
Co = +/¥Po/po. In order to have an interesting problem, we assume thaethdting dimension-
less quantitie/ po, 0/ o, C/Co, ¥/Co, E/C3, F/H?pocs = O(1).

b) Apparently, the essential co-ordinate in (dimensias)lgsdirection isex, and significant changes
in x-direction are felt only on a length scate= O(¢~1), so we rewriteX = ex.

Assume that the field varies slowly in(i.e. essentially inX, while any end-effects are local and
irrelevant for thex’s considered).

Solve the problem to leading order of an assumed asympiqiansion of (dimensionless) poten-
tial = ¢ (X, 1, &) and density = p(X, Y, €) in powers ofs. (Hint: by construction ist = O(1),
but ¢ will require rescaling ire).

Note: the very last equation is an algebraic equation thatdae solved numerically.

2Note, that this type of flow is called: 1D gas dynamics. A lratme would be: quasi-1D gas dynamics.
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4.2.4 \Webster's horn

Consider acoustic waves of fixed frequemngcyhrough a slowly varying horn (duct). The typical wave
length is long,i.e. of the same order of magnitude as the typical length dcaléthe duct diameter
variations. For simplicity we consider a two-dimensionafr) with a constant lower wall given by
y = 0 and an upper wall given by = Hh(x/L), whereh = O(1) is dimensionless anH « L.

The sound field is given by the velocity potentigl where velocity isv = V¢ (and pressurg =
—iwpo¢ but this is here unimportant), obeying the reduced wavetemquaHelmholtz equation)

V2 + k¢ =0, in —oo<x<oo, 0<y<Hh(x/L),

wherek = w/c is the free field wave number, which is equal to/2.
The wall (with normal vectorg, andn) are impermeable, so we have the boundary conditions

v-e, =0 aty=0, v-n=0 aty= Hh(x/L).
Assume that there is a sound field (the problem is linear,seribugh to assume that= 0).

a) Make the lengths in the problem dimensionless on thedydiact heightH and¢ on an (unimpor-
tant) reference valu®. Verify that the equations remain the same. Introduce tredlgrarameter
e =H/L.

b) Apparently, thex variations scale o, and so the essential co-ordinate in (dimensionlgss)
direction isex. Significant changes ir-direction are felt only on a length scate= O(¢™1), and
S0 we rewriteX = gx.

Note that the dimensionlegs= O(¢), so we scal& = ¢«.
Assume that the field varies slowly K (any end-effects are local and irrelevant here).

Assume in scaled coordinates than obvious asymptotic expansionsdnand derive the equation
for (leading order)po. This equation is called “Webster's equation”.

c) Solve this equation fdn(z) = e*2.
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4.2.5 Shallow water waves along a varying bottom

Consider the following inviscid incompressible irrotaiad 2D water flow in(x, z)-domain along a
slowly varying bottom. The bottom is given lzy= b(x/L), whereL is a typical length scale along
which bottom variations occur. The water level is givenzay h.

The velocity vectow can be given by a potentigl
v =Vo.
Conservation of mass requires
V2¢=O for —co <X <00, b<z<h.

Because of the assumptions we can integrate the momentuatieggwo Bernoulli's equation and

obtain for pressur@ o

3IVoIP+ = +9z=C,
Lo
where pg denotes the water density,the acceleration of gravity, ard is a constant, related to the
chosen reference pressure level.

At the impermeable bottom we have a vanishing normal compootthe velocity, yielding the

boundary condition
dpob 9
V¢-V(b—2) = —¢———¢ =0 atz=Dhb.
aX 0xX 0z

Since the water surface= h is a streamline, it follows that for a particle moving alofigt), z(t))

dz _ dh _ ahd ;
we haved—f =G = &d_)t( leading to

0 oho

99 _Mio .

0z dX 0X
Furthermore, the water surface takes the pressure of tlabawe the water, say = pa, SO

Vel +gh=C — Paatz=n
Lo

The water flow is defined by means of a prescribed volumeRluwhich is the same for all positions

X. h
/ % dz=F.
b 0X

By assuming far upstream a constant bottom level b, a constant water level= h,, = b, + Dy
and a uniform flow with velocityJ,, = F/D,, we can determine the Bernoulli constant in physical
terms D

a | 12

Introduces = D, /L wheres is small.

a) Make the problem dimensionless. Scale lengthBgnvelocities orlJ,,. Assume that the inverse-
squared Froude number (or Richardson numpes) gD,,/UZ2 = O(1).

b) Solve the problem to leading order for snmwally application of the method of slow variation. Note
that both¢ andh are unknowns, and have to be expanded. iBottom variationb and constants
F andC — pa/pg, on the other hand, are given.

Note. The very last equation cannot be integrated explicitly.
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4.2.6 A laterally heated bar

A 2-dimensional slowly varying heat conducting bar is didmat by —co < X < 00, 0y <
Hh(x/L), where the geometty is a smooth function of its argument. The bar is kept alonddwver
side (aty = 0) at fixed temperaturé& (x, 0) = 6y, and along the upper side fat= Hh(x/L)) at fixed

temperaturerl (x, Hh) = 6;. This constitutes a stationary temperature distribufiaw, y), which
satisfies the heat equation

9°T  9°T

W—Fa—y2=o.

a) Make the problem dimensionless. Scale lengthsicand temperature by = 6 + (61 — 6p)T.

Introduce the geometric ratio = H/L. Assume that is small. As the notation suggestsz)
does not depend anand O< h(z) = O(1).

b) Assuming thafT is slowly varying with geometnh in x (no end effects), solve the problem
asymptotically for smalt to first and second order by application of the Method of Slariation.
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Chapter 5

Method of Lindstedt-Poincaré

5.1 Theory

5.1.1 General Procedure

When we have a functiog, depending on a small parametegrand periodic int with fundamental
frequencyw (¢), we can writey as a Fourier series

yt,e) = Y Agle) e (5.1)

N=—00

If amplitudes and frequency have an asymptotic expansiosmalle, say
Ane) =Ano+eAnr+..., w(e) =wo+ew1+ ..., (5.2)

we have a natural asymptotic series expansiory foithe form

y(t, &) = i Ano€" tg i (An,1+inw1tAn,o) gineot 1 (5.3)
N=—00

N=—00

This expansion, however, is only uniform tiron an interval0, T], whereT = o(¢~Y). On a larger

interval, for examplg0, e~1], the asymptotic hierarchy in the expansion becomes invhtdause

et = O(1). This happens because of the occurrence of algebraicallyigg oscillatory terms, called
“secular terms”Secular= occurring once in a century, asdeculun= generation, referring to their
astronomical origin.

Definition. The terms proportional t8" sin(nwot), t™ coSNwet) are called $ecular term& More
generally, the name refers to any algebraically growinghgethat limit the region of validity of an
asymptotic expansion.
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It is therefore far better to apply first a coordinate transf@tiont = w(e)t, introduceY(z, ¢) =
y(t, ¢), and expand/, rather thary, asymptotically. We get

o]

Yr.o)= Y A€ = > A€ +e ) AT+ (5.4)

nN=—00 N=—00 N=—00

which is now, in variabler, auniformly validapproximation!

The method is called tHandstedt-Poincaré methaut themethod of strained coordinatels practical
situations, the functiory(t, ¢) is implicitly given, often by a differential equation, analtbe found. A
typical, but certainly not the only example [38] is a weakbnhnear harmonic equation of the form

y' +eh(y,y) +a’y =0,

whereh is assumed to allow the existence of one or more periodidisakifory = O(1) with
frequencyw(e) ~ o for ¢ — 0. In view of the above, it makes sense to construct an asyimpto
approximation likeY = Yy + &Yy + £2Y, + - - - with a rescaled variable = wt. However, except for
trivial situations, the frequenay is unknown, and has to be found too. Therefore, when coristguc
the solution we have to allow for an unknown coordinate fi@nsation. In order to construct the
unknownw (¢) we expand this in a similar way, for example like

T = (wo + cw1 + 2wy + .. )t (5.5)

but details depend on the problem. Note that the only purpbge scaling is to render the asymptotic
expansion ofY regular, so it is no restriction to assume toy something convenient, likey = «.
The other coefficient®;, w,, ... are determined from the additional condition that the adptigp
hierarchy should be respected as long as possible. In ottrelswsecular terms should not occur. We
will illustrate this with the following classic example.

5.1.2 Example: the pendulum

Consider the motion of the pendulum, describled the ordinary differential equation
6 +K?sin(@) =0, with 6(0) = ¢, 6'(0) =0,

where O< ¢ « 1. We note that = O(e) so we scal® = ¢y to get (after dividing by)

¥ K2y — 1293 +..) =0, with ¢(0) =1, ¥/(0) =0,

If we are interested in a solution only up @(e?) we can obviously ignore the higher order terms
indicated by the dots.

Following the above procedure, we introduce the transftona = wt to obtain
wzl//// + Kz(l// _ %82_‘#3) — 0’

where the prime indicates now differentiationtoSince the essential small parameter is apparently
€2, we expand
w=wo+ w1+ ..., U= Yo+ +...,

IThe equation may be simpified by rescaling timefby Kt, such that factoK 2 cancels out.
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and find, after substitution, the equations for the first twaeos

Wiy + Ko =0, ¥o(0) = 1, 5(0) =0,
Wi + K2y = —2mom1vg + £K2YS,  ¥1(0) =0, ¥1(0) =0.
Note that we are relatively free to choosg, as long as it i0(1). (It is only a coordinate transfor-

mation that would automatically be compensated in the emuaiClearly, a good choice 5o = K
because this simplifies the formulas greatly. The solutigiis then

Yo =C0St, o= K,
leading to the following equation faf,

¥y + Y1 = 2K oy cost + & cos't
= 2K 'w; COST + 3 COST + 2 COS &,

since codt = 2 cost + 3 cos I (see section 8.4).

At this point it is essential to observe that the right-haide consists of two forcing terms: one with
frequency 3 and one with 1, the resonance frequency of thdeld-side. This resonance would
lead to secular terms, as the solutions will behave tilkin(z) and r coqr). This would spoil our
approximation if we had no further degrees of freedom. H@sethis is where our rescaled time
comes in! We know that by scaling with tleerrectfrequencyw of the system there will be no secular
terms. So we have to choose such, that no secular terms arise.

Therefore, in order to suppress the occurrence of secutastehe amplitude of the resonant forcing
term should vanish, which yields the next order teragndi,. We thus have

1
w1 = _EK

leading to

Y1 = Ay cost + Bysint — 515 cos 3.

With the initial conditions this is
Y1 = 155(cost — cos F).
Altogether we have eventually

6(t) = ecost + %283(00& — Cos 3:) + 0>, 1= K(l - 1—1682 + 0(84))t.
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5.2 Exercises

5.2.1 A quadratically perturbed harmonic oscillator

Consider the following problem foy(t, )
y' +y—y*=0, with y0) =¢ Y0 =0
asymptotically for small positive parameter

i) Determine a second-order (three term) straightforwagghasion and discuss its uniformity for
larget.

ii) Construct by means of the Lindstedt-Poincaré methodeftrad of strained coordinates”) a second-
order (three term) approximate solution.

5.2.2 A weakly nonlinear harmonic oscillator

Consider the following problem foy(t, ¢)
y'+@+y?y=0, with yO=¢ Yy (0 =0
asymptotically for small positive parameter

i) Determine a second-order (two term) straightforwardaggion and discuss its uniformity for
larget.

ii) Construct by means of the Lindstedt-Poincaré methode{trad of strained coordinates”) a second-
order (two term) approximate solution.

5.2.3 A weakly nonlinear, quadratically perturbed harmonic oscillator

Consider the system governed by the equation of motion
y'+y+eay’=0, y0) =1 y(©0 =0,
asymptotically fore—0, whereaw = O(1).

a) Determine a second-order (three term) straightforwapdmsion and discuss its uniformity for
larget.

b) Determine a second-order (three term) expansion, vafidafget, by means of the Lindstedt-
Poincaré method.
5.2.4 A coupled nonlinear oscillator

Determine a first-order uniformly valid expansion for theipeic solution of

U+u=e(l-2Uu
cZ+z=1u°

asymptotically fore — 0, wherec = O(1) is a positive constant and z = O(1).
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5.2.5 A weakly nonlinear 4th order oscillator
Determine a periodic solution 1©(s) of the problem
u/// + u// + u/ + u= 8(1 _ u2 _ (u/)Z _ (u//)2)<u// + u/)

asymptotically fore — 0, whereu = O(1).

5.2.6 A weakly nonlinear oscillator

Use Lindstedt-Poincaré’s method to get a two-term asyngEpproximationy = y(t) to the problem

Y +y=eyy? y0 =1 y(© =0

5.2.7 The Van der Pol oscillator

Consider the weakly nonlinear oscillator, described by\tae der Pol equation, for variablg =
y(t,g)int:

y' +y—el—-y)y =0
asymptotically for small positive parameter

Construct by means of the Lindstedt-Poincaré method (“otetif strained coordinates”) a second-
order (three term) approximation ofperiodic solution.

Note that not all solutions are periodic (see for examplepthese portrait in figure 8.2), so you have
to make sure to start on the right trajectory. Otherwise,am@uree to make the solution unique in any
convenient way. Take for example initial conditions

y(0) = A(e), y(0) =0

with A(e) to be determined.
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Chapter 6

Matched Asymptotic Expansions

6.1 Theory

6.1.1 Singular perturbation problems

If the solution of the problem considered does not allow all@gexpansion, the problem is singu-
lar and the solution has no uniform Poincaré expansion irsémee variable. We will consider two

classes of problems. In the first one the singular behav&af boundary layer type and the solution
can be built up from locally regular expansions. The sotutieethod is called “method of matched
asymptotic expansions”. In the other one more time or lesg#ies occur together and a solution is
constructed by considering these length scales as if theg independent. The solution method is
called “method of multiple scales”.

6.1.2 Matched asymptotic expansions

Very often it happens that a simplifying limit applied to a m@omprehensive model gives a correct
approximation for the main part of the domain, but not evdrgrme: the limit isnon-uniform This
non-uniformity may be in space, in time, or in any other Jaléa For the moment we think of non-
uniformity in space, let's say a small region neax= 0. If this region of non-uniformity is crucial for
the problem, for example because it contains a boundaryittmmdor a source, the primary reduced
problem (which does not include the region of non-unifoynis not sufficient. This, however, does
not mean that no use can be made of the inherent small pararmbte local nature of the non-
uniformity itself gives often the possibility of anothemrtection. In such a case we call this a couple
of limiting forms, “inner and outer problems”, and are evide of the fact that we have apparently
physically two connected but different problems as far &dbminating mechanism is concerned.
Depending on the problem, we now have two simpler probleerjrgy as boundary conditions to
each other via continuity anatchingconditions.
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Non-uniform asymptotic approximations

If a function ofx ande is “essentially” (we will see later what that means) dependéa combination
like x /¢ (or anything equivalent, likéx — xp)/¢?), then there exists no regular (that means: uniform)
asymptotic expansion for a = O(1) considered. A different expansion arises wieg O(e), in
other words after scaling= x/e wheret = O(1). If the limit exists, we may see something like

X
@(x,e):q;(g,x,s) ~ (00, X,0)+..., (st ) =t et, ) ~@(t,0,0)+. ...

wherex is assumed fixed and non-zero.
Practical examples are

e ¢ sin(x+¢e) =0+ siNX +ecosx +... on x € (0, 00)
eltsinet+e)=et4et+1)+... ontel0 L]

X 1
arctan(;) + tan(ex) = % + ¢ <x — ;) 4+... on x € (0, 00)

arctant) + tan(s%t) = arctanit) + ¢t +... ont € [0, L]

1 1 g2
)(2—-|-82:ﬁ_F+ OnXE(0,00)
1 -2

=¢ onte[0L

£2t2 + g2 1+1t2 (0. L]

where L is some constant. Of course,xfoccurs only in a combination lik&/e, the asymptotic
approximation becomes trivial after transformation, Imaittis only here for the example.

We call this expansion theuter expansionprincipally valid in the %k = O(1)"-outer region. Now
consider thestretched coordinate

t=-—.
£

If the transformed¥ (t, ) = (X, ¢) has a non-trivial regular asymptotic expansion, then wk cal
this expansion thénner expansionprincipally valid in the t = O(1)”-inner region, orboundary
layer. The adjective “non-trivial” is essential: the expansiongtbesignificant i.e. different from the
outer-expansion rewritten in the inner variabl@ his determines the choice (in the present examples)
of the inner variablé = x/e. The scaling(e) = ¢ is the asymptoticallyargestgauge function with
this property.

Note the following example, where we hatleee inherent length scalex = O(1), X = O(e),

x = O(e?) and therefore two (nested) boundary layees st andx = &2z,

log(x/e +¢) = —log(e) + log(x) +...... on x € (0, 00)
log(t + &) = |og(t)+§+... onte (L]
log(et + &) = log(e) + log(t +1) on 7 € [0, L]
An important relation between an inner and an outer expansidhe hypothesis that thapatch
the respective regions of validity should, asymptoticadlyerlap (known as theverlap hypothes)s
Algorithmically, one may express this as follows, known a@an\Dyke’s RuleThe outer limit of the
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inner expansion should be equal to the inner limit of the paigansionIn other words, the outer-
expansion, rewritten in the inner-variable, has a reguddes expansion, which eqgualto the regular
asymptotic expansion of the inner-expansion, rewrittetihénouter-variable.

Suppose that we have an outer expangigfy + w1¢1 + ... in outer variablex and a corresponding
inner expansiongyo + A1¥1 + ... ininner variablet, wherex = §t. Suppose we can re-expand the
outer expansion in the inner variable and the inner expangithe outer variable such that

po(e)po(8t)  + wm1(e)e1(8t) + ... = Ao(e)no(t) + Ar(e)m) + ...,
Lo(e)Yo(X/8) + A1(e)¥1(X/8) + ... = uo(e)bo(X) + n1(e)01(X) + ...,

Then for matching the results should be equivalent to therardnsidered. In particular the expansion
of nk, written back inx,

Aro(&)no(X/8) + A1(e)n1(X/8) + ... = po(€)so(X) + n1(e)6a(X) + ...,

should be such thaf = 6 fork =0, 1, ---.

A simple but typical example is the following function ane [0, co)
f(X, &) = sin(x + &) + € %/ cosx
with outer expansion witlt = O(1)
F(x, &) = sinx + £ cosx — 3e?sinx — 23 cosx + O(e*)
and inner expansion with boundary layee(inner) variable = x/e = O(1)
G(t,e) =e'+et+1) — 3e2?e — L3t + 13+ O(e?).
The outer expansion in the inner variable
F(et, &) = sin(et) + ¢ coget) — %‘82 sin(et) — %83 coget) + O(e?)
becomes re-expanded
Fin(t,e) = et +1) — 23t + 1% + O(e”)
which is, rewritten inx (and re-ordered in powers ef, given by
Fin(X/e, &) = X — 2x° + (1 — 3x%) — 1e%x — 2%+ O(e?).
The inner expansion in the outer variable
G(x/e,e) =X +e+ (1— 3x) e —2(x + &)+ O(?
becomes re-expanded
GoutlX, &) = X — X3+ e(1 — 3x?) — e?x — L3+ O(e?).
Indeed isGou(X, €) functionally equal td=,(X/¢, €) to the order considered.

Another way to present matching is via an intermediate sgafConceptually, this remains closer to
the idea of overlapping expansions than Van Dyke’s matchitgy but in practice it is more labori-
ous. Suppose we have an outer expansigr, ¢) in the outer variable, and a corresponding inner
expansiorn(t, ¢) in the boundary layer variabte wherex = §t andé(¢) = o(1). Then for matching
there should be an intermediate scalig= n&, with! § < n <« 1, such that under this scaling,
the re-expanded outer expansidf(né, ¢)lexp iS equal (to the orders considered) to the re-expanded

1in other words$ = o(») andn = o(1).
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inner expansioG(}£, ¢)]exp. Note that the result must not depend on the exact choige arfid the
expansions should be taken of high enough order.

With the above example we have with (for exampey .
F(n&, &) = SiN(pE) + & costng) — 3% sin(ng) — g&° cosné) + O(e*)
= +e— %3 — Len?6? — e%ng — L3+ S0+ ..
which is indeed to leading orders equal to
G(lg.e) =€/ (26 +1) — 3e°(16)° €7/ — 226 +1)° + O(e?).
=nE+e— gmE+e)’+....

The idea of matching is very important because it allows onmadve smoothly from one regime into
the other. The method of constructing local, but matchixgaesions is therefore called “Matched
Asymptotic Expansions” (MAE). An intermediate variabletypically used in evaluating integrals
across a boundary layer (see below).

Constructing asymptotic solutions

The most important application of this concept of inner- anter-expansions is that approximate so-
lutions of certain differential equations can be conseddbr which the limit under a small parameter
is apparently non-uniform.

The main lines of argument for constructing a MAE solutioma tifferential equation satisfying some
boundary conditions are as follows. Suppose we have thafisly (example) problem.

e  dy
Assuming that the outer solution@(1) because of the boundary conditions, we have for the equation
to leading order

dgo
— —2x =0,
dx
with solution
@Yo = X2 + A

The integration constanA can be determined by the boundary conditiggi0) = 2 atx = 0 or
vo(1) = 2 atx = 1, but not both, so we expect a boundary layer at either endri8yand error
we find that no solution can be constructed if we assume a laoyrddyer atx = 1, so, inferring a
boundary layer at = 0, we have to use the boundary conditiorxat 1 and find

0o = x? + 1.
The structure of the equation indeed suggests a correcti@€, so we try the expansion
o =qgo+epr+ %o+
For ¢4 this results into the equation

doy | Ppo _
dx dx2
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with ¢1(1) = 0 (the O(e)-term of the boundary condition), which has the solution
@1 =2— 2X.

Higher orders are straightforward:

d(pn .
~1_-0 th ¢,(1) =0
Ix . with ¢n(1) s

leading to solutiong, = 0. We find for the outer expansion
@ =x>4+1+2¢(1—x)+ O(N). (6.2)

We continue with the inner expansion, and find neae 0, an order of magnitude of the solution
givne byy = Ay, and a boundary layer thickness givenby §t (bothA andé are to be determined)

exd?y  Ady
52 dt2 + 5 dt 26t =0.
Both from the matching¢,uer — 1 for x | 0) and from the boundary conditiop(©) = 2) we
have to conclude thapiner = O(1) and sor = 1. Furthermore, the boundary layer has only a
reason for existence if it comprises new effects, not deedrby the outer solution. From the heuristic
correspondence principlee expect thatif a meaningful rescaling corresponds witbistinguished
limit or significant degeneratigrwhile (i) new effects are only included if we have a new equation;
in this case ifid?y/dt?) is included. S@é~2? must be at least as large &<, the largest 06~ ands.
From the principle that we look for the equation with the @shstructure, it must be exactly as large,
implying a boundary layer thickness= ¢. Thus we have the inner equation
¢y dy
szt 2¢%t = 0.
From this equation it wouldeenthat we have a series expansion without @&)-term, since the
equation for this order would be the same as for the leadidgroHowever, from matching with the
outer solution:
QGouter— 1+ 26 + 22 —=2) +--- (x=¢t, t = 0O(1)),

we see that an addition&(e)-term is to be included. So we substitute the series expansio

o =Yoo+ e+’ +--- (6.3)

It is a simple matter to find

dzl//o dl//o _t

W—FE:O’ Yo(0) =2 — Yo=2+ As(e -1,

d?y; | dyy -

oz T T 0, v1(00=0 — y5=A(e"-1),

d? d

_d:zz + % =2t, Y(0)0=0 —> Y= t?2 — 2t + Az(eit -1),

where the constant8y, A;, A, - -- are to be determined from the matching condition that inner a
outer solution should be asymptotically equivalent in tegion of overlap. We follow Van Dyke’s
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matching rule, and rewrite outer expansion (6.2) in innefakde t, inner expansion (6.3) in outer
variablex, re-expand and rewrite the resultxnThis results into

X2 4+ 14261 —X) + O(e%) ~ 1+ 26 + X% — 2ex + O(£%) (6.4a)
24 Ag(et —1) + eAr(et —1) + 2(t — 2t + Ay(e™' —1)) + O(?)
~2— Ag— e+ X2 —2ex — 2 A, + O(ed) (6.4b)

The resulting reduced expressions (6.4a) and (6.4b) musincdonally equivalent. A full matching
is thus obtained if we choos&, = 1, A; = -2, A, = 0.

Composite expansion

If the boundary layer structure is simple enough, in paldicii we have just a simple boundary layer
with matching inner and outer expansions, it is possiblecmlmne the separate expansions into a
single uniform expansion, called a composite expansion.

