On the Exact Complexity of Hamiltonian Cycle and q-Colouring in Disk Graphs

Sándor Kisfaludi-Bak Tom C. van der Zanden

24 May 2017
Overview

1. Exact complexity and the square root phenomenon
2. Algorithm for Hamiltonian Cycle
3. Lower bound for Hamiltonian Cycle
4. Interesting developments, conclusion
Exact complexity and the square root phenomenon
There is no $2^{o(n)}$ algorithm that solves 3-SAT on n variables.

ETH is great for conditional lower bounds.

Exact complexity is $2^{\Theta(f(n))}$ **if:**
- algorithm runs in $2^{O(f(n))}$
- $2^{o(f(n))}$ would contradict ETH
Unit Disk Graph (UDG):
- vertex set: unit disks in the Euclidean plane
- edges: between intersecting pairs of unit disks

Given by its representation (coordinates of disk centers).
The “square root” phenomenon

Credit to Cai, Juedes, Marx, Sidiropoulos and many others.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Graph class</th>
<th>Best algorithm (ETH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Set</td>
<td>Planar</td>
<td>$2^{\Theta(\sqrt{n})}$</td>
</tr>
<tr>
<td>Dominating Set</td>
<td>Planar</td>
<td>$2^{\Theta(\sqrt{n})}$</td>
</tr>
<tr>
<td>3-Coloring</td>
<td>Planar</td>
<td>$2^{\Theta(\sqrt{n})}$</td>
</tr>
<tr>
<td>Hamiltonian Cycle</td>
<td>Planar</td>
<td>$2^{\Theta(\sqrt{n})}$</td>
</tr>
<tr>
<td>Your favourite NP-c. problem</td>
<td>Planar</td>
<td>$2^{\tilde{\Omega}(\sqrt{n})}, 2^{\tilde{O}(\sqrt{n})}$</td>
</tr>
</tbody>
</table>
The “square root” phenomenon

Credit to Cai, Juedes, Marx, Sidiropoulos and many others.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Graph class</th>
<th>Best algorithm (ETH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Set</td>
<td>Planar</td>
<td>$2^{\Theta(\sqrt{n})}$</td>
</tr>
<tr>
<td>Dominating Set</td>
<td>Planar</td>
<td>$2^{\Theta(\sqrt{n})}$</td>
</tr>
<tr>
<td>3-Coloring</td>
<td>Planar</td>
<td>$2^{\Theta(\sqrt{n})}$</td>
</tr>
<tr>
<td>Hamiltonian Cycle</td>
<td>Planar</td>
<td>$2^{\Theta(\sqrt{n})}$</td>
</tr>
<tr>
<td>Your favourite NP-c. problem</td>
<td>Planar</td>
<td>$2^{\tilde{\Omega}(\sqrt{n})}$, $2^{\tilde{O}(\sqrt{n})}$</td>
</tr>
<tr>
<td>Independent Set</td>
<td>UDG</td>
<td>$2^{\Omega(\sqrt[3]{n})}$, $2^{O(\sqrt{n})}$</td>
</tr>
<tr>
<td>Dominating Set</td>
<td>UDG</td>
<td>$2^{\Omega(\sqrt[3]{n})}$, $2^{\tilde{O}(\sqrt{n})}$</td>
</tr>
</tbody>
</table>
The “square root” phenomenon

Credit to Cai, Juedes, Marx, Sidiropoulos and many others.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Graph class</th>
<th>Best algorithm (ETH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Set</td>
<td>Planar</td>
<td>$2^\Theta(\sqrt{n})$</td>
</tr>
<tr>
<td>Dominating Set</td>
<td>Planar</td>
<td>$2^\Theta(\sqrt{n})$</td>
</tr>
<tr>
<td>3-Coloring</td>
<td>Planar</td>
<td>$2^\Theta(\sqrt{n})$</td>
</tr>
<tr>
<td>Hamiltonian Cycle</td>
<td>Planar</td>
<td>$2^\Theta(\sqrt{n})$</td>
</tr>
<tr>
<td>Your favourite NP-c. problem</td>
<td>Planar</td>
<td>$2\tilde{\Omega}(\sqrt{n}), 2\tilde{O}(\sqrