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General information: This is the assignment for the course Algorithmic Methods in
Queueing Theory (AIQT). The assignment requires the implementation of the approaches
discussed during the course. The assignment can be made in groups of at most two persons,
and it is also required to submit a report with your findings.

The report of the assignment should be sent by email to rob.van.der.Mei@cwi.nl and
to s.kapodistria@tue.nl with the subject “Assignment for course AIQT” before 23:59 on
April 3 2023. To this purpose, you need to create a single pdf file with the answers to
the assignment. Since, the assignment requires programming, you can use your favorite
programming language or mathematical/statistical software, however the original source
code, in original format, should be submitted together with the report, i.e. in the same
email as the solutions of the assignment.

The findings reported in the assignment should be presented in a clear, concise way and
the code should be documented and should provide sufficient information for confirmation
and replication of the results. Moreover, all graphs/tables should have a caption explaining
what is depicted and all axes should be labeled.

Lastly, but still important, create a cover for the report and include the names of all
the members of the group, the students affiliations and the course name.



 
 
Exercise 1: Waiting-time analysis in polling models  
 
Consider the following three-queue polling model. Arrivals occur according to independent Poisson processes with relative 
arrival rates 1:2:2 for queues 1, 2 and 3, respectively. The service times at queue are exponentially distributed with mean 3, 
the service times at queues are gamma-distributed with mean 1 and squared coefficient of variation 3, and the service times at 
queue 3 are constant with mean 4. Queue 1 and queue 2 receive gated service and queue 3 is served exhaustively. The server 
visits the queue in cyclic order 1 → 2 → 3 → 1 → 2 → 3, and so on. The switchover times from queue 1 to queue 2, are 
exponentially distributed with mean 0.5, the switch-over times from queue 2 to queue 3 is uniformly distributed on the 
interval [0.2, 0.8], and the switch-over times from queue 3 to queue 1 are constant with mean 0.9.  
 
1.1. What are the (absolute) arrival rates when the load of the system is set to ρ = 0.85? What is the mean switch-over time 

per cycle? What is the second moment of the total switch-over time per cycle? What are the first two moments of the 
service times of an arbitrarily chosen customer in the system (i.e., weighted proportionally to the arrival rates)? 

 
1.2. A necessary and sufficient condition for the stability of the system is ρ < 1. Remarkably, this condition does not depend 

on the switch-over time distributions. Give an intuitive explanation for this (no proofs needed).  
 

1.3. Formulate the pseudo-conservation law (PCL) for this model. Make sure that all the parameters that you mention are 
well-defined. 
 

1.4. Assume ρ = 0.85. Write a program that calculates the expected waiting time at each of the three the queues by using the 
Buffer Occupancy Method (BOM). Write down the formula’s and equations you use. 

 
Hint: Validate the correctness of your results by comparing the left-hand side and right-hand side of the PCL 
formulated in Exercise 1.3. 

 
1.5. For the same model, work out the details of Descendant Set Approach (DSA) and write a program that calculates the 

expected waiting time queue 1 (the mean waiting time at queues 2 and 3 are not needed). Check the correctness of the 
results by comparing the outcome to the results from Exercise 3.4. 

 
Throughout, we assume that all three queues are served exhaustively.  
 
1.6. Intuitively, what would you expect to happen to the mean waiting time at each of the three queues?  

 
1.7. Calculate the mean waiting times at each of the queues by using the BOM, and check the correctness of the results by 

substituting the results into the PCL formulated in Exercise 1.3. Do the results meet your expectations formulate in 
Exercise 1.6? Interpret what you see.  

 
1.8. Formulate Boon’s interpolation method for the mean delay at each of the three queues, for arbitrary values of the load to 

the system ρ.   
 
1.9. Formulate Groenendijk’s PCL-based approximation method for the mean delay at each of the three queues, for arbitrary 

values of the load to the system ρ.   
 



1.10. Plot a graph with three curves, in which you plot the mean waiting time at queue 1 as a function of the load ρ, where ρ is 
varied as 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98 and 0.99. Curve 1 is based on the exact results obtained via the BOM 
or the DSA, and curves 2 and 3 are calculated using by Boon’s approximation and Groenendijk’s approximation, 
respectively. Discuss your findings. 