Suppose we have an outer expans{or= wopo + (H1¢1 + ... in outer variablex € (0,1) and a
corresponding inner expansi@n = Agyo + A1¥1 + ... ininner variablet e [0, co), wherex = 6t
andé(e) = o(1). In view of matching, the overlapping parts

b0 = [HGY] = [0(e)P0(B) + iaE)pr(3t) + .. s = [oE)no®) + Aae)na®) + .. ], ,
J() = Y(X/8) = ho(@)Yo(X/8) + A1(e)Yn(X/8) + ... = po(€)0o(X) + 1t1()1(X) + ...

are functionally equivalent to the order considered, $ ~ v (x). This means that the combined
expression

¢ (X) + ¥ (x/8)

is for x = O(1) asymptotically equal t@ (x) + v/(x), and forx = O(8) asymptotically equal to
¥ (X) + ¢(x). In both cases it is the overlapping pauix) (or equivalentlyy(x)) which is too much.
The combined expansion

S

P(X) = d(X) + ¥ (X/8) — ¢(X)
is thus valid both in the boundary layer and in the outer mregio
As an example we may consider the previous problem (6.1, saltution (reformulated)

d(X) =x2+1+42e(1—x) + O(ed)
v(t)=1+et—2e(et—1) 4+ 2(t? — 2t) + O(&d)
qAS(X) =1+ 2c + X% — 2ex + O(e%)

D(X) = X2+ 1+ €42 — 2ex — 26 €7/ +O(3)

Approximate evaluation of integrals

Another application of MAE is integration. We split the igtal halfway the region of overlap, and
approximate the integrand by its inner and outer approxonafrake for example

_ log(1+x)

f(X,S)—W, 0<X<OO, 0<8<<1,
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with outer expansion

log(1+x)  log(1+ x) 2 log(1 + x)

4
x2+e2 X2 i TOE)

f(x,¢e) =

and inner expansion in boundary layet st

2

log(14et) 1 set — 2622+ O(e?) 1t ot
flet,e) = ——~ = — = - - O(s).
Lo =T 82( 241 ) fer1 1 0@
If we introduce a functiom; = n(g) with ¢ « n <« 1 (note that eventually the detailed choicenaé
and should be immaterial), and split up the integrationriatid 0, co) = [0, n] U [, oo), we find

> Jog(1 + X) /"/E t /00 log(1 + X) )
== 2 dx ~ —— 4+ O(e) dt == 2 1 0D d
./o x2rez g Zri’ (et + . e TOEDX

1 2 e 1+X 2,020 |
= [3510g9(1+t%) + O(e) + [logx — x log(1+ X) + O(e“/x%)
0 n
= (Iogn + 1log(1+ &%/ — loge + O(n)> | (Iog(l + 1) —logn + log@ +m + O(ez/n2)>
~ —loge + 1.

Implicit matching subtleties

An interesting detail in the matching process of boundaygigroblems where the inner equation is
a form of Newton'’s equation (for example exercises 6.2.8,666.2.13, and others) is the following.
Consider a boundary layer equationMiit) = Yo(t) +...,0<t < oo, of the form

” Yo+ F'(Yo) =0,

at?

which may be integrated to
$(&Y0)? + F(Yo) = E.

If Yo should be matched far— oo to an outer solutioly(x) of O(1) with x = ¢t, then the integration
constantE may be found by observing thgt ~ ¢~1Y; = O(1), so the leading ordefy should vanish
for larget. HenceE = F(y(0)). An important condition for consistency is that the finakuntal

Yo 1
——dp=+V2t
/YO(O) vE—F)

diverges (no square root singularity but at least a simple)@tn = y(0), in order to haveé — oo.

We illustrate this by the following example. The singulauhdary value problem
2y’ +y =KX, y0@=0 y@)=0

whereK (x) > ¢ > 0is O(1) and sufficiently smooth, has boundary layer€aik) nearx = 0 and
X = 1. We considex = 0. (The other is analogous.)
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An outer approximatiory = yp + ... is readily found to be
Yo(X) = £/ K(X),

with sign to be decided. Write for notational convenieko@®) = k2. The leading order inner equation
fory(x) =Y(@®) = Yo+ ..., wherex = ¢t, is

Y+ Y2 =K, Yo(0) =0.
As argued above, for matching it is required thgtt) — £k andYj — 0. We integrate
2O+ 3YF — K%Y = E = £(3K° — k%) = 2K°.

SinceYy is small fort — 0 and(Y4)? > 0, the sign ofE can only be positive, anhusouter solution
Yo(X) must be negative. Furthermore

23— 1Y3 + kYo = (Yo + K)2(2k — o).

Noting thatY, has to be negative, we can finish as usual to find explicitly

0 1 2k — Y
dn = 24/3| artanh — artanh( 3) =,/ 2kt
/Yo<n+k>¢—2k—n T [ ( 3 V3)| =43
such that
Yo(t) = 2k — 3ktank? <,/%kt + artanh(@))

Logarithmic switchback

It is not always evident from just the structure of the equratvhat the necessary expansion will look
like. Sometimes it is well concealed and we are only made evvhian invalid initial choice by a
matching failure. In fact, it is also the matching processlitthat reveals us the required sequence of
scaling functions. An example of such a back reaction is knaslogarithmic switchback

Consider the following problem foy = y(x, ¢) on the unit interval.
ey +x(y —y)=0 0<x <1, y(0,6) =0, vyl &) =e
The outer solution appears to have the expansion
Y(X, €) = Yo(X) + y1(x) + £2y2(x) + O(e?).

By trial and error, the boundary layer appears to be locagan = 0, so the governing equations
and boundary conditions are then

Yo—Yo=0, Yo(1) = e,
Vo= Yo ==Xt 1 WD) =0,
with general solution

1
Ya(X) = A €+ / z1etyl (2)dz,
X
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such that

Yo(X) = €,
yi(x) = —€*In(x),

y2(X) = € (3N + 3 — 2x 1 4 Ix72),

etc. The boundary layer thickness is found from the assumednscali= ¢™t and noting thaty =
O(1) because of the matching with the outer solution. This leadké significant degeneration of
m = % orx = e2t. The boundary layer equation fg(x, ) = Y(t, ¢) is thus

Y’ +tY —eZtY =0,  Y(0,¢) =0.
The obvious choice of expansion ¥fin powers ofe is not correct, as the found solution does not
match with the outer solution. Therefore, we consider therosolution in more detail for smak.
Whenx = s%t, we have for the outer solution
y(e%t, g) =1+ g2t + s(—% Ine + %tZ —Int + %t_z +. ) + O(s% Ine) (6.5)
(The dots indicate powers 6f? that appear with higher ordgr.) So we apparently need at least
Y(t, &) = Yo(t) + e2Yy(t) + £ In(e)Ya(t) + & Ya(t) + 0(e),

with equations and boundary conditions

YJ 4+ tY) =0, Yo(0) = O,
Y]/_/ + tY]/_ =1tYo, Y1(0) = 0O,
YJ 4+ tY) =0, Y,(0) = O,

YSN + tYS/ =tYy, Y3(0) = 0,
etc.Hence, the inner expansion is given by

Yo(t) = Agerf(L). 1
Yi(t) = Averf(-L) + Ao[terf(L5) +2(2)% €2 ~1)],
Y2(t) = Azerf(5), t ]

Ya(t) = A3erf(%)+/o e—%zzfo e’ £V, (&) dt dz.

Unfortunately,Y; cannot be expressed in closed form. However, for demorstrdtis sufficient to
derive the behaviour 0f; for larget. As erf(z) — 1 exponentially fast foe — oo, we obtain

1
Yi(t) = Aot + Ay — 2(%)2 Ao + exponentially small terms

If Y3 behaves for large algebraically, thertY; > Y, soY; = Y1 — t71Y} ~ Aot. By successive
substitution it follows that

Ya(t) = $Act® + (A — z(g)%Ao)t — Agln(t) + ...
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For matching of the inner solution, we introduce the intattiage variable; = ¢7*x = e27%t where
O<a< % and compare with expression (6.5). We have

Ao+ £2(Ac— 2(2)? o) + £ Aon + e In(e) Ao + 367 Aor?
+8%+“(A1 - 2(%)%'%)77 —eAglnn+e(3 —a)Agline

=1+e"n+ 2¥n® —elny —acln(e) + 362y ~2

Noting that 2— 2« > 1, we find a full matching with

NI

A=1 A =22)2 A=-

NI

This problem is an example where intermediate matchingatepable.

Prandtl’s boundary layer analysis.

The start of modern boundary layer theory is Prandtl's aislyn 1904 of the canonical problem of
uniform incompressible low-viscous flow of main flow spegd, viscosityu and densityog, along a
flat plate of lengthL . Consider the stationary 2D Navier-Stokes equations faonmpressible flow for
velocity (u, v) and pressure

Ux + vy = 0, po(uuy + Uuy) = —Px + 1(Uxx + Uyy)7 po(Uvy + UUy) =—py+ m(vxx + Uyy)7

subject to boundary conditions= v = 0 aty = 0, 0 < X < L. Make dimensionless := U,u,

v = Uy, p = poU2 p, X := LX, y := Ly. (The scaling of the pressure may not be evident, but is
due to the fact that the low-viscous problem is inertia dated, so the pressure gradient, which is
really a reaction force, should balance the inertia teritve are left with the dimensionles&eynolds
number Re= poU, L /. SinceRe is supposed to be large, we write= Re~! small. We obtain

subject to boundary conditions= v = 0 aty = 0, 0 < X < 1. The leading order outer solution for
y = O(1) is given by(u, v, p) = (1, 0, 0), but this solution does not satisfy the boundary condition
u = 0 aty = 0 along the plate. So we anticipate a boundary layer, such that the viscous friction
euyy contributes. When we scale= X,y =¢"Y,u=U, v =¢MV, andp = P, we find

Ux + ™™ =0, UUyx + ™ "VUy = —Py + eUxx + e7?"Uyy,
smU VX + ssznv VY — _87HPY + 81+mVXX + 81+m72nVYY.

This yields the distinguished limih = n = % with the significant degeneration
Ux+W =0 UUx+VUy=Uyy, P =0,
known asPrandtl’s boundary layer equationSinceP = P(X) has to match to the outer solutign=

constant (for this particular flat plate problem), pressynadientPy = 0 and disappears to leading
order. Very quickly after Prandtl's introduction of his balary layer equations, Blasius (1906) was
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able to reduce the equation to an ordinary differential gnady means of a similarity solution for
the stream functiony, with U = iy andV = —yry, of the form

Y (X, Y) = V2X (), n=

2l
x\.

leading to Blasius’ equation
f/// + ff// — O

Prandtl's boundary layer equations, but with other boundanditions, are also valid in the viscous
wake behind the plate > 1,y = O(¢¥/?) (Goldstein, 1930). The trailing edge region arounek:
1,y = 0, however, is far more complicated (Stewartson, 1969)eHiee boundary layer structure
consists of three layerg = O(£%8), O(¢%/8), O(£¥8) within x — 1 = O(£%#®). This is known as
Stewartson’s triple deck.

The r6le of matching

It is important to note that a matching is possible at all! YOalpart of the terms can be matched
by selection of the undetermined constants. Other termslegady equal, without free constants,
and there is no way to repair a possibly incomplete matcharg.hrhis is an important consistency
check on the found solution, at least as long as no real psoa¥ailable. If no matching appears to
be possible, almost certainly one of the assumptions maitheting construction of the solution has to
be reconsidered. Particularly notorious are logarithrmgudarities of the outer solution, as we saw
above. See for other examples [13].

Summarizing, matching of inner- and outer expansion playisngortant role in the following ways:
i) it provides information about the sequence of order (gugnctions{uy} and {1y} of the
expansions;
ii) it allows us to determine unknown constants of integnaii
iii) it provides a check on the consistency of the solutiaming us confidence in the correctness.
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6.2 EXxercises

6.2.1 Singularly perturbed ordinary differential equations

Determine the asymptotic approximation of soluty(x, ¢) (1st or 1st+2nd leading order terms for
positive small parameter—0) of the following singularly perturbed problems.

o andpg are non-zero constants, independent.of

Provide arguments for the determined boundary layer tieiskrand location, and show how free
constants are determined by the matching procedure.

a)
gy’ —y = 2x, y0,e) =a, Y(l,¢8) =8
b)
ey +y* = cosx), y(0,6) =0, 0<x< 37
C)

ey +(2x+ 1y +y?*=0, y0,¢) =a, Yy, &) =8.

