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A systematic derivation of the solution of a nonlinear system of equations for
the finite-length Helmholtz resonator is presented, modelling the configuration
of an organ-pipe type cavity (i.e. of finite length) connected via an acoustically
small neck to the external excitation field. The model of the flow through the
neck includes linear viscous friction and nonlinear dissipation due to vortex
shedding. By assuming a weakly nonlinear amplitude regime, i.e. essentially
nonlinear near resonance but effectively linear away from resonance, we are
able to set up a solution, asymptotic for small excitation amplitudes, which
enables us to obtain analytically an expression for the impedance that includes
nonlinear effects for frequencies close to the fundamental resonance frequency.
(The higher harmonics will not be considered).

This paper extends and refines our previous analysis that considered an
acoustically compact cavity. Apart from a confirmation of the previously pub-
lished impedance results in the small cavity limit, the new results establish
a significant improvement in the comparison with experimental data and the
asymptotic matching of the linear and nonlinear impedance regimes. This is
for a part due to the obviously refined model of the geometry, but also due
to the equivalent but numerically better alternative form of the asymptotic ex-
pressions that, by chance, emerged in the new analysis. Although both versions
are asymptotically equivalent to the order considered, the new form happens to
behave better for larger values of the excitation amplitude.
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I. Introduction

The sound emission from aircraft engines, power machines and several other industrial applica-
tions is a matter of high concern that affects the community noise and hence health and life. In
most of the applications, the emission spectrum is concentrated near a few prominent frequen-
cies that are in general attenuated with the help of liners. An important type of acoustic liner
for aero-engine inlet and exhaust ducts constitutes of a honeycomb array of small cells called
Helmholtz resonators. The Helmholtz resonator is a cavity filled with air and having a small
opening called the neck (Fig. 1). When excited with a fluctuating external pressure, the mass of
the air plug inside the neck moves against the large volume of compressible air inside the cavity,
which acts as a spring, while viscous forces and vortex shedding cause dissipation of energy.
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In its simplest form, for wavelengths much larger than the size of the cavity, this establishes a
weakly nonlinear 0−D mass-spring-damper system. The damping is normally relatively small
such that a resonance frequency can be identified. At and near resonance, the dissipation is
largest and so narrow band sound absorption is achieved for frequencies close to resonance.
Properties of this process form the basic design criterion for the liners. The resonator, as “seen”
from outside, is characterized by its impedance Z = Z(ω), relating (spatially averaged) pressure
and velocity at the wall. Ideally, Z is a wall property, independent of the acoustic field. How-
ever, in particular near resonance, Z is amplitude dependent for high but relevant amplitudes,
for example of the “buzz saw” noise in a turbofan engine due to the shocks produced in front
of the fan at take-off and the blade tips operating near sonic conditions [1, 2]. It is important
to know quantitatively and understand qualitatively such impedances Z with good precision to
improve the design of the structures and have the highest possible attenuation of the emitted
soundfield.

The nonlinear effects are mainly of hydrodynamical origin, due to the resistive losses and vortex
shedding at inflow and outflow from the opening, as shown in Fig. 2. This is physically a process
of great complexity [3,4] which has indeed exacerbated the possibility to obtain the impedance
with an accurate model based on first principles.

The nonlinear corrections of the impedance, common in the literature, are based on physically
inspired modelling assumptions, but otherwise do not aim to solve the equations of the nonlinear
resonator [5–7]. In contrast, the properties of the Helmholtz resonator have been obtained from
the full equations in [1,8–13], but these are all fully CFD, DNS or LES simulations which do not
give information for the simpler models. The Helmholtz resonator equation which describes the
neck region flow coupled with the cavity (Fig. 1) can be solved asymptotically with a closure
condition that relates pressure and velocity inside the cavity near the neck. This was done
in our previous paper [14]. The found impedance was favourably compared with the existing
experimental data. The considered cavity was acoustically compact, i.e. the size of the cavity
was much smaller than the acoustic wavelength L ≪ λ, so that the pressure inside was nearly
uniform and the neck velocity was simply given by the time derivative of the pressure. Hence
the resonator acts like a spring to the external force.

In the present paper we improve this modelling assumption of a 0−D vanishing cavity size
(compared to the acoustic wave length), by considering a 1−D cavity of finite length. We solve
the wave equation inside the cavity to obtain a relationship between pressure and velocity of
the waves developing inside the cavity. In this way, we capture more physics of the problem
and the fidelity of the model is improved.

We follow much of the derivation done in [14], and focus on a systematic derivation of an asymp-
totic solution of a stand-alone nonlinear Helmholtz resonator equation from first principles. The
extra complication of grazing flow along the liner wall will not be considered here. This effect
is important if the mean flow boundary layer is thin enough and the resonator outflow velocity
is comparable to (or higher than) the mean flow velocity.

We start with the classical modelling of the Helmholtz resonator and formulate a perturbation
problem in terms of a small parameter ε which is based on the excitation amplitude of a given
pressure of fixed frequency. The stationary solution of this problem is solved asymptotically.
Secular effects of the external forcing are treated in the usual way by a suitable Lindstedt-
Poincaré type approach. A non-standard problem is the modulus term |u| of the velocity. This
prohibits a standard asymptotic expansion because the location of the zeros of u are a priori
unknown. This problem has been tackled by adding an unknown shift of the origin, to be
determined along with the construction of the solution, and using the fact that the stationary
solution has the same periodicity as the driving force.
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II. Mathematical formulation

The organ-pipe type resonator, i.e. the resonator of finite length considered here, is shown in
Fig 1. The base area of the cavity of length L is Sb and the cross sectional area of the neck is
Sn. It should be noted that this neck area is to be interpreted as the effective cross section. In
other words, the geometric cross section multiplied by a discharge coefficient, to include what
is commonly known as the vena contracta effect (due to separation of the streamlines at the
opening edge). This will normally be a weak function of the amplitude, but is assumed to be
constant here. Unless we know this discharge coefficient by other means, Sn is a modelling
parameter.

The frequency of the external excitation is assumed to be low enough that crosswise higher
order modes are cut off in the cavity region of length L, leading to only plane waves inside.
Considering that the cavity neck ℓ is acoustically compact i.e. kℓ ≪ 1 for a typical wavenumber
k = ω/c0, we can neglect compressibility in the neck and determine the line integral of the
momentum equation (with mean density ρ0, velocity v and pressure perturbation p)

ρ0

(∂v

∂t
+ v·∇v

)

+ ∇p = µ∇2
v

along a streamline from a point inside to a point outside to obtain the relation

ρ0

∫ ex

in

∂v

∂t
·ds + 1

2ρ0(v2
ex − v2

in) + (pex − pin) =

∫ ex

in
µ∇2

v·ds, (1)

with v = ‖v‖ and µ denoting the viscosity. Following Melling [5] we average pressure and veloc-
ity along the neck’s cross section, assume that the averaged squared velocity is approximately
equal to the squared averaged velocity, and obtain

ρ0

∫ ex

in

∂v

∂t
·ds + 1

2ρ0(v2
ex − v2

in) + (pex − pin) =

∫ ex

in
µ∇2

v·ds. (2)

Assuming that the streamline does not change in time, we have

Sn
Sb

L ℓ
∗

V

pin

vin

un

pex

Figure 1. Resonator cavity and neck

∫ ex

in

∂v

∂t
·ds =

d

dt

∫ ex

in
v·ds. (3)

The velocity line integral evidently scales on a typical length times a typical velocity. If end
effects are minor, we can use the neck flux velocity v = unex with a corresponding length being
the neck length ℓ = ℓ∗ + δ1 + δ2, consisting of the geometric neck length ℓ∗ added by small
end corrections δ1 and δ2 to take into account the inertia of the acoustic flow at both ends just
outside the neck (inside and outside the resonator). Then we have

∫ ex

in
v·ds = ℓun. (4)
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For now, the geometry dependent end corrections δ are modelling parameters. They are assumed
constant and known. For a number of geometries and ignoring viscosity, end corrections are
given by Ingard [15]. For a circular orifice, for example, we may use δ = 0.85(Sn/π)1/2.

For the stress term line integral we observe that, apart from un itself, it will depend on flow
profile, Reynolds number, wall heat exchange, turbulence, separation from sharp edges, and
maybe more. Following Melling [5], we will take these effects together in a resistance factor R,
which will be assumed relatively small, in order to have resonance and a small decay per period
to begin with. We thus have

∫ ex

in
µ∇2

v·ds = −Run (5)

(Note that this form is exact for a Poiseuille flow with parabolic profile). Unless we know this
resistance factor by other means, R is a modelling parameter with (as will be detailed below)
only a restriction on its order of magnitude to single out the relevant physical behaviour and
to enable a consistent asymptotic analysis.

Due to separation from the outer exit, we have with outflow vin ≃ 0 with vex = un jetting
out, while similarly during inflow, vex ≃ 0 with vin = un jetting into the cavity; see Fig. 2.
The pressure in the jets, however, has to remain equal to the surrounding pressure (pex and pin

respectively) because the boundary of the jet cannot support a pressure difference. Therefore,
we have altogether

ρ0ℓ
d

dt
un + 1

2ρ0un|un| + Run = pin − pex. (6)

The second equation between pin and un is obtained by solving the wave equation in the

out-flow phase in-flow phase

Figure 2. Separation and vortex shedding during the out-flow and in-flow phase

attached cavity (pipe) of uniform cross section Sb and length L, located along −L 6 x 6 0
where x = 0 is the position where the cavity connects to the neck. Inside the cavity, with axial
velocity u and pressure perturbation p, we have

∂p

∂t
+ ρ0c2

0

∂u

∂x
= 0

ρ0
∂u

∂t
+

∂p

∂x
= 0,

(7)

with mean sound speed c0 and assuming an adiabatic compression of the fluid in the cavity
p = c2

0ρ with density perturbation ρ. The end conditions are then

u(−L, t) = 0

p(0, t) = pin(t)

Sbu(0, t) = Snun(t).

(8)
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Using d’Alembert’s solution we can solve (7) to obtain

p(x, t) = ρ0c2
0

(

f(c0t − x − L) + f(c0t + x + L)
)

u(x, t) = c0
(

f(c0t − x − L) − f(c0t + x + L)
) (9)

so
pin(t) = ρ0c2

0

(

f(c0t − L) + f(c0t + L)
)

Snun(t) = Sbc0
(

f(c0t − L) − f(c0t + L)
)

.
(10)

After the Fourier transform of (7) using (8), we have

û(x) = Ac0 sin(kx + kL), p̂(x) = iAρ0c2
0 cos(kx + kL),

hence Snûn = SbAc0 sin(kL), p̂in = iAρ0c2
0 cos(kL).

For the linear harmonic case, we have from (6)

iωρ0ℓûn + Rûn = p̂in − p̂ex, (11)

p̂ex = −iωρ0ℓ
Sb

Sn
Ac0 sin(kL) − R

Sb

Sn
Ac0 sin(kL) + iAρ0c2

0 cos(kL). (12)

The neck velocity û is averaged over the whole surface and can be multiplied by the porosity
factor to obtain

ûex =
Sn

Sb
ûn = û(0) = Ac0 sin(kL). (13)

Combining (13) with (12), we obtain the standard1 expression of the linear impedance [16]

Z =
p̂ex

−ûex
=

−iωρ0ℓ Sb

Sn
Ac0 sin(kL) − R Sb

Sn
Ac0 sin(kL) + iAρ0c2

0 cos(kL)

−Ac0 sin(kL)

=
Sb

Sn

(

R + iωρ0ℓ
)

− iρ0c0 cot(kL). (14)

The resistance R averaged over the surface becomes the resistance term of the impedance in the
linear regime. Close to resonance, the expression (14) is no longer valid because the nonlinear
term in (6) is of the same order of magnitude as the other terms (the problem is formulated
such that the nonlinear effects become important near resonance), as will become more clear
in the next section. In order to make progress with the perturbation problem, it is essential to
scale the variables in (6). This will be done in the next section.

III. Scaling

For a proper analysis, it is most clarifying to rewrite the equation into non-dimensional variables,
and scaled to the right order of magnitude. For this we need an inherent timescale and pressure
level. The fundamental2 resonance frequency ω0 for the linearised case and R = 0 is evidently
given by the first positive solution of

κ0 tan κ0 =
LSn

ℓSb
, κ0 =

ω0L

c0
. (15)

The reciprocal of this angular frequency is a suitable timescale of the problem. By dividing
the nonlinear damping term by the acceleration term we find the pressure level at which the

1Whenever convenient, we will use tan = sin / cos, cot = cos / sin, sec = 1/ cos, cosec = 1/ sin.
2Resonance at the higher harmonics will not be considered.
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nonlinear damping would be just as large as the other terms. So for a pressure that is a small
fraction, say ε, of this level we have a problem with only little nonlinear damping. In addition we
assume that the linear damping is small, and (near resonance3) of the same order of magnitude
as the nonlinear damping. As may be expected, the driving amplitude pex will (near resonance)
be an order smaller than pin. In order to make all this explicit we introduce a small parameter
ε (via the external forcing amplitude), and make dimensionless

τ = ω0t pin(t) = 2ερ0c2
0

(

ω0ℓ

c0

)2

y(τ) pex(t) = 2ε2ρ0c2
0

(

ω0ℓ

c0

)2

F (τ)

R = ερ0c0

(

ω0ℓ

c0

)

r un(t) = 2εc0

(

ω0ℓ

c0

)

v(τ) f(c0t) = 2ε

(

ω0ℓ

c0

)2

φ(τ).

(16)

It may be helpful to explicate the relation between bookkeeping parameter ε and the excitation
amplitude of pex. The relation is similar to what is used in [14], only ω0 is now found from (15).
Although pex is non-dimensionalised and rescaled such that F = O(1), there are many ways for
F to be O(1), and the precise value of ε depends therefore on the chosen normalisation of F . If
we assume, for definiteness (and because this has been assumed in all the examples), that the
excitation is harmonic with amplitude unity, in particular F = cos(ωt), we can relate ε directly
to the excitation SPL dB value by

ε =





2 · 10−5 · 10
SPL
20

2ρ0c2
0

(ω0ℓ
c0

)2 1
2

√
2





1
2

. (17)

It should be noted that the modelling assumptions consider resistance parameter R a constant
and not dependent of the excitation amplitude, and thus ε. So the used scaling R ∼ εr should
not be interpreted that R depends on ε, but is only meant to further the asymptotic analysis
and select out a certain class of problems with a relatively small linear friction and nonlinear
effects. If we consider a particular configuration, with fixed R, for varying excitation amplitude
(∼ ε2), we should keep εr fixed and adapt r accordingly. It goes without saying that r should
never become so large that we enter a physically different regime.

Coupled with (6) and (9), we obtain the final nonlinear differential equation in y and v

dv

dτ
+ εv|v| + εrv − y = −εF (18)

under the condition that there is a function φ with

φ(τ − κ0) + φ(τ + κ0) = y(τ)

φ(τ − κ0) − φ(τ + κ0) = v(τ) tan κ0.
(19)

This condition (19) indeed simplifies for κ0 → 0 to the condition v(τ) = −y′(τ), used in the
analysis of [14] (in particular, equivalent to its equation (8)). Moreover, in this case we have

κ0 tan κ0 ≃ κ2
0.

leading, with (15), to the same resonance frequency of the cavity as in [14]. Note that with
positive ω0, κ0 > 0, and since the product k0 tan κ0 = LSn/ℓSb > 0, we have tan κ0 > 0.

This system of equations (18, 19) is to be solved asymptotically in the following.

3Away from resonance the nonlinear effects will be much smaller.
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IV. Asymptotic solution away from resonance, ω not near ω0

Away from resonance, ω 6= ω0, and with F given by4

F (τ) = F0 cos(Ωτ), Ω =
ω

ω0
, (20)

our solution y follows the external excitation εF in time, phase and order of magnitude. Hence
we assume y = O(ε) and expand the variables as

y = εy0 + ε2y1 + . . . , v = εv0 + ε2v1 + . . . , φ = εφ0 + ε2φ1 + . . . . (21)

Collecting the like powers of ε, we obtain

dv0

dτ
− y0 = −F0 cos(Ωτ)

φ0(τ − κ0) + φ0(τ + κ0) = y0(τ)

φ0(τ − κ0) − φ0(τ + κ0) = v0(τ) tan κ0

(22)

and
dv1

dτ
− y1 = −rv0

φ1(τ − κ0) + φ1(τ + κ0) = y1(τ)

φ1(τ − κ0) − φ1(τ + κ0) = v1(τ) tan κ0.

(23)

Assuming a slight amount of damping, the homogeneous solution of (22) and (23), given by
(70) of Appendix A, will dissipate for large time. The particular solution that remains, can be
obtained in a way as shown in Appendix B. Using (73), we obtain

v = ε
− tan(Ωκ0)

Ω tan(Ωκ0) − tan κ0
F0 sin(Ωτ) − ε2r

[

tan(Ωκ0)

Ω tan(Ωκ0) − tan κ0

]2

F0 cos(Ωτ) + O(ε3),

which is asymptotically equivalent to the solution

v = −εF0 tan(Ωκ0)
(Ω tan(Ωκ0) − tan κ0) sin(Ωτ) + εr tan(Ωκ0) cos(Ωτ)

(Ω tan(Ωκ0) − tan κ0)2 + (εr tan(Ωκ0))2
+ O(ε3). (24)

We see that the response v is indeed O(ε) and follows the excitation almost in phase (Ω tan(Ωκ0)−
tan κ0 > 0) or antiphase (Ω tan(Ωκ0) − tan κ0 < 0).

On the other hand, close to resonance when Ω = 1+O(ε), the term (Ω tan(Ωκ0)−tan κ0) = O(ε),
so v = O(1) and the assumption that the response v has the same order as the excitation O(ǫ)
is not correct. Therefore the solution (24) is not valid close to resonance.

V. Asymptotic solution close to resonance, ω ≈ ω0

Near resonance, the amplitude y in (18) rises to levels of O(1) with O(ε) forcing and the
assumption that the nonlinear damping is negligible to leading orders is not correct. As the
physics of the problem essentially change when Ω = 1+O(ε), we introduce a parameter σ = O(1)
and assume that

Ω = 1 + εσ. (25)

4We include amplitude F0 for lucidity of the formulas, but in all examples F0 = 1 will be used.
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However, posed in this form we obtain secular terms in the expansion cos(τ + εστ) = cos(τ) −
εστ sin(τ) + . . . of the driving force, which prohibits a uniform approximation of v later [17,
sec 15.3.2]. Therefore, we remove the ε-dependence from the driving force by absorbing Ω into
a new time coordinate τ̃ = Ωτ . Moreover, the asymptotic expansion of the term v|v| introduces
difficulties near the ε-dependent (and unknown) zeros of v. This will be tackled by a translation
of the origin by an amount θ(ε), such that the locations of the sign change of v are fixed (as v
is synchronised with the driving force) and independent of ε. (Of course, a certain amount of
smoothness is anticipated such that v has the same number of zeros per period as the forcing
term). So we introduce

τ̃ = Ωτ − θ(ε) (26)

where θ is to be chosen such that the response v vanishes at integral multiples of π. This fixes
the points along the time τ̃ axis where v changes sign, i.e.

v(τ̃ ) = 0 at τ̃ = Nπ. (27)

In other words, Ωτ = ωt = θ corresponds with the phase lag of response vex to excitation pex

like in [14].

Consider Ω = 1 + O(ε) and introduce the transformation

F = F0 cos(τ̃ + θ), Ω = 1 + εσ, τ̃ = Ωτ − θ, y(τ) = ỹ(τ̃), v(τ) = ṽ(τ̃) and φ(τ) = φ̃(τ̃ ), (28)

to obtain the following set of equations

Ω
dṽ

dτ̃
+ εṽ|ṽ| + εrṽ − ỹ = −εF (29)

with
φ̃(τ̃ − Ωκ0) + φ̃(τ̃ + Ωκ0) = ỹ(τ̃)

φ̃(τ̃ − Ωκ0) − φ̃(τ̃ + Ωκ0) = ṽ(τ̃) tan κ0.
(30)

Now we expand the variables as follows

ỹ = ỹ0 + εỹ1 + . . . , ṽ = ṽ0 + εṽ1 + . . . , φ̃ = φ̃0 + εφ̃1 + . . . , θ = θ0 + εθ1 + . . . ,

φ̃(τ̃ ± Ωκ0) = φ̃0(τ̃ ± κ0) + ε
(

φ̃1(τ̃ ± κ0) ± σκ0φ̃′
0(τ̃ ± κ0)

)

+ ε2
[

φ̃2(τ̃ ± κ0) ± σκ0φ̃′
1(τ̃ ± κ0) + 1

2(σκ0)2φ̃′′
0(τ̃ ± κ0)

]

+ . . . .

(31)

Next we collect the terms of the same order of ε and construct our solution in the form of an
asymptotic series.

Order ε0 analysis:

Substituting (31) in (30) and afterwards in (29) and collecting the terms of O(ε0), we have

dṽ0

dτ̃
− ỹ0 = 0

φ̃0(τ̃ − κ0) + φ̃0(τ̃ + κ0) = ỹ0(τ̃)

φ̃0(τ̃ − κ0) − φ̃0(τ̃ + κ0) = ṽ0(τ̃ ) tan κ0.

(32)

At large times, assuming a little damping, the cavity is driven by the external force in such a
way that a steady state is reached and the initial conditions are not important. Hence from
(70), we choose the steady solution and obtain, using (27),

φ̃0 =1
2A0 cos τ̃ , (33)
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and hence
ỹ0 = A0 cos κ0 cos τ̃ and ṽ0 = A0 cos κ0 sin τ̃ , (34)

where A0 and θ0 are to be determined from the regularity condition (absence of secular terms
(74)) in the next order ε1.

Order ε1 analysis:

Collecting the terms of O(ε) from (29), we obtain

dṽ1

dτ̃
− ỹ1 = −σṽ′

0 − ṽ0|ṽ0| − rṽ0 − F0 cos(τ̃ + θ0)

φ̃1(τ̃ − κ0) + φ̃1(τ̃ + κ0) = σκ0φ̃′
0(τ̃ − κ0) − σκ0φ̃′

0(τ̃ + κ0) + ỹ1(τ̃ )

φ̃1(τ̃ − κ0) − φ̃1(τ̃ + κ0) = σκ0φ̃′
0(τ̃ − κ0) + σκ0φ̃′

0(τ̃ + κ0) + ṽ1(τ̃) tan κ0.

(35)

From (33), (34) and (35), we have after eliminating ỹ1 and ṽ1

cot κ0

[

φ̃′
1(τ̃ − κ0) − φ̃′

1(τ̃ + κ0)
]

−
[

φ̃1(τ̃ − κ0) + φ̃1(τ̃ + κ0)
]

=

− σA0
[

1 + 2κ0 cot(2κ0)
]

cos κ0 cos τ̃ − A0|A0| cos2κ0 sin τ̃ | sin τ̃ |
− rA0 cos κ0 sin τ̃ − F0 cos θ0 cos τ̃ + F0 sin θ0 sin τ̃ . (36)

From the argument, that we have a stationary solution of which we require its asymptotic
expansion uniform in τ̃ , it follows that no resonant excitation is allowed in the right hand side
of the equation (36) (no secular terms). This means (see (74)) that we should suppress the sine
and cosine terms including those in the Fourier expansion of

sin(x)| sin(x)| = − 1

π

∞
∑

n=0

sin(2n + 1)x

(n2 − 1
4 )(n + 3

2)
∼ 8

3π
sin(x) − 8

15π
sin(3x) − . . . .

Hence we obtain the algebraic equations

F0 cos θ0 = −σA0
[

1 + 2κ0 cot(2κ0)
]

cos κ0

F0 sin θ0 = A0

[

r +
8

3π
|A0| cos κ0

]

cos κ0.
(37)

In general, A0 has to be solved numerically, from which θ0 follows. There exist two (real)
solutions, but they are equivalent. If (A0, θ0) is a solution, then also (−A0, θ0 + π). For
convenience, we will assume that θ0 is taken such that A0 is positive and maintain |A0| = A0.
Solving (37), we can obtain A0 and θ0 as plotted in Fig. 3. We notice that the amplitude rises
to O(1) at resonance and decays when σ → ±∞.