 
During the lectures, it was argued that the basic Poisson-driven cyclic polling models with nonzero switch-over times and 
with gated or exhaustive service at each queue fall in Resing’s class of “easy” polling models for which the joint queue-
length process at successive polling instants at (say) queue 1 can be described as a multi-type branching process with 
immigration in each state.  
 
1.11. Now suppose that the server routing is not cyclic, but periodic, in the sense that the visit order is prescribed by a fixed 

polling table T, for example, for T = (1, 2, 1, 3, 2). Does this this model fall in the class of “easy” polling models? 
Motivate your answer. 
 

1.12. As another alternative, let us assume that the visit order is random, in the sense that after leaving a queue, the server is 
routed to queue j with some probability pj (regardless of the queue where the server departs from). Does this this model 
fall in the class of “easy” models? Motivate your answer. 

 
 
Exercise 2: Matrix-geometric method for the M/Erlang-r/1 queue 
Consider a single-server queue. Customers arrive according to a Poisson process with rate λ and they are served in order of 
arrival. The service times are Erlang-r distributed with mean r/μ. As discussed during the course, the evolution of the model 
can be described as a two-dimensional continuous-time Markov chain, as illustrated by Figure 1 below. 

 
Figure 1. Transition-rate diagram for the M/Er/1 model. 

 
2.1 The Q-matrix of this QBD process has a block structure. Write down the Q-matrix. 
 
2.2 What are the stability conditions for the QBD process (by using Neuts’ drift condition)?  

 
2.3 What are the balance equations for this process? 
 
2.4 Formulate the equation that characterizes the R-matrix. Write a program that solves this problem, and calculates the 

R-matrix. Add the source code to the assignment. 
 
2.5 Write a program that calculates the equilibrium distribution of the QBD process via the matrix-geometric method. 

Add the source code to the assignment. 
 
2.6 Assume that the mean service time r/μ = 1. Use the programs developed in Exercises 2.4 and 2.5 to calculate the 

expected delay as a function of the load ρ, where ρ is varied as 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98 and 0.99 (by 
varying the arrival rate λ). Do so for r = 1 (which corresponds to the case of exponential service times), 2, 5 and 10; 
note that this creates four curves. Verify that the results are equal to the known results for the Pollaczek-Khintchine 
formula for the M/G/1 queue. 

  
 
 



Exercise 3:
Consider the symmetric join the shortest queue model: Assume a queueing system consist-
ing of three identical servers, in which each server has its own dedicated (infinite) queue
and serves the customers in that queue according to FCFS. The duration of a service time
is exponentially distributed with rate µ = 1. Customers arrive to the system according
to a Poisson process at rate λ and join the shortest queue. In case of a tie, the arriving
customer joins either queue with the same probability (1/3).
We can model the above described system as a three-dimensional stochastic process by
considering the corresponding queue lengths, i.e. {(X1(t), X2(t), X3(t)), t ≥ 0}, with Xi(t)
the number of customers in the queue (including the customer in service, if any) of the i-th
server, i = 1, 2, 3. Note that the three-dimensional stochastic process {(X1(t), X2(t), X3(t)), t ≥
0} is a Markov chain defined on N0×N0×N0. The system as a whole is stable if λ < 3 or
equivalently if ρ = λ

3
< 1.

Assignment questions:

1) For ρ = 0.5, write a numerical routine based on the power series algorithm (PSA)
and calculate the probability of a zero waiting time.

2) For ρ = 0.5, write a numerical routine based on the PSA and calculate the expected
waiting time of a customer.

3) Comment on whether your numerical routine can be used in light/heavy traffic and
(in case you would need to make adaptations) explain how you would adapt your
numerical routine to work efficiently in these regimes.

4) For ρ = 0.5, describe the steps of a numerical routine based on the compensation
approach (CA) for the calculation of the probability of an empty system. Describe
how this process deviates from the one described in classroom for the two-dimensional
queueing model.

Provide a pseudo-code for the numerical routines and substantiate the choices made (e.g.,
choice of hyperparameter values, termination criteria, etc).

For inspiration, you might want to read the paper titled “The power-series Algorithm
applied to the shortest-queue model” by J. P. C. Blanc. Published at Operations Research,
Vol. 40, No. 1, (Jan. - Feb., 1992), pp. 157–167. http://www.jstor.org/stable/

171192.

http://www.jstor.org/stable/171192
http://www.jstor.org/stable/171192