6.2.2 A hidden boundary layer structure

The problem for = ¢ (X, ¢) ande > 0, x > 0, F(x) smooth, given by
29" —F(x)p =0, ¢O)=a, ¢'©O=b
is difficult to analyse asymptotically for small(why?). We therefore transform the problem.

a) Rewrite the problem into one fgi(x), wherey(x) given by

1 X
P (X) = aexp(g/o y(2) dz).

What is the initial condition fox?

b) Assume thaf (0) £ 0 andF(x) > 0 along the interval of interegd, L]. Formulate a formal
asymptotic solution of = y(x, &) for smalle up to and includingO(e).
Hint: the equatiory’ + y? = 1 has the solution tarfk — C).

c) Apply this to the asymptotic solution fét(x) = €*.

6.2.3 MAE and integration

Consider the function
f(x,e) = e X*(L+x)+mcognx+e) for 0<x <1

a) Construct an outer and inner expansiorf afith error O(e3).
b) Integratef from x = 0 to 1 exactly and expand the result upQge®).

c) Compare this with the integral that is obtained by intégraof the inner and outer expansions
following the method described in Example 15.30.
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6.2.4 Friedrichs’ model problem
A variation on Friedrichs’ (1942) model problem for a boundiayer in a viscous fluid is

ey’ = (ax) —y) for 0<x<1,
wherey(0) = 0, y(1) = 1, anda(x) is a given strictly positive smooth function independent,aind
therefore of order 1. Find a two-term inner and outer expamef the solution of this problem.
6.2.5 The Michaelis-Menten model

A classic enzyme-reaction model, for the first time propdsgiichaelis en Menten (1913), consid-
ers a substrate (concentrati@) reacting with an enzyme (concentrati@) to an enzyme-substrate
complex (concentratiof), that on its turn dissociates into the final product (cotregion P) and the
enzyme. The reaction of the substrate to the complex isitestin timet by the system

dE

E == —klES+ k,]_C + kZC,
ds

— = -k ES+k_;C

ot 1E95+ K 1C,

dC

— = KES—k1C—-kC
gt 1 1 2%~
dpP

— = kC

dt 2%,

with initial valuesS(0) = &, C(0) = 0, E(0) = Eg andP(0) = 0. The parametells, k_; andk, are
reaction ratesk; of the forward reactionk_; of the backward reaction, arkd of the dissociation.

a. If[S] = [C] = [E] = [P] mol/m?, and[T] = s, what are the dimensional unitslaf k_; and
ko?

b. Expressed in de problem variabl®sC, E, P ent, and the problem parametdes, S, ki, k_1
andk,, how many dimensionless quantities has this problem?
Note: “mol” is already dimensionless and does not count parsge unit.

c. Show thatE = Ey — C. Ignore the equation foP. Make S, C andt dimensionless such that
we obtain a system of the form

ds
— = —S+ SC+ AC,
dr
dc

g— = S—SC— uC,
dr

with s(0) = 1,¢(0) = 0.

d. Consider the resulting problem asymptotically fe50. We see that there are two time scales
(which?). The short one corresponds with the transientcewon effects, which behave math-
ematically like a boundary layer in time. Solve the problesyraptotically to leading and first
order ine.
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6.2.6 Stirring a cup of tea

When we stir a cup of tea, the surface of the fluid deforms wdililibrium is attained between
gravity, centrifugal force and surface tension. This lasté is only important near the wall.

Consider for this problem the following model problem.

A cylinder (radiusa, axis vertically) with fluid (density, surface tension) rotates around its axis
&, (angular velocity2) in a gravity field—g#é,. By the gravity and the centrifugal force the surface
deforms to something that looks like a paraboloid. Withimeal neighbourhood of the cylinder wall
the contact angle is felt by means of the surface tension.

Because of symmetry we can describe the surface by a radigéna angleyr with the horizon,
parametrized by arc leng# such thas = 0 corresponds wit the axis, asd= L with the wall of the
cylinder. L is unknown.

Select the origin on the axis at the surface, such that hecakand radial coordinate are given by

Z(s) = /S siny (s) ds'
0

R(s) = / cosy () ds'.
0

The necessary balance between hydrostatic pressure dadestension yields the equation

dy siny
_ 1. 62p2 _ - (YV
Po— PYZ + 1pQ?R? = a(ds o )
with unknownpg. Other boundary conditions are

Yv(0) =0, y((L)=a RL)=a.

a. Make dimensionless witht s = at, R=ar, Z = az, L = ai, and introduce

2 o Po Q%a
E = —F:, IB = —. 'LL =
pga? pga g

Identify the dimensionless constants in terms of standan@asionless numbers.

b. Solve the resulting problem asymptotically tax0. Assume thar = O(1). Note thatg and
A are unknown and therefore part of the solution.

6.2.7 A singularly perturbed nonlinear problem

Find a composite expansion of the solution of the followingildary value problem
ey’ +2y +y*=0

along O< x < 1, wherey(0) = 0 andy(1) = 3.
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6.2.8 Groundwater flow

Through a long strip of ground of width between two canals (water leve$ andh,) the ground
water seeps slowly from one side to the other.

Select a coordinate system such thatZhaxis is parallel to the long axis of the strip and the canals,
the Y-axis is vertical, and theX-axis perpendicular to botiX = 0 corresponds with canal 0, and
X = L with canal 1. Assume that the groundwater level is consta@tdirection.

Assume that the layer of ground lies on top of a semipermdaipe at leveY = 0, while the ground
water level is given byY = h(X).

The water leaks through the semi-permeable layer at a rapogional to the local hydrostatic pres-
sure. As this pressure is on its turn proportional to wategllB, this yields a flux densitgh, where
« is a constant.

Water comes in by precipitation (rain). Fluctuations ingipéation are assumed to be averaged away
by the slow groundwater flow, such that the fluxdensityrom this precipitation is constant in time.
Assume that variations in overgrowth and buildings mayltesto a position dependerid = N(X).

Between two neighbouring positions and X + dX there exists a small difference in height and
therefore in pressure. According to Darcy’s law this creatdlow with a velocity proportional to the
pressure difference, and dependent of the porosity of thengt. As the pressure difference is the
same along the full height, the flow velocity is uniform, and have

P(X) — p(X +dX) ~ h(X) —h(X +dX) ~ v(X)dX,

and the horizontal fluxdensity is proportional to

dh
=-D—
Y dx
whereD is in general a function of position.

X+dX

X :((Xh— N)dX, or

The flux balance along a slicexds then given by Dh & ]

d dh
—(Dh—) =ah - N
dX( dX) «
a. We consider the situation witly = 0, and is constant. Make dimensionless with h; and
a: X = Lx, h(X) = hi¢(x), N(X) = ah;K(x), and introduce the positive dimensionless

parameter
Dhy

©= oaLe

b. Assume heavy rain, such thit(x) = O(1). solve the resulting problem asymptotically for
e—0.

c. Assume little rain, such thd (x) = ek (X), with k = O(1). Solve the resulting problem
asymptotically fore—0. Take good care at = 1. The boundary layer is rather complicated
with a layered structure.

d. What changes when we take the slightly more general caBe-ofD (X)?

79 09-02-2018



2WAKO - EMI CKP ASYMPTOTISCHETECHNIEKEN - 2018

6.2.9 Heat conduction

Consider steady-state heat conduction in the rectangedgom 0< X’ < L, —D <y < D. Assume
that the temperature is prescribed along the edges 0 andx’ = L and that the edgeg = +D

are insulated. We are interested in the problem for a slegeemetry,j.e.¢ = D/L « 1. If we

normalizex with respect td. andy with respect tdD, we need to solve on the rectanglelx < 1,

—1 < y < 1the equation

ETxx+Tyy=0, TOy, &) =f(y), Ty e =9y, Tyx+le =0
1. Construct an outer expansion in the form
T(X, Y, &) = To(X, y) + £°Ta(x, y) + O(e*)

2. Construct an appropriate inner expansion along the edge® andx = 1.
Verify that matching is possible and determine the unkmowenstants.
4. Solve the problem exactly and compare this with the regalind.

w

6.2.10 Sign problems
A small parameter multiplying the highest derivative does guarantee that boundary or interior
layers are present.

After solving the following problem, explain why the methofl matched asymptotic expansions
cannot be used (in a straightforward manner) to find an asyim@pproximation to the solution.

(a)
82y// 4+ w2y =0

along O< x < 1 andw # 0.

(b)
82y// — y/
along O< x < 1, wherey’(0) = —1 andy(1) = 0.

6.2.11 A chemical reaction-diffusion problem (singular Imit)

Reconsider the chemical reaction-diffusion problem obfgm 3.3.11 (page 46)

1d/,dc
EEOE
c(l) =1, ¢(0) =0,

>=¢2C”, O<r <1,

but now for the asymptotic behaviour ofvhens = ¢! — 0. Solve first the exact solution for= 1
to guess the general structure. Find the leading order emmgtouter solution.
Hint. Introducey = rc.
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6.2.12 A boundary layer problem with variable coefficients
Suppose thay(x) satisfies the boundary value problem
ey’ +axy +bx)y =0,
with0 < ¢ <« 1 and
yO =A y@=8B.
Suppose also that(x) andb(x) are analytic in0, 1] (i.e. have convergent Taylor series in any point
€ [0, 1].
a) Ifa > 0, find an approximate solution and show that it has a bourldgey atx = 0.
b) If a < 0, find an approximate solution and show that it has a bourdser atx = 1.
c) Finally, if a(xg) = 0 for xo € (0, 1), wherea < 0 for X < xg anda > 0 for X > Xg, show that no
boundary layer at the end points can exist, and therefotetheterior layer must exist .

Suppose that
= b(Xo)
a'(xo)

Show that ax | Xp, resp.x 1 Xo, the outer solution ix < Xq, resp.x > Xq satisfy

Yy 2 CelX — Xo| 7,

where the constants. are known, but in general are not the same.

Hence show by rescalingandy as

NI

y00 = (=) o0, x=x0+

S)X
a'(Xo) a'(Xo)

the equation can be approximately written in the transitemion as
Y'+ XY +B8Y =0

with matching conditions
Y ~ci|X|? as X— + oo.

Solve this problem fog = —1. (Use Maple or Mathematica.)
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6.2.13 The stiffened catenary revisited

A cable, suspended between the poidts= 0,Y = 0andX = D, Y = 0, is described as a linear
elastic, geometrically non-linear inextensible bar ofgiiQ per unit length.

QL1 1 30L
—H «— — H
(0,0 (D, 0)

Figure 6.1: A suspended cable

At the suspension points the cable is horizontally clampexh shat the cable hangs in the vertical
plane through the suspension points.

The total lengthL of the cable is much larger thad, while the bending stiffnesg | is relatively
small, such that the cable is slack.

In order to keep the cable in position, the suspension paippty a reaction force, with horizontal
componentH resp.—H, and a vertical componeit, resp.QL — V. From symmetry we already have
V = ZQL, butH is unknown.

With s the arc length along the cablg,(s) the tangent angle with the horizon, aXds), Y (s) the
cartesian co-ordinates of a point on the cable, the shageafable is given by

dy
EI@ = Hsiny — (Qs— V) cosy
v(0) =y(L)=0

L
X(L) :/ cosy(s)ds =D
0
L
Y(L)=/ siny(s)ds=0
0

a. Make dimensionless with: s = Lt, X = Lx,Y = Ly, D = Ld, and introduce? = E1/QLS3,
h=H/QL.

b. Solve the resulting problem asymptotically tor-0. Assumed = O(1), h = O(1).

As posedd is known andh is unknown, and sh = h(e, d). It may be more convenient to deal
with the inverse problem first, whekeis known, andd results. Of course, then b= d(e, h).
Finally, after having found the relation betwegmndh (asymptotically), we can solve this for
h and givend.
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Chapter 7

Multiple Scales and the WKB method

7.1 Theory

7.1.1 General procedure

Suppose a functiop(x, ¢) depends on more than one length scale acting together, &on@gx,
ex, ande?x. Then the function does not have a regular expansion on thedmain of interest,

x < O(e72) say. Itis not possible to bring these different length sctdgether by a simple coordinate
transformation, like in the method of slow variation or thiedstedt-Poincaré method, or to split up
our domain in subdomains like in the method of matched asyteptxpansions. Therefore we have
to find another way to construct asymptotic expansionsdvalithe full domain of interest. The
approach that is followed in th@ethod of multiple scales at first sight rather radical: the various
length scales are temporarily considered as independeabies:x; = X, X, = eX, X3 = £°X, and the
original functiong is identified with a more general functiah(xy, X2, X3, €) depending on a higher
dimensional independent variable.

o(X, &) = A(s) € ¥ cosX + 6(g)) becomesy (X, Xo, €) = A(s) €2 cogX; + 6(¢)). O

Since this identification is not unique, we may add constsasnch that this auxiliary functiogr does
have a Poincaré expansion on the full domain of intereserAfaving constructed this expansion, it
may be associated to the original function along the %ine- x, x, = X, X3 = £2X.