If we take the low frequency limit (κ0 → 0) in (37), we obtain exactly the same equations as
in [14]. Physically, in this limit, the cavity length L would be asymptotically much smaller than
the acoustic wavelength 2πc0/ω0 and hence the wave would feel a uniform pressure inside the
cavity. Thus the current modelling assumption converges to the one in [14].

From (36), we have

cot κ0

[

φ̃′
1(τ̃ − κ0) − φ̃′

1(τ̃ + κ0)
]

−
[

φ̃1(τ̃ − κ0) + φ̃1(τ̃ + κ0)
]

=
1

π
A2

0 cos2κ0

∞
∑

n=1

sin(2n + 1)τ̃

(n2 − 1
4 )(n + 3

2)
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Figure 3. Solution of amplitude (A0, A1) and phase (θ0, θ1) as a function of σ, with κ0 = 0.55, and r = F0 = 1

which can be solved term-wise using (70), similar to (33), to obtain

φ̃1(τ̃) = 1
2A1 cos τ̃ + 1

2B1 sin τ̃

+
1

2π
A2

0 cos κ0

∞
∑

n=1

sin(2n + 1)τ̃

(n2 − 1
4)(n + 3

2)
[

2n + 1 − tan κ0 cot(2n + 1)κ0
] · sin κ0

sin(2n + 1)κ0
(38)

which upon substituting in (35) gives

ṽ1(τ̃) =

[

A1 sin τ̃ − B1 cos τ̃ + σA0κ0 cot κ0 sin τ̃

− 1

π
A2

0 cos κ0

∞
∑

n=1

cos(2n + 1)τ̃

(n2 − 1
4)(n + 3

2) [2n + 1 − tan κ0 cot(2n + 1)κ0]

]

cos κ0. (39)

Using the condition (27), i.e. ṽ1(τ̃ = Nπ) = 0, we find

B1 = − 1

π
A2

0 cos κ0

∞
∑

n=1

1

(n2 − 1
4)(n + 3

2 ) [2n + 1 − tan κ0 cot(2n + 1)κ0]
. (40)

Note that in the limit κ0 → 0, we have B1 = − 2
9π A2

0, which will be useful later5. The other two
unknowns A1 and θ1 are to be determined from the regularity condition at next order (ε2).

Order ε2 analysis:

Collecting the terms of O(ε2) from (29), we obtain

ṽ′
2 − ỹ2 = − σṽ′

1 − 2ṽ1|ṽ0| − rṽ1 + θ1 sin(τ̃ + θ0)

φ̃2(τ̃ − κ0) + φ̃2(τ̃ + κ0) = − 1
2(σκ0)2

[

φ̃′′
0(τ̃ − κ0) + φ̃′′

0(τ̃ + κ0)
]

+ σκ0

[

φ̃′
1(τ̃ − κ0) − φ̃′

1(τ̃ + κ0)
]

+ ỹ2(τ̃ )

φ̃2(τ̃ − κ0) − φ̃2(τ̃ + κ0) = − 1
2(σκ0)2

[

φ̃′′
0(τ̃ − κ0) − φ̃′′

0(τ̃ + κ0)
]

+ σκ0

[

φ̃′
1(τ̃ − κ0) + φ̃′

1(τ̃ + κ0)
]

+ ṽ2(τ̃) tan κ0.

(41)

5The series of B1 breaks down at the zeros of 2n + 1 − tan κ0 cot(2n + 1)κ0, and so the smoothness properties
in variable κ0 of B1, and for that matter of φ̃1 and ṽ1, are still a point of attention. The issue is directly related
to the modelling assumptions leading to the term un|un| in (6).
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Substituting ỹ2 and ṽ2 in the first equation of (41), we obtain

cot κ0

[

φ̃′
2(τ̃ − κ0) − φ̃′

2(τ̃ + κ0)
]

−
[

φ̃2(τ̃ − κ0) + φ̃2(τ̃ + κ0)
]

=

1
2 (σκ0)2

[

φ̃′′
0(τ̃ − κ0) + φ̃′′

0(τ̃ + κ0)
]

− 1
2(σκ0)2 cot κ0

[

φ̃′′′
0 (τ̃ − κ0) − φ̃′′′

0 (τ̃ + κ0)
]

− σκ0

[

φ̃′
1(τ̃ − κ0) − φ̃′

1(τ̃ + κ0)
]

+ σκ0 cot κ0

[

φ̃′′
1(τ̃ − κ0) + φ̃′′

1(τ̃ + κ0)
]

− σṽ′
1 − 2ṽ1|ṽ0| − rṽ1 + θ1 sin(τ̃ + θ0), (42)

in which we have to suppress the sine and cosine terms to obtain A1 and θ1. Although laborious,
this is simple. By using (33), (34), (38), (39) and (40) with (42), (see Appendix C), collecting the
coefficients of sine and cosine terms, and equating them to zero, we obtain two linear equations
in the variables A1 and θ1

σ
[

1 + 2κ0 cosec(2κ0)
]

A1 cos κ0 − θ1 sin θ0 =
(

r +
8

3π
A0 cos κ0

)

B1 cos κ0 − σ2A0κ0 cot κ0 cos κ0

− 2

π2
A3

0 cos3κ0

∞
∑

n=1

1

(n − 1
2 )(n2 − 1

4 )(n + 3
2)2 [2n + 1 − tan κ0 cot(2n + 1)κ0]

(43)(

r +
16

3π
A0 cos κ0

)

A1 cos κ0 − θ1 cos θ0 =

− σ
[

1 + 2κ0 cosec(2κ0)
]

B1 cos κ0 − σ

(

r +
16

3π
A0 cos κ0

)

A0κ0 cot κ0 cos κ0.

Solving (43) is straightforward. An example of the found A1 and θ1 is shown in Fig. 3. At
this stage we have the solution correct up to O(ε). To verify the consistency with the simpler
model [14], it is of interest to consider the limit κ0 → 0. By noting that

∞
∑

n=1

2n + 1

4n(n + 1)(n − 1
2)(n2 − 1

4)(n + 3
2)2

=
π2

6
− 40

27
,

we obtain from (43) for κ0 → 0

2σA1 − θ1 sin θ0 = −σ2A0 − 2

9π
rA2

0 − 1

3

(

1 − 64

9π2

)

A3
0

(

r +
16

3π
A0

)

A1 − θ1 cos θ0 = −σ

(

r +
44

9π
A0

)

A0

(44)

which is indeed exactly the equation set of [14]. This confirms the consistency between current
and previous solutions. Using (39), (31), (28) and (16), we finally obtain

un =2εℓω0 cos κ0
[

(A0 + εA1 + εσA0κ0 cot κ0) sin(ωt − θ) − εB1 cos(ωt − θ)
]

− 2ε2 ℓω0

π
A2

0 cos2κ0

∞
∑

n=1

cos(2n + 1)(ωt − θ)

(n2 − 1
4)(n + 3

2) (2n + 1 − tan κ0 cot(2n + 1)κ0)
. (45)

The velocity in (45) after averaging over the surface (multiplying with Sn/Sb) can be used with
the external excitation in (16) to obtain the impedance that we will derive in the next section.
It is interesting to note that equation (45) reduces to leading order in ε and vanishing κ0 to

un(t) = 2εℓω0A0 cos κ0 sin(ωt − θ0) ≃ 2εℓω0A0 sin(ωt − θ0), (46)
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which is almost the same as the corresponding expression in [14]. The only difference is the
factor ω0 here, versus the factor ω in the previous solution. This, however, is not an error, since
near resonance Ω = ω/ω0 ≈ 1, and ω and ω0 are asymptotically equivalent. Via another route
we would have found the factor ω here too. If we expand the function φ̃(τ̃ − Ωκ0) about Ωκ0

in (30) assuming small κ0, we obtain

ỹ(τ̃) = 2φ̃(τ̃) and ṽ(τ̃) = −2Ωφ̃′(τ̃ ), (and hence ṽ = −Ωỹ′, ) (47)

that can be substituted back in (29) to obtain

Ω2ỹ′′(τ̃ ) + εΩ2ỹ′(τ̃)|ỹ′(τ̃)| + εΩrỹ′(τ̃) + ỹ(τ̃ ) = εF. (48)

This is exactly the equation analysed by [14] in the nonlinear regime, while ṽ = −Ωỹ′ comes
down dimensionally to the condition

V
dpin

dt
= −ρ0c2

0unSn, (49)

with V = SbL the volume of the cavity. From (34) and (16), we obtain

pin(t) = 2ερ0ℓ2ω2
0A0 cos(ωt − θ0) (50)

which upon substituting in (49) gives the alternative of (46)

un(t) = 2εωℓA0 sin(ωt − θ0). (51)

As explained above, this difference is correct, because close to resonance ω and ω0 are asymptoti-
cally equivalent, and so the old and new expressions are asymptotically equivalent. Nevertheless,
the accidentally found difference is very interesting, because it appears that the new version
happens to behave far better for finite values of ε. Although we cannot expect a priori an
asymptotic analysis for ε → 0 to produce good behaviour for finite ε, it is a fortuitous occasion
if we have one.

VI. Impedance calculation

In order to obtain realistic numbers, we will consider the impedance Z as the effective impedance
of an array of Helmholtz resonators, where the spatially averaged neck velocity is identified to
the external acoustic velocity. Therefore, we add a porosity factor Sn/Sb to un and obtain

uex =
Sn

Sb
un. (52)

Then we define the impedance as the ratio of the Fourier transforms of the external pressure
pex and (minus) the external velocity vex at excitation frequency ω.

Z(η) =
p̂ex(η)

−ûex(η)
=

1

2π

∫ ∞

−∞
pex(t) e−iηt dt

− 1

2π

∫ ∞

−∞
uex(t) e−iηt dt

(η = ω). (53)

12



VI.A. Non-resonant impedance

Taking the Fourier transformation of pex(t) from (16) with (20) and Fourier transformation of
uex(t) = (Sn/Sb)un(t) from (24), we obtain for η > 0,

p̂ex(η) =
1

2π

∫ ∞

−∞
pex(t) e−iηt dt =

1

2π
ε2ρ0ℓ2ω2

0 F0δ(η − ω)

ûex(η) =
1

2π

∫ ∞

−∞
uex(t) e−iηt dt

=
1

2π

Sn

Sb
ε2ω0ℓ

[

i tan(Ωκ0)

Ω tan(Ωκ0) − tan κ0
− εr

(

tan(Ωκ0)

Ω tan(Ωκ0) − tan κ0

)2
]

δ(η − ω)

(54)

with the negative of the ratio of above two expressions being the impedance, given by

Z(ω) =
Sb

Sn
ρ0ℓω0

[

−i tan(Ωκ0)

Ω tan(Ωκ0) − tan κ0
+ εr

(

tan(Ωκ0)

Ω tan(Ωκ0) − tan κ0

)2
]−1

. (55)

To leading orders in ε, the impedance expression in (55) indeed becomes the one in (14) as
expected.

VI.B. Resonant impedance

Taking the Fourier transformation of pex(t) from (16) with (20) and Fourier transformation of
uex(t) = (Sn/Sb)un(t) from (45), we have for η > 0

p̂ex(η) =
1

2π

∫ ∞

−∞
pex(t) e−iηt dt =

1

2π
ε2ρ0ℓ2ω2

0 F0δ(η − ω), (56)

ûex(η) =
1

2π

∫ ∞

−∞
uex(t) e−iηt dt

=
−i

2π

Sn

Sb
εω0ℓ e−iθ cos κ0 [A0 + εA1 + εσA0κ0 cot κ0 − iεB1] δ(η − ω). (57)

Substituting (56) and (57) in (53), we obtain

Z(ω) = ερ0ℓω0
Sb

Sn

−i eiθ F0

A0 cos κ0 + ε(A1 + σA0κ0 cot κ0 − iB1) cos κ0
. (58)

In order to illustrate formula (58), we have plotted in Fig. 4 nondimensional resistance Re(Z)/ρ0c0

and reactance Im(Z)/ρ0c0 as a function of Ω, obtained for a typical geometry at different driv-
ing amplitudes, corresponding with ε varying from 0.04 to 0.22. As may be expected from (58),
the main effect of the forcing amplitude is in the resistance. The reactance is practically inde-
pendent of it. Typically, the resistance increases everywhere with the amplitude, being highest
at or near the resonance frequency and decaying along both sides, but more for frequencies less
than the resonance frequency. Away from the resonance, if we take the limit σ → ±∞, in (58),
we obtain the linear impedance described by (14). Hence, the nonlinear impedance matches
asymptotically to the linear impedance which confirms the consistency of our nonlinear solution.

VI.B.1. Effect of second order approximation and organ pipe cavity on the resistance

In order to understand the effect of the second order approximation on the resistance, the
resistances obtained from the first (ṽ0) and second (ṽ0 + εṽ1) order approximations are shown
in Fig. 5 (left). As we can see, the second order correction is not necessary for lower driving
amplitudes. For higher amplitudes, on the other hand, it is essential.

7Note: since R ∼ εr is normally fixed, r is adapted such that εr is kept fixed.

13



130dB
120dB
110dB
100dB

�

R
e(

Z
)/

ρ
0c

0

1.61.41.210.80.60.4

0.4

0.35

0.3

0.25

0.2

0.15

130dB
120dB
110dB
100dB

�

Im
(
Z
)/

ρ
0c

0

1.61.41.210.80.60.4

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

pex (dB) 100 110 120 130

ε 0.0396 0.0703 0.1251 0.2224

Figure 4. Real and imaginary parts of nondimensional impedance Z/ρ0c0 for a finite-length Helmholtz
resonator as a function of nondimensional frequency at different driving amplitudes. The realistic con-
figuration that is chosen corresponds with c0 = 340 m/s, ρ0 = 1.225 kg/m3, ℓ = 0.005 m, L = 0.035 m,
R = 3.5 kg/m2s and Sn/Sb = 0.05, yielding κ0 = 0.5592 and ω0 = 5433 rad/sec, while F0 = 1. The dashed line
along Re(Z)/ρ0c0 = 0.17 represents the linear resistance7 which equals (Sb/Sn)R/ρ0c0.
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Figure 5. Nondimensional resistance, Re(Z)/ρ0c0 as a function of nondimensional frequency at different
driving amplitudes. The configuration of the resonator and driving amplitudes are the same as in Fig. 4

In order to understand the effect of the organ pipe type cavity on the resistance term, we take
the limit κ0 → 0 in (58) and obtain the expression

Z(ω) ∼ ερ0ℓω0
Sb

Sn

−i eiθ F0

A0 + εA1 + ε(σ + i 2
9π A0)A0

=
ερ0c2

0F0

Lω0

−i eiθ

(1 + εσ)A0 + εA1 + iε 2
9π A2

0

.

(59)

The plots of resistance obtained with finite κ0 (58) and κ0 → 0 (59) are shown in Fig. 5
(right). For very low amplitudes (low ε), this effect is minor, but it is quite essential for higher
amplitudes. Also, we notice that a finite κ0 resistance curve has a better behaviour away from
the resonance frequency when compared with the experimental data curve in Fig. 7.
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VI.B.2. Comparison with previous model [14]

In view of ω = ω0(1+εσ) and in agreement with our previous checks, the impedance expression,
found by [14],

Z(ω) =
ερ0c2

0F0

Lω

−i eiθ

A0 + εA1 + iε 2
9π A2

0

=
ερ0c2

0F0

Lω0

−i eiθ

(1 + εσ)A0 + (1 + εσ)(εA1 + iε 2
9π A2

0)
,

(60)

is asymptotically equivalent, up to O(ε2), to (59). Asymptotically equivalent for small ε, how-
ever, does not automatically imply8 equivalent for finite ε. Just by chance the new representation
(59) behaves for finite ε much better than the previous one (60).
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0

[14]

Figure 6. Comparison of nondimensional resistance Re(Z)/ρ0c0 based on the full current model, its limit
for κ0 → 0, and (the asymptotically equivalent) [14], as a function of nondimensional frequency at different
driving amplitudes. The configuration of the resonator and driving amplitudes are the same as in Fig. 4,
except that r = 1 is kept constant

Consider Fig. 6 with a plot of the resistance obtained from (60), (58) and (59), for a typical
geometry and external excitation, varying from 100 dB to 130 dB and the resistance factor
r = 1. The current model with finite κ0 (58) indeed predicts the near resonance behaviour to a
better accuracy and decays away from resonance at Ω = 1 to match with the linear resistance.
Its limiting form for κ0 → 0, given by (59), follows the same. The near resonance behaviour
(60) of [14], however, is similar to the above, but with higher ε and away from the resonance,
the resistance does not decay. As said before, it turns out that (59), although asymptotically
equivalent to (60), gives far better predictions at finite ε.

Hence, as a concluding remark, we suggest to replace the impedance expression derived in [14],
i.e. (60), by the asymptotically equivalent form (59).

VII. Comparison with Motsinger and Kraft [6]

The behaviour in (58) may be compared in Fig. 7 (solid lines) with the measurements (squares)
and predictions (dotted lines) given by Motsinger and Kraft in [6]. Their predictions are (a.o.)
based on a resistance of the form R = ρ0c0(a + b|v|) with suitably chosen - and problem de-
pendent - a and b (while |v| denotes in [6] the rms-value of v). The parameter values we used
are based on c0 = 340 m/s, ρ0 = 1.225 kg/m3, ω0/2π = 2210 Hz, ℓ = 0.0017 m, L = 0.014 m,
Sn/Sb = 0.0446 and κ0 = 0.5715. The resistance term R = 2.25 is deduced from the level of

8For example, 1 − ε = (1 + ε)−1 + O(ε2).
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Figure 7. Comparison of (58) with measurements (squares) and predictions (dotted lines) of Re(Z)/ρ0c0

given by Motsinger and Kraft in [6]. The solid lines corresponds to the resistance values produced by (58)
while the dashed lines corresponds to the previous model [14] prediction. c0 = 340 m/s, ρ0 = 1.225 m/kg3,
L = 0.014 m, ℓ = 0.0017 m, Sn/Sb = 0.0446, κ0 = 0.5715, ω0/2π = 2210 Hz

about 0.12, read off Fig. 7 in the (assumed linear) region near 1000 Hz. Applying (14), this
is set equal to (Sb/Sn)R/ρ0c0, from which follows R = 0.12ρ0c0Sn/Sb = 2.25. Unfortunately,
only little experimental data for the higher amplitudes are available. However, the agreement
is remarkably good, even when ε is relatively large for higher amplitudes. The impedance for
higher amplitudes (∼ ε2) at and near resonance is predicted much more accurately compared
to the previous model, which is plotted by dashed lines. So we conclude that the current model
has indeed a better accuracy and could be used to predict the impedance for resonators of small
or big lengths.