The technique, utilizing this difference between smallesead large scale behaviour is the method
of multiple scales. As with most approximation methodss timethod has grown out of practice,
and works well for certain types of problems. Typically, theltiple scale method is applicable to
problems with on the one hand a certain global quantity gn@ower), which is conserved or almost
conserved, controlling the amplitude, and on the other handapidly interacting quantities (kinetic
and potential energy), controlling the phase. Usuallg tigiscribes slowly varying waves, affected by
small effects during a long time. Intuitively, it is cleamattover a short distance (a few wave lengths)
the wave only sees constant conditions and will propagateoapmately as in the constant case, but
over larger distances it will somehow have to change itsesirapccordance with its new environment.
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7.1.2 A practical example: a damped oscillator

We will illustrate the method by considering a damped harimoacillator

Py _ dy dy(0)
- = = > = _— = .
iz + 2¢ I +y=0 (t>0), y(0) =0, p 1 (7.1)
with 0 < ¢ « 1. The exact solution is readily found to be
sin(+/1 — &2t
y) =e* % (7.2)
— &

A naive approximation of thig(t), for smalle and fixedt, would give
y(t) = sint — et sint + O(¢?), (7.3)

which appears to be useful fo= O(1) only. For larget the approximation becomes incorrect:

1) ift > O(e~1) the second term is of equal importance, or larger, as thedirstand nothing is left
over of the slow exponential decay;

2) if t > O(¢?) the phase has an error 6X(1), or larger, giving an approximation of which even
the sign may be in error.

We would obtain a far better approximation if we adopted tuffecent time variablesyiz. T = &t
andr = +/1 — £2t, and changed tg(t, ¢) = Y(z, T, ¢) where
T Ssin(t)

NArY

It is easily verified that a Taylor series ¥fin ¢ yields a regular expansion for all

Y(r,T,e) =€

If we construct a straightforward approximate solutioredily from equation (7.1), we would get the
same approximation as in (7.3), which is too limited for magplications. However, knowing the
character of the error, we may try to avoid them and look ferahxiliary functionY, instead ofy.
As we, in general, do not know the occurring time scalesy theiermination becomes part of the
problem.

Suppose we can expand

y(t, €) = Yo(t) + eya(t) + £2ya(t) + - - . (7.4)
Substituting in (7.1) and collecting equal powers @fives
d*yo . dyo(0)
O(e? : 5z t¥0=0 with yo(0) =0, —=-= =1
3% dyo . dy1(0)
1y. 2 )1 — o2 = =
O(eY) : 02 + W 2 p with y;(0) =0, " 0.
We then find
Yo(t) = sint, vi(t) = —tsint, etc.

which reproduces indeed expansion (7.3). The straightfatyPoincaré type, expansion (7.4) breaks
down for larget, whenet > O(1). Itis important to note that this caused by the fact thatang ex-
cited in its eigenfrequency (by the “source”-term&dy,_,/dt), resulting in resonance. We recognise
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the generated algebraically growing terms of the tifpgnt andt" cost, calledsecular termgdefi-
nition 5.1.1). Apart from being of limited validity, the eapsion reveals nothing of the real structure
of the solution, and we change our strategy to looking forwadliary function dependent on different
time scales. We start with the hypothesis that, next to difastscalet, we have the slow time scale

T :=et. (7.5)

Then we identify the solutiog with a suitably chosen other functiofithat depends on both variables
tandT

Y, T;e):=y(;e). (7.6)

There exist infinitely many function¥ (t, T, ) that are equal ty(t, ¢) along the lineT = &t in

(t, T)-space. So we have now some freedom to prescribe additiondltons. With the unwelcome
appearance of secular terms in mind it is natural to thinkasfditions, to be chosen such that no
secular terms occur when we construct an approximation.

Since the time derivatives gfturn into partial derivatives oY, i.e.

dy aY aY
= —4e— 7.7
T 7.1
equation (7.1) becomes fur
a2Y+Y+2>3(8Y+ 82Y>+82(82Y aY)—o (7.8)
a2 at  ataT T2 3T/ T '
Assume the expansion
Y(t, T,e) = Yot, T) +eYa(t, T) +2Yo(t, T) + - - (7.9)
and substitute this into (7.8) to obtain to leading orders
9%Yo
— +Yo=0,
TERG
82Y1 aY0 82Y0
—+Y)=—2—-2——,
ez T ot~ “otaT
with initial conditions ]
YO(O’ O) = 07 aYO(Ov 0) = 17
Y1(0,0) =0 8Y(OO)— 8Y(OO)
EREER g BT T T
The solution forYy is easily found to be
Yo(t, T) = Ao(T) sin(t + 6o(T)) with  Ag(0) =1, 6p(0) = 0. (7.10)

This gives a right-hand side for thg-equation of

3 A0

000 .
—— ) cost + 6 2Ac— sin(t + 6p).
- Costt + 6) + 2A0 L sint + fo)

—2(Ao+
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No secular terms occur (no resonance betwaesndYp) if these terms vanish:

Ao+ % =0 vyieldng Aj=¢€", % =0 vyielding 6o =0. (7.11)

Together we have indeed constructed an approximation 2, (7alid fort < O(s™1).
y(t, &) = e *'sint + O(e). (7.12)

Note (this is typical of this approach), that we determin@donly on the level ofYy, but without
having to solveY; itself.

The present approach is by and large the multiple scale itpofiin its simplest form. Variations on
this theme are sometimes necessary. For example, we hagemgtetely got rid of secular terms.
On a longer time scalé & O(s2)) we have again resonanceYpbecause of the “source™ ' sint,
yielding termsO(g%t). We see that a second time sc@e= ¢t is necessary. From the exact solution
we may infer that these longer time scales are not reallyp@déent and it may be worthwhile to try
a fast time of strained coordinates type= w(e)t = (14 &2w1 +&%ws+. . )t. In the present example
we would recovem (s) = v/1 — &2.

7.1.3 The WKB Method: Slowly varying fast time scale

The method of multiple scales fails when the slow variat®odused by external effects, like a slowly
varying problem parameter. In this case the nature of the géiation is not the same for all time,
but may vary. This is demonstrated by the following exam@lensider the problem

X +x(et)®>x =0, x(0,&) =1, X (0,¢) =0,

wherex = O(1). It seems plausible to assume 2 time scales: a fasOgre?!) = O(1) and a slow
one O(¢~1). So we introduce next tothe slow scalél = «t, and rewritex(t, &) = X(t, T, ). We
expandX = Xg+ X1 +. .., and obtainXg = Ag(T) coSk (T)t — 6(T)). Suppressing secular terms
in the equation foX; requiresAy = «'t — 6 = 0, which is impossible.

Here, the fast time scale is slowly varying itself and the fesiable is to be strained locally by a
suitable strain function. This sounds complicated, but f&act quite simple: we introduce a fast time
scale via a slowly varying function. Often, it is convenig¢atwrite this function in the form of an
integral, because it always appears in the equations aftereshtiation.

The introduction of a slow time scale together with the slowdrying fast time scale, is generally
associated with the WKB method. Usually is the WKB Assumpt{@nsatz) restricted to the as-
sumption of the solution of a particular form related to wave
t 1 T
T = / w(et’, e)dt’ = —/ w(z,e)dz, whereT = et, (7.13)
&
while for x(t, ¢) = X(r, T, ¢) we have

X=wX, +eXr and  X= 0®X,; + ewr X; + 280X, 1 + 2 X717 (7.14)
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After expandingX = Xg+ &eX1 + ... andw = wp + w1 + . .. we obtain

wSXOIT + szO =0,

W& X1er + k2 X1 = —2w0w1 Xorr — wor Xor — 200 X0 T (%)

The leading order solution g = Ag(T) cogA(T)T — 60(T)), wherer = k/wg. The right-hand side
of (x) is then

Za)vo)\(a)l)L + AtT — 6g7) COSAT — 90) + (Ao)\.)_l(a)oA(Z))uz)T Sin(kr — 6o).

Suppression of secular terms requikgs= 0. Without loss of generality we can take= 1, orwg =
k. Then we need, = fyr, which just yields thakt —6y =7 — 6y = ¢~ * fTa)(z) dz — fTa)l(z) dz =
et fTwO(z) dz+ O(e). In other words, we may just as well takg = 0 anddy = a constant. Finally
we havewoA3A? = k A3 = a constant.

For linear wave-type problems we may anticipate the straaifithe solution and assume the so-called
WKB hypothesis (after Wentzel, Kramers and Brillouin)ray approximation

y(t, &) = AT, ¢) el Towmerdr (7.15)

The method is again illustrated by the example of the damedlator (7.1), but now in complex
form, so we consider the real part of (7.15). After subgtituand suppressing the exponential factor,
we get
A o 2A _0A
— 2 i e 2(Z 7 ) =
1— o)A+ Is(Za)aT + oA+ 2a)A> te (8T2 +28T) —0,
Re(A) =0, ReiwA+cA)=0atT =0.

Unlike in the multiple scales method the secular terms vaitllve explicitly suppressed, at least not to
leading order. The underlying additional condition heréhet the solution of the present typgists
and that each higher order correction is no more secularttharedecessor. The solution is expanded
as

(7.16)

A(T;e) = Ag(T) + e A(T) + e2Ap(T) + - --

) (7.17)
o(T;e) =wo(T) +ewaT) +--- .

Note thatw; may be set to zero since the factor é)gQT w1(7) dr) may be incorporated . By a
similar argumentyiz. by re-expanding the exponential for smallall other termsw,, ws, ... could
be absorbed bW (this is often done). This is perfectly acceptable for theetiscaleT = O(1), but
for larger times we will not be able to suppress higher oréeukar terms. So we will find it more
convenient to include these terms and use them wheneveemiem.

We substitute the expansions and collect equal powergabbtain toO(s°)
(1-wd)A=0 (7.18a)
with solutionwg = 1 (or —1, but that is equivalent for the result). @xe!) we have then
A, + Ao = 0 with Re(Ag) =0, Im(wpAg) = —1 atT =0, (7.18b)
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with solution Ay = —i e . To orderO(e?) the equation reduces to
A+ A =—iG+w)e T, with Re(A) =0, Im(woAy) = Re(Ap) atT =0, (7.18c)
with solution
wr=-3 A =0 (7.18d)
Note that if we had chosen, = 0, the solution would bé\; = —%T e~ '. Although by itself correct

for T = O(1), it renders the asymptotic hierarchy invalid for> O(1/¢) and is therefore better
avoided. The solution that emerges is indeed consistehttit exact solution.

The air-damped resonator.

In dimensionless form this is given by

., dy(O)
F_4_ _’ 0, with y(0) =1, == =0, (*)

By rewriting the equation into the form
G200+ 3y = ()Y

and assuming thatandy’ = O(1), it may be inferred that the damping acts on a time sca@(ef ™).
So we conjecture the presence of the slow time varidble- ¢t and introduce a new dependent
variableY that depends on bothandT. We have

dy aY oY
T =c¢t t,e) =Y, T — = — 4=
et, y(t, ) (t,T,e), gt 8t+88T’
and obtain for equationx{
92Y
iy 0% =0
sz T +8(8t8T ‘ )+ (%)

Y(0.0,¢) = 1, <8t +88—T>Y(0 0,£) = 0.

The error ofO(&?) results from the approximatiof—}Y + S%Y = g—tY + O(¢), and is of course only
valid outside a small neighbourhood of the points Wh%he: 0. We expand

Y(t, T,e) = Yo(t, T) + eYa(t, T) + O(e?),
to find for the leading order

2YO

. d
2 +Yo=0, with Yp(0,0) =1, ﬁYo(O, 0) =0.

The solution is given by
Yo = Ag(T) cogt — ©g(T)), where Ay(0) =1, ©q(0) =0.
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For the first order we have the equation

9%Yy 9%y 9Yo|0Yo
otz T T TataT ot | at
dA . de : :
= zd—'?ro sin(t — @) — 2A0d—_|_0 cos(t — @g) + A3sin(t — Bp)| sin(t — Og),

with corresponding initial conditions. The secular termes suppressed if the first harmonics of the
right-hand side cancel. For this we use the Fourier serigaresion

. . 8
sint) | sin(t)| = ——

i sin(2n 4+ Dt
—(2n-D@n+ D@+ 3)

We obtain the equations

dAv 8 d®
— 4+ —Aj=0 and — =0
dT + 3 Ao dT '
with solution®q(T) = 0 and
T) =
Po(T) 1+ 4T
Altogether we have the approximate solution
cogt)
t,e) = ———— + O(e).
y(t, &) T+ et (¢)

This approximation appears to be remarkably accurate. i§aes.1 where plots, made for a parame-
ter value ofs = 0.1, of the approximate and a numerically “exact” solutiontzaedly distinguishable.
A maximum difference is found of.03.
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0 20 40 60 80 100

Figure 7.1: Plots of the approximate and a numerically “€xaclution y(t, ¢) of the air-damped
resonator problem far = 0.1.
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7.2 [EXxercises

7.2.1 Non-stationary Van der Pol oscillator

Consider the weakly nonlinear oscillator, described by\tae der Pol equation, for variablg =
y(t,e)int:

y' +y—ed-y)y =0
asymptotically for small positive parameter

Construct by means of the method of multiple scales a firoapproximate solution. You are free
to choose convenient (non-trivial) initial values.

7.2.2 The air-damped, unforced pendulum
For sufficiently high Reynolds numbers, the air-damped pkmd may be described by

M¢+Co|d|+Ksing=0, ¢©0) =¢ ¢ (0) =0,

wheree > 0 is small and problem parameters K andC are positive. Assume th&/m = O(e).
Use the method of multiple scales to get an asymptotic apmpaiion of¢ = ¢ (t, ¢) fore — 0.

7.2.3 The air-damped pendulum, harmonically forced near reonance

When an oscillator of resonance frequengyis excited harmonically, with a frequeney nearwy,
the resulting steady state amplitude may be much largertieaforcing amplitude. Nonlinear effects
may be called into action and limit the amplitude, which otvise (in the linear model) would have
been unbounded at resonance. In the following we will studgiedamped oscillator with harmonic
forcing near resonance. The chosen parameter values &réhstithe resulting amplitude is just large
enough to be bounded by the nonlinear damping.

a) Consider the damped harmonic oscillator with harmonicirig

m¢ +K¢ = F cogwt).

Parameterm, K andF are positive. Find the steady state solutios,the solution harmonically
varying with frequency.
b) Consider the air-damped version

m<}5+C</5|</5|+K¢=Fcosrwt),

where problem parametens K, C andF are positiveC andF are small in a way thaff = ¢K
andC = emg wheree is small. The resonance frequency of the undamped linebpsgblem
is wg = +/K/m, while w/wy = @ = 1+ eo with detuning parametesr = O(1). We are
interested in the (bounded) steady state, and initial ¢immdi are unimportant. Use similar tech-
nigues as used with the methods of multiple scales and ledd$toincaré to get an asymptotic
approximation ofp = ¢ (t) fore — 0.

Hint: maket dimensionless by = wt. Write the leading order solution in the forgh =
Ao cost — 1) and findAg as a function o& from ¢,. Note thatAq(c) — 0if 0 — £00, which

is in agreement with (a).
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c) The same problem as above but with a nonlinear restorirng # sing, i.e.

m<';5'+Cq'>|¢'5|+Ksin¢>= F cogwt),
while we now choosé¢ = ¢3K, C = emB andw/wg = 2 = 1 + ¢20. Note that we have to
rescalep.

The main difference with (b) is tha&, cannot be expressed explicitly én but if we ploto as a
function of Ag, we can recognise the physical solutions that satigfis) — 0 if o — +o0.

7.2.4 Homogenisation as a Multiple Scales problem

Consider a slow flow (like groundwater) or diffusion of maitea medium with a fine local structure,
of which the properties (porosity etc.) vary slowly on a &rgcale. Usually we are eventually inter-
ested in the large scale behaviour. In this case it make® serseparate the small and large scales,
and see if the effect of the small scale behaviour can begepted by a large scale medium property,
by way of a local averaging process of the small scale meditopgpties. This approach is called
homogenisationand can be considered as an application of the method oifpheustcales.

Take the following model problem of diffusion of a concetita u in a medium with propertya,
driven by an external sourck.

d 1 d

— —u(x,e) ) = f(x).

dx \ a(x, e) dx

a varies quickly with a slowly varying averaged value in a waye described below. Introduce the
fast variable, such thai = ¢t. Hence

d ! OIut = g2f (et
a(a(t;s)a <’8))_8 €V

at,e) = a(X) + B(t; x)

Suppose

such that .
/ B(t, x) dr = integrable fort— oo.

For the moment we start with assumiags constant angg = g(t). Assume the existence of the
regular (= uniform Poincaré) asymptotic expansion in tliependenvariablest andx

u(t, &) = U(t, X, &) = Ug(t, X) + eUx(t, X) + e2Ua(t, X) + ...
Regularity implies a uniform asymptotic sequence of thenggrsoUg, Uy, Uy, --- = O(1) for x <
O(1) andt < O(1/s).

Note: usually this is not uniform on an interval with boungdapnditions. At the ends we will have
boundary layers = O(e). These will be ignored here.

Derive the following homogenised equation in the slow Jaganly
UJ(x) = af (x).

Indicate how to proceed for higher orders.
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7.2.5 The non-linear pendulum with slowly varying length

Consider a pendulum, moving in thig, y)-plane, of a masm that is connected to a hinge @, 0)
by an idealised massless rod of lengthwhich is varied slowly in time (slow compared to the typical
frequency of the fixed-length system). Denotediphe angle between the rod and the vertical.

At time t the position, velocity and acceleration of the mass arengye

x(t) = Lsing, x/(t)= L6 cosh + L'sing, x"(t) = LO” cosd + 2L'6’ cosd — Lo"?sinb + L” sind
y(t) = —L cosh, Y (t)= LO'sind — L' cosh, y'(t) = LO” sin6 + 2L'6’ sin + LH"2cosh — L" cost
The balancing forces are then inertia, equainttimes the acceleration, gravigym in downwardy-

direction, and a reaction forga R in the direction of the rod. If we regroup the forces in tartgen
and longitudinal direction and divide oy, we obtain the equations

LO” +2L'0" +gsind =0
L” — L6 —gcosd = R

For now, we are only interested éhas function of time whei is given.

a) Assume that is of the order ofL, 6 is of the order of,/e, wheree is small, and equal to the
ratio between the inherent time scale of the penduldhy/g and the typical time scale of the
variations ofL, sayA. In other words:

L

Y

Make the problem dimensionless, scale the variables in proppate way, and expand the equa-
tions up to and including terms @ (93).
b) Solve ford = 0(t) asymptotically for smalt by the WKB method.

7.2.6 Kapitza’s Pendulum

Denote the vertical axis ag and the horizontal axis as so that the
motion of the pendulum happens in tke, y)-plane. The following y
notation will be usedw and A are the driving frequency and amplitude
of the vertical oscillations of the suspensianjs the acceleration of
gravity, L is the length of the rigid and light pendulumm is the mass
of the bob andvg = +/g/L is the frequency of the free pendulum.

Denoting the angle between pendulum and downward direetsoh,
the positionx = &, y = 5 of the pendulum at timeis

g£(t) = Lsing
n(t) = —L cosp — Acoswt

The potential energy of the pendulum due to gravity is deflmeis vertical position as

Epot = —mg(L cosg + Acoswt)
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The kinetic energy in addition to the standard teymL? #? describing the velocity of a mathematical
pendulum is the contribution due to the vibrations of thepsusion

Exin = 3mML2 ¢? + m ALw sin(wt) sin(¢) ¢ +im ARw? sirf(wt)
The total energy is theE = Eyin + Epor and the Lagrangian i€(t, ¢, ¢ ) = Eyot — Ekin. The motion
of the pendulum satisfies the Euler-Lagrange equations

daL_ oL
dt 8¢ 98¢

which is

¢= —L (g + Aw? coswt) sing.

Assume that the driving amplitud&is small compared tb and frequencw is large compared to the
free frequencywy, in such a way thaf\w/Lwg = O(1). We make this explicit by writing = wo/w
andA/L = eu. If we rescaler = wt, we obtain

d’¢

57 = — (€% + g cost) sing.

From the structure of the equation we may infer that ¢(z, T, ) has a fast time scale and a
slow time scalél = et. Finish the analysis by assuming tlgatan be written as the sum of a slowly
varying large part and a fast varying small part

d(t, T, e) = do(T) + ep1(z, T) + 2o (z, T) + ...

Apply a consistency condition fap, being bounded fot — oo. Find an equation fop, and an
expression fogy;. Under what condition om are there two stationary solutiogg? Try to analyse
the stability ingg = 7, the inverted pendulum.

7.2.7 Rays in a slowly varying atmosphere

Waves (sound or light; the mathematics is the same) in anguyiedium with wave velocitg(x) is
described by the wave equation

3%
0t2
for a suitable quantity (like pressure or potentigl)We consider only time-harmonic, plane waves in
the scalar variabl&. This makes it a 1D problem. We write

V- (2(X)Ve) — =0

¢ (X, 1) = Re((x) €

while we assume that the medium varies over a typical lerggifke s , such that

e = oy (1)

where we assume thatis a smooth function.
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(¢

. The waves have a typical wave length= 27 /k, where wave numbek = w/cy. Make the

problem dimensionless on the wave length sce¢e,on ¢y/w and introduce the dimensionless
parametee = co/wl. Since we assumed that the medium varies sloidyon the scale of the
wave (there is no other scale in the problem), this parametersmall. We see that there are
essentially two length scales in the problem. For notaticnavenience we retair and¢ and
write ¢ = ¢ (X, &).

. Approximatey for smalle. Can you solve the resulting equation?
. On whatx interval (in order of magnitude) will this approximation fsalid?
. In order to incorporate the slow and fast length scaleasgeme the so-called WKB Ansatz

D (X, &) = A(ex) e E0)

Substitutep in the equation, and expand @(1) andO(e). Can you solvé and A?
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Chapter 8

Some Mathematical Auxiliaries

8.1 Phase plane

Phase portrait and phase plots

A differentiable functiong(t), defined on some (not necessarily finite) intervat [a, b], can be
portrayed by the parametric curye, y) in R?, wherex = ¢(t) andy = ¢/(t). This curve is called a
phase portrait or phase plot ¢f and the(¢, ¢’)-plane is called a phase plane.

Phase plots are particularly usefuldfis defined by a differential equation from which relations
betweenp and¢’ can be obtained, but exact solutions are not or not easilydfou

Important examples are
d(t) = Acoswt), ¢'(t) = —wAsin(wt), with w?¢?+ ¢'? = w2 A2,
leading to an ellipse as phase plot. A variant is
p(t) = Ae % cogwt), ¢'(t) = V(w?+ c?) Ae *sin(wt — arctanw/c) — 3)

leading to an elliptic spiral, converging to the origircit- 0 and diverging to infinity it < 0.
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Figure 8.1: Elliptic (periodic) and spiral (damped) phakeg
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Phase plot to illustrate the solutions of differential equaion

A differential equation like the harmonic equation

y// + a)Zy =0
is simple enough to be solved exactlyy§) = AcoSwt)+ B sin(wt), leading to periodic (circular or
elliptic) phase plots (see above). More difficult, in partér nonlinear, differential equations cannot be
solved exactly, and solutions have to be found (in generat)erically. The plot of a single solution,

however, does not tell us much about the whole family of afisilile solutions. In such a case it is
instructive to create a phase plot. Take for example the ¥arPdl equation

y' +y—el-y)y =0
For small enoughi(y, ¥)||, the nonlinear term is on average negative and acts as aeseading to
an increase. For large enougty, y')|l, the nonlinear term is on average positive and acts as a sink

leading to a decay. From outside inwards and from inside anasy these solutions converge to a
periodic solution with (for smalt) an amplitude of about 2.

Figure 8.2: A phase plot of the Van der Pol equation, wite 0.1 and solutions starting foryi = 0
with y = 1 (red) andy = 3 (blue), respectively.