VIII. Conclusions

A systematic approximation of the hydrodynamically nonlinear Helmholtz resonator equa-
tion that includes higher order axial modes in the cavity is obtained, including the resulting
impedance if the resonator as applied in an acoustic liner. The only unknown parameters that
we need to adapt is resistance factor r, and to a certain extent the effective neck length ℓ and
neck cross section Sn. Comparisons with measurements show that the model predicts the near
resonance impedance behaviour at σ = O(1) to a good accuracy and a better resemblance is
found (especially for higher excitation amplitudes) compared to the previous model [14]. The
real part of the found impedance (the resistance) shows the usual characteristic behaviour as
a function of frequency, namely a maximum at the resonance frequency and a decay along
both sides. All values increase with the amplitude. The imaginary part of the impedance (the
reactance) is linear in frequency in a way that it vanishes at resonance and is practically inde-
pendent of the amplitude. The nonlinear solution asymptotically matches smoothly with the
linear solution, which confirms the consistency of our solution.
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A. Solution of homogeneous problem

Consider the homogeneous equation

dv

dτ
− y = 0

φ(τ − κ0) + φ(τ + κ0) = y(τ)

φ(τ − κ0) − φ(τ + κ0) = v(τ) tan κ0.

(61)

Assume for the homogeneous problem the trial solutions

y = A eiλτ , v = B eiλτ , φ = C eiλτ . (62)

Substituting (62) back into (61), we find

2C cos(λκ0) = A = iλB, −2iC sin(λκ0) = B tan κ0, (63)

leading to
λ tan(λκ0) = tan κ0. (64)

All solutions of (64) come in pairs. If λ is solution then −λ is also a solution. However from
(15), we notice that for a positive ω0, κ0 > and since product κ0 tan κ0 = LSn/ℓSb is a positive
constant, tan κ0 < 0 does not occur. For tan κ0 > 0, λ is given as

λ1 = 1, λ2, λ3, . . . . (65)

For example: if κ0 = 1
4π and tan κ0 = 1, then

λ1 = 1, λ2 = 4.291488, λ3 = 8.1553478 etc. (66)

So the general solution for tan κ0 > 0 is9

y = a1 cos τ + b1 sin τ +
∞

∑

n=2

an cos(λnτ) + bn sin(λnτ). (70)

9Although it is not relevant here, if tan κ0 < 0, λ is given by

λ0 = iµ0, µ0 tanh(µ0κ0) = − tan κ0, λ1 = 1, λ2, . . . . (67)

For example, if κ0 = 3
4
π and tan κ0 = −1,

λ0 = i1.016743, λ1 = 1, λ2 = 2.505496, λ3 = 3.893295, λ4 = 5.253502 etc. (68)

So for tan κ0 < 0, with the presence of diverging exponential terms,

y = a0 eµ0τ +b0 e−µ0τ +a1 cos τ + b1 sin τ +

∞
∑

n=2

an cos(λnτ ) + bn sin(λnτ ). (69)

The diverging exponential terms in the solution (69) corresponds to the instability of a mass-spring system when
the mass is negative so that at an applied (or no) force, there is infinite displacement.
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B. Solution of inhomogeneous problem

Assume for the inhomogeneous problem

dv

dτ
= y + eiΩτ

φ(τ − κ0) + φ(τ + κ0) = y(τ)

φ(τ − κ0) − φ(τ + κ0) = v(τ) tan κ0,

(71)

the trial solution
y = A eiΩτ , v = B eiΩτ , φ = C eiΩτ . (72)

Solving (71) with (72), we find

A =
tan κ0

Ω tan(Ωκ0) − tan κ0
, B =

−i tan(Ωκ0)

Ω tan(Ωκ0) − tan κ0
, C =

1
2 tan κ0 sec(Ωκ0)

Ω tan(Ωκ0) − tan κ0
. (73)

From here we can construct solutions for inhomogeneous terms cos(Ωτ) and sin(Ωτ) by taking
the real or imaginary part of the solution (72) respectively. At resonance, when Ω tan(Ωκ0) −
tan κ0 = 0, we take the trial solution

y = Aτ eiΩτ , v = Bτ eiΩτ , φ = Cτ eiΩτ

hence A =
1

iΩ
, B = 1, C =

1

iΩ
sec(Ωκ0).

(74)

From (74), we see that the solution grows with time and secular terms appear.

C. Order ε
2 equation

Using (33), (34), (38), (39) and (40) with (42), we obtain

cot κ0

[

φ̃′
2(τ̃ − κ0) − φ̃′

2(τ̃ + κ0)
]

−
[

φ̃2(τ̃ − κ0) + φ̃2(τ̃ + κ0)
]

=

− σκ0 cosec κ0
(

A1 cos τ̃ + B1 sin τ̃
)

− σ cos κ0 (A1 cos τ̃ + B1 sin τ̃ + σA0κ0 cot κ0 cos τ̃)

+ r cos κ0 (−A1 sin τ̃ + B1 cos τ̃ − σA0κ0 cot κ0 sin τ̃)

+
1

π
A2

0 cos2κ0



r
∞

∑

n=1

cos(2n + 1)τ̃

(n2 − 1
4 )(n + 3

2) [2n + 1 − tan κ0 cot(2n + 1)κ0]

− 2σ
∞

∑

n=1

1 + κ0 tan κ0 + (2n + 1)κ0 cot(2n + 1)κ0

(n − 1
2 )(n + 3

2) [2n + 1 − tan κ0 cot(2n + 1)κ0]
sin(2n + 1)τ̃





+ 2A0 cos2κ0



−A1 sin τ̃ + B1 cos τ̃ − σA0κ0 cot κ0 sin τ̃

+
1

π
A2

0 cos κ0

∞
∑

n=1

cos(2n + 1)τ̃

(n2 − 1
4)(n + 3

2) [2n + 1 − tan κ0 cot(2n + 1)κ0]



| sin τ̃ |

+ θ1 sin(τ̃ + θ0)
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