Stability of stationary solutions

One of the most important applications of the phase plosthbility analysis of stationary solutions
of 2nd order autonomous ordinary differential equationsngider the equation

y' =F(y.,Y),
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then we can rewrite this as a system by identifyiag= y andx, = y’ with

d [x]) _ X2
dt {x2)  |F(xnx) )’
If the system has stationary solutions, they satigfy= 0 andF(x,, 0) = 0. Assume a stationary

solution(xz, Xo) = (X, 0). Consider perturbation around it of the fosm= Xg + &, X, = n, where
(€, n)]|l is small. Then after linearisation

0 0
F (X1, X2) = & b a=—F(Xq0 b= —F(XgO0
(X1, X2) E+bn+..., X (X0, 0), 3y (X0, 0),

()Ll = 10

The matrix has (possibly complex) eigenvalues

M2 = %bj:,/a-i- %bZ

The solutions of the linearised system are typically a lireeanbination ofe*tt ande*2t. Depending
on the signs of1 », this results in local behaviour in the phase plane of edp@eutrally stable),
converging spirals (stable) or diverging spirals (unstabl

we have

Van der Pol’s transformation

An interesting class of problems is the nonlinear oscitlato
y' + Ky +ey'g(y,y) =0.

With g(y, y') = y? — 1 is the Van der Pol equation a famous example. After transitiont := kt
andx; =y, Xo = Yy’ we have

X1 = X
X = —X1 — X2 0(X1, X2).
Considerable progress can be made if we write the solutipoler coordinates of the phase plane:
Xy =T SiNg, Xo =T COSy.
This leads to
I Sing +r ¢ COSY = I COSY
f Ccosp —r @ sing = —r sing — er cosy §(r, ).
After eliminatingr and¢ we have
[ = —er cos ¢ §(r, ¢)
@ =1+ esing cose §(r, ¢).

Sinceer cog ¢ > 0, the growth (> 0) or decay {< 0) of the solution depends entirely on the sign
of §. A consequence is that §f is positive for large and negative for smail (like the Van der Pol
equation), the expanding and contracting phase plots,aioglable to cross each other, have to result
in (at least) one closed contour (a so-called limit cydle),a periodic solution.
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8.2 Newton’s equation

An interesting equation that we encounter rather often isthie’'s equation

Y'+V(y)=0, y0O) =y VYO =y,

whereV (in mechanical context a potential) is a sufficiently smagitten function ofy. The interest-
ing aspect is that the equation does not depeng and therefore can be integrated to

2+ V(Y) = E = 3y; + V(yo),
with integration constanE. In mechanical context this relation amounts to consesmabif total en-

ergy E, being the sum of kinetic energﬁ(y’)2 and potential energy (y).

Note that this relation betwegnandy’ is sufficient to construct phase plots for various valuek of
For those values dE, where these phase plots correspond to closed curves, weikrazlvance that
the corresponding solutions are periodic, which is impdriaformation.

We can eliminatey’ and obtain

y = +V3/E-Vy).

Furthermore, we can even determipamplicitly formally

y 1
/yo s =G ds = +/2t

and with some luck we can integrate this integral explicipte that a full integration may depend
on the value oE.

A simple but important example is
y'+ky=0

with ellipses in the phase plane described by
%(y/)2+ %kZ 2 —E

leading to
y
1/2ks
V2 2V2 ) = +4/21.

y 1
/ ——ds= —arctan(—
1 k 1
Yo ./E — 5k2s?  E — 5k2s? "

The integral describes one peried for one half and- for another half), that can be extended. Hence
we obtain the expecteg = yp cogkt) + y.k1 sin(kt).

Another, less trivial example is
y'+y-y’=0
with
) +3y -3y =E
Elementary analysis reveals that this relation yields éyhase plane closed curves around the origin
if0 < E < ‘—11. Hence, there are periodic solutions for those valuds.of
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8.3 Normal vectors of level surfaces

A convenient way to describe a smooth surfdéces by means of a suitable smooth functigx),
wherex = (X, Y, z), chosen such that the level surfaBe<) = 0 coincides with8. So S(x) = 0 if

and only ifx € $. (Examplexx? + y2 + 22 — R?

= 0 for a spherez — h(x, y) = 0 for a landscape.)

Then for closely located points, x + h € § we have

S(x + h) =

S(x) + h-VS(x) + O(h?) ~ h-VS(x) =

Sinceh is (for h — 0) a tangent vector of, it follows thatVSat S = 0 is a normal of§ (provided

VS # 0). We writen ~

8.4 Trigonometric relations

The real or imaginary parts of the binomial serie% +e"*)" =

VSl

Y reo(BDK(R) €M% easily yield

trigonometric relations, useful for recognising resoraterms:

Sir’x

sin X

sin®x
Six

sin X

sin'x
sin®x
Sirfx

sin X

simex
sin*x
sin’x
sinex

sin X

COSX =
COEX =

COSX =
cogX =
COSX =

COSX =
cogxX =
coSX =
codx =

COSX =
cosx =
COSX =
cod'x =
COSX =

—~

1-cosX),
in2x,
(1+cos X),

NIFE NIF NI
0

3sinx — sin ),
cosx — cos X),
sinx + sin ),
3cosx + cos X),

B N N L S

(
(
(
(

(83— 4cos X + cos X),
(2sin  — sin 4x),
(1—cos %),

(2sin  + sin 4x).
(83+4cos X + cos X),

@I I~ Wl I~ -

(105sinx — 55sin 3 + sin 5),
(2cosx — 3cos X + cos ),
(2sinx + sin 3 — sin 5x),
(2cosx — cos X — cos ),
(2sinx + 3sin X + sin 5x),
(10cosx + 5cos X + cos ).

Sl Bl Bl Sl Sl Sl
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8.5 Units, dimensions and dimensionless numbers

Basic units
Name Symbol | Physical quantity Unit
meter m length m
kilogram | kg mass kg
second | s time s
ampere | A electric current A
kelvin K temperature K
candela | cd luminous intensity | cd
mole mol amount of substance 1
hertz Hz frequency 1/s
newton | N force, weight kg m/s
pascal Pa pressure, stress N/m?
joule J energy, work, heat | Nm
watt W power J/s
radian rad planar angle 1
steradian| sr solid angle 1
coulomb | C electric charge As
volt \% electric potential kg m?/sSA
ohm Q electric resistance | kg m?/s?A2
siemens | S electric conductance 1/ 2
lumen Im luminous flux cdsr
lux IX illuminance Im/m?
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Basic variables

Quantity Relation Unit Dimensions
stress force/area N/m? = Pa| kgm1s?
pressure force/area N/n? = Pa| kgm1s?
Young’s modulus stress/strain N/m? = Pa| kgm1s?
Lamé parameters andu | stress/strain N/m? = Pa| kgm1s?
strain displacement/length 1 1
Poisson’s ratio transverse strain/axial strain | 1 1
density mass/volume kg/m?3 kgm3
velocity length/time m/s mst
acceleration velocity/time m/s ms2
(linear) momentum massx velocity kgm/s kgms?
force momentum/time N kgms2
impulse force x time Ns kgms?
angular momentum distancex massx velocity kg n?/s kg st
moment (of a force) distancex force Nm kgm?s—2
work force x distance Nm=1J kg s—2
heat work J kgnm?s—2
energy work Nm=J kg s—2
power work/time, energy/time Js=W kgnm?s3
heat flux heat rate/area W/m? kgs
heat capacity heat change/temperature changd/K kgnmfs2K!
specific heat capacity | heat capacity/unit mass J/Kkg m?s?K!
thermal conductivity heat flux/temperature gradient| W/mK kgms3K1
dynamic viscosity shear stress/velocity gradient | kg/ms kgmts?
kinematic viscosity dynamic viscosity/density m?/s m?st
surface tension force/length N/m kgs?
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Dimensionless numbers

Name Symbol Definition Description

Archimedes| Ar gApL3/pv? particles, drops or bubbles

Arrhenius Arr E/RT chemical reactions

Biot Bi hL/« heat transfer at surface of body

Biot Bi hpL/D mass transfer

Bodenstein Bo V L/Dax mass transfer with axial dispersion
Bond Bo pglL?/o gravity against surface tension
Capillary Ca uV/o viscous forces against surface tension
Dean De | (VL/v)(L/2r)¥2 | flow in curved channels

Eckert Ec V?2/CpAT kinetic energy against enthalpy difference
Euler Eu Ap/pV? pressure resistance

Fourier Fo at/L? heat conduction

Fourier Fo Dt/L? diffusion

Froude Fr V/(gL)Y? gravity waves

Galileo Ga gL3p?/u? gravity against viscous forces

Grashof Gr BATgL3/V3 natural convection

Helmholtz He wlL/c=kL acoustic wave number

Kapitza Ka gu/pod film flow

Knudsen Kn AL low density flow

Lewis Le a/D combined heat and mass transfer
Mach M V/c compressible flow

Nusselt Nu hL/« convective heat transfer

Ohnesorge Oh w/(pLo)/? viscous forces, inertia and surface tension
Péclet Pe VLi/a forced convection heat transfer

Péclet Pe VL/D forced convection mass transfer
Prandtl Pr v/a = Cpu/k | convective heat transfer

Rayleigh Ra BATgL3/av natural convection heat transfer
Reynolds Re oVL/u viscous forces against inertia

Schmidt Sc v/D convective mass transfer

Sherwood Sh hpL/D convective mass transfer

Stanton St h/pCpV forced convection heat transfer
Stanton St hp/V forced convection mass transfer
Stokes S v/ fL2 viscous damping in unsteady flow
Strouhal Sr fL/V hydrodynamic wave number

Weber We pV?L /o film flow, bubble formation, droplet breakuj
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Nomenclature

Symbol Description Units
C sound speed m/s
Cp specific heat J/kg K
D diffusion coefficient m?/s
Dax axial dispersion coefficient m?/s
E activation energy J/mol
f frequency 1/s

g gravitational acceleration m/s

h heat transfer coefficient W/m? K
hp mass transfer coefficient m/s

k wave humber =/c 1/m

L length m

p, Ap pressure Pa

R universal gas constant J/mol K
r radius of curvature m
T,AT temperature K

t time S

\% velocity m/s

o =k/pCp thermal diffusivity m/s

B coef. of thermal expansion K-t

K thermal conductivity W/mK
A molecular mean free path m

" dynamic viscosity Pas
v=u/p kinematic viscosity m/s
0, Ap density kg/m?3
o surface tension N/m

) circular frequency =2 f 1/s
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8.6

10.

11.

12.

13.

14.
15.
16.

Quotes

. The little things are infinitely the most importaf&herlock Holmes.)

. Entia non sunt multiplicanda praeter necessitater&ntities should not be multiplied beyond

necessity~ Other things being equal, simpler explanations are gemgraétter than more
complex onegW. Ockham.)

. Formulas are wiser than maiiJ. de Graaf.)
. Nothing is as practical as a good theo(y.R. Oppenheimer.)

. An approximate answer to the right question is worth a gresgtldnore than a precise answer

to the wrong questior(J. Tukey.)

. An exact solution of an approximate model is not better tharapproximate solution of an

exact model(section 2.)

Never make a calculation until you know the answer: make timate before every calculation,
try a simple physical argument (symmetry! invariance! esnation!) before every derivation,
guess the answer to every puztkeA. Wheeler.)

The mathematician’s patterns, like the painter’s or thetjsomust be beautiful; the ideas, like
the colours or the words must fit together in a harmonious \Ba&auty is the first test: there is
no permanent place in the world for ugly mathemat{&H. Hardy.)

Divide each difficulty into as many parts as is feasible angkssary to resolve i(R. Descartes.)

You make experiments and | make theories. Do you know tleestife? A theory is something
nobody believes, except the person who made it. An expdtisremmething everybody believes,
except the person who made(i. Einstein.)

It is the theory which decides what we can obsef#eEinstein.)

As far as the laws of mathematics refer to reality, they atecedain, as far as they are certain,
they do not refer to reality(A. Einstein.)

Science is nothing without generalisations. Detached Hrasgorted facts are only raw mate-
rial, and in the absence of a theoretical solvent, have Itk Inutritive value(Lord Rayleigh)

We need vigour, not rigouianonym.)
It is the nature of all greatness not to be exdét. Burke.)

The capacity to learn is a gift; The ability to learn is a skillhe willingness to learn is a choice.
(F. Herbert.)

106 09-02-2018



Bibliography

(1]

(2]
(3]

(4]
(5]
(6]

(7]
(8]
9]
[10]

[11]
[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]
[24]

R.M.M. MATTHEIJ, S.W.RENSTRAand J.H.MTEN THIJE BOONKKAMP, 2005, Partial Differential Equations:
Modeling, Analysis, Computatip8IAM, Philadelphia

M.H. HoLMES, 1995, Introduction to Perturbation Method&pringer-Verlag, New York

S.D. HowisoN, 2005,Practical Applied Mathematics: Modelling, Analysis, Appimation Cambridge University
Press, Cambridge

A.C. FOWLER, 1997,Mathematical Models in the Applied Scienc€ambridge University Press, Cambridge
M. VAN DYKE, 1975,Perturbation Methods in Fluid MechanicBarabolic Press, Stanford CA

M. VAN DYKE, 1987, Slow Variations in Continuum Mechaniégjvances in Applied Mechanic®5, p. 1-45, Aca-
demic Press, Orlando FL

A.H. NAYFEH, 1973,Perturbation MethodsJohn Wiley & Sons, New York
A.H.NAYFEH, 1981, Introduction to Perturbation Technique3ohn Wiley & Sons, New York
W. ECKHAUS, 1979,Asymptotic Analysis of Singular PerturbatiodéorthHolland, Amsterdam

J.G. SMmMONDS and J.E. MANN, 1986,A First Look at Perturbation Theor2nd Revised ed. Edition, Dover Publi-
cations, New York

E.J. HNCH 1991, Perturbation MethodsCambridge University Press, Cambridge

C.M.BENDERand S.A. RSzAG, 1978,Advanced Mathematical Methods for Scientists and EngaméécGraw-
Hill Book Company, New York

M.B. LEsSERand D.G. QRIGHTON, 1975, Physical Acoustics and the Method of Matched AsytipExpansions,
Physical Acoustics Volume XAcademic Press, New York

D.G. CRIGHTON, 1994, Asymptotics — an indispensable complement to thipggmputation and experiment in ap-
plied mathematical modellingroceedings of the Seventh European Conference on Matisnratndustry, March
2-6, 1993, Montecatini3—19, ECMI 9, B.G.Teubner, Stuttgart

P.A. LAGERSTROM1988,Matched Asymptotic Expansions: Ideas and Technidspsnger-Verlag, New York

J. KEVORKIAN and J.D. @LE, 1995,Perturbation Methods in Applied Mathemati&pringer-Verlag, New York
R.E. MICKENS 1981,An Introduction to Nonlinear Oscillation€ambridge University Press, Cambridge
G.B.WHITHAM 1974, Linear and Nonlinear Wavedohn Wiley & Sons, New York

R.B.BIRD, W.E. STEWART and E.N. LGHTFOOT, 1960, Transport Phenomendohn Wiley & Sons, New York
L.M. MILNE-THOMSON 1968, Theoretical Hydrodynami¢&th edition, Mac-Millan Educ., Houndmills UK
J.P. CEN HARTOG 1956,Mechanical VibrationsMcGraw-Hill Book Company, New York

M.J. LIGHTHILL 1978,Waves in FluidsCambridge University Press, Cambridge

L.D.LaNDAU and E.M. LiIFsHITZ 1987,Fluid Mechanics 2nd edition, Pergamon Press, Oxford

P.K. KuNDU and |.M. GoHEN, 2002,Fluid Mechanics 2nd edition, Academic Press, New York

107



2WAKO - EMI CKP ASYMPTOTISCHETECHNIEKEN - 2018

[25]
[26]
[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]

[46]
[47]

[48]

G.K. BATCHELOR1967,An Introduction to Fluid Dynamic€Cambridge University Press, Cambridge
P. CHADWICK 1976,Continuum MechanigDover Publications, New York
J.D. ACcKSON 1999, Classical Electrodynamic8d edition, John Wiley & Sons, New York

S.W.RENSTRAand A. HRSCHBERG 1992,An Introduction to Acoustic4dWDE-92-06, Technische Universiteit
Eindhoven, 1992-2004-2015, http://www.win.tue.nl/ sgirépapers/boek.pdf

S.W. RENSTRA, 2016,Fundamentals of Duct Acousticgon Karman Institute Lecture Notes Bfogress in simu-
lation, control and reduction of ventilation noiseKI LS 2016-02, ISBN-13 978-2-87516-098-0

A.H.NAYFEH and D.P. ELIONIS, 1973, Acoustic propagation in ducts with varying crosgises, Journal of the
Acoustical Society of Americ&4 (6), p. 1654—1661

S.W. RENSTRA, 1987, Analytical Approximations For Offshore PipelayigpblemsProceedings ICIAM 87 (Con-
tributions From The Netherlandsparis-La Villette 29/6-3/7 1987, CWI Tract 36, p. 99-108

S.W. RENSTRA, 1990, The Shape Of A Sessile Drop For Small And Large Suifaosion Journal of Engineering
Mathematics24, p. 193-202.

S.W.RENSTRA, 1995, Thin Layer Flow Along Arbitrary Curved Surfacdxoceedings of ICIAM '95, 3rd Int.
Congress on Industrial and Applied Mathematics, July, 'Special issue oZAMM Applied Sciences - Especially
Mechanics Akademie Verlag, Berlin, 199&eitschrift fAr Angewandte Mathematik und Mechanik AggbMathe-
matics and Mechani¢cg6 Supplement 5, 1996, p. 423-424

J.C.DE Vosand A.A.F. VAN DE VEN, 1997, The Golden-Ten equations of motidayurnal of Engineering Mathe-
matics 32 (4), p. 281-304

S.W. RENSTRA, 1999, Sound Transmission in Slowly Varying Circular anchAlar Ducts with FlowJournal of
Fluid Mechanics 380, p. 279—-296

S.W. ReENsTRAand W. Eversman, 2001, A Numerical Comparison Between plak$cales and FEM Solution for
Sound Propagation in Lined Flow Ductigurnal of Fluid Mechanics437, p. 367-384

S.W. RENSTRA, 2003, Sound Propagation In Slowly Varying Lined Flow DuofsArbitrary Cross Sectiorjournal
of Fluid Mechanics495, p. 157-173

S.W. RENSTRA, 2005, Free Vibrations of Coupled Spans of Overhead Trassami Lines,Journal of Engineering
Mathematics53 (3-4), p. 337-348

S.W. RENSTRA, 2005, Webster's Horn Equation Revisit&lAM Journal on Applied Mathematio85 (6), p. 1981—
2004

N.C. OVENDEN, 2005, A uniformly valid multiple scales solution for cut-out-off transition of sound in flow ducts.
Journal of Sound and Vibratiqr286, p. 403-416

A.H.ZEMANIAN 1965,Distribution Theory and Transform AnalysiglcGraw-Hill Book Company, New York
D.S. bNES1964,The Theory of Electromagnetisfergamon Press, Oxford

D.S. bNES1986,Acoustic and Electromagnetic Way&xford Science Publications, Clarendon Press, Oxford
D.S. bNES1982,The Theory of Generalised Functigrgnd edition, Cambridge University Press, Cambridge

M.M. LIPSCHUTZ 1969, Schaum’s Outline of Theory and Problems of Differential @ety, McGraw-Hill Book
Company, New York

D.C. CHAMPENEY, 1987,A Handbook of Fourier Theorem€ambridge University Press, Cambridge

M. ABRAMOWITZ and I.A. STEGUN, 1964,Handbook of Mathematical Functionslational Bureau of Standards,
Dover Publications, New York

I1.S. GRADSHTEYN and |.M. RrzHIK, 1994, Table of Integrals, Series and Produckh edition, Academic Press,
London

108 09-02-2018



	1 Modelling and Perturbation Methods
	2 Modelling and Scaling 
	2.1 Theory
	2.1.1 What is a model? Some philosophical considerations.
	2.1.2 Types of models 
	2.1.3 Perturbation methods: the continuation of modelling by other means
	2.1.4 Energy consumption of a car 
	2.1.5 Nondimensionalisation

	2.2 Exercises
	2.2.1 A car with viscous friction and hills 
	2.2.2 Membrane resonance 
	2.2.3 Ship drag: wave and viscosity effects
	2.2.4 Sphere in viscous flow 
	2.2.5 Cooling of a cup of tea
	2.2.6 The velocity of a rowing boat.
	2.2.7 Travel time in cities 
	2.2.8 A sessile drop with surface tension.
	2.2.9 The drag of a plate sliding along a thin layer of lubricant 
	2.2.10 The stiffened catenary 
	2.2.11 Electrically heated metal 
	2.2.12 The Korteweg-de Vries equation
	2.2.13 Traffic waves
	2.2.14 The pendulum 
	2.2.15 An equation 
	2.2.16 Heat convection and diffusion 
	2.2.17 Falling through the center of the earth. 
	2.2.18 Heat conduction in a long bar
	2.2.19 A Simple Balloon 
	2.2.20 A pulsating sphere 


	3 Asymptotic Analysis
	3.1 Basic Definitions and Theorems
	3.2 Asymptotic expansions applied
	3.2.1 General procedure for algebraic equations
	3.2.2 Example: roots of a polynomial

	3.3 Exercises
	3.3.1 Asymptotic expansions in  
	3.3.2 Asymptotic sequences 
	3.3.3 Asymptotic expansions in x and  
	3.3.4 Solving algebraic equations asymptotically 
	3.3.5 Solving differential equations asymptotically 
	3.3.6 A quadratic equation 
	3.3.7 A cubic equation 
	3.3.8 The catenary 
	3.3.9 A water-bubbles mixture 
	3.3.10 A car changing lanes 
	3.3.11 A chemical reaction-diffusion problem (regular limit) 
	3.3.12 The pivoted barrier 


	4 Method of Slow Variation 
	4.1 Theory
	4.1.1 General Procedure
	4.1.2 Example: heat flow in a bar

	4.2 Exercises
	4.2.1 Heat flux in 2D 
	4.2.2 Lubrication flow 
	4.2.3 Quasi 1D gas dynamics 
	4.2.4 Webster's horn 
	4.2.5 Shallow water waves along a varying bottom 
	4.2.6 A laterally heated bar 


	5 Method of Lindstedt-Poincaré 
	5.1 Theory
	5.1.1 General Procedure
	5.1.2 Example: the pendulum

	5.2 Exercises
	5.2.1 A quadratically perturbed harmonic oscillator 
	5.2.2 A weakly nonlinear harmonic oscillator 
	5.2.3 A weakly nonlinear, quadratically perturbed harmonic oscillator 
	5.2.4 A coupled nonlinear oscillator 
	5.2.5 A weakly nonlinear 4th order oscillator 
	5.2.6 A weakly nonlinear oscillator 
	5.2.7 The Van der Pol oscillator 


	6 Matched Asymptotic Expansions 
	6.1 Theory
	6.1.1 Singular perturbation problems
	6.1.2 Matched asymptotic expansions 

	6.2 Exercises
	6.2.1 Singularly perturbed ordinary differential equations 
	6.2.2 A hidden boundary layer structure 
	6.2.3 MAE and integration 
	6.2.4 Friedrichs' model problem 
	6.2.5 The Michaelis-Menten model 
	6.2.6 Stirring a cup of tea 
	6.2.7 A singularly perturbed nonlinear problem 
	6.2.8 Groundwater flow 
	6.2.9 Heat conduction 
	6.2.10 Sign problems 
	6.2.11 A chemical reaction-diffusion problem (singular limit) 
	6.2.12 A boundary layer problem with variable coefficients 
	6.2.13 The stiffened catenary revisited 


	7 Multiple Scales and the WKB method 
	7.1 Theory
	7.1.1 General procedure 
	7.1.2 A practical example: a damped oscillator
	7.1.3 The WKB Method: Slowly varying fast time scale

	7.2 Exercises
	7.2.1 Non-stationary Van der Pol oscillator 
	7.2.2 The air-damped, unforced pendulum 
	7.2.3 The air-damped pendulum, harmonically forced near resonance 
	7.2.4 Homogenisation as a Multiple Scales problem 
	7.2.5 The non-linear pendulum with slowly varying length 
	7.2.6 Kapitza's Pendulum 
	7.2.7 Rays in a slowly varying atmosphere


	8 Some Mathematical Auxiliaries
	8.1 Phase plane
	8.2 Newton's equation
	8.3 Normal vectors of level surfaces
	8.4 Trigonometric relations
	8.5 Units, dimensions and dimensionless numbers 
	8.6 Quotes

	Bibliography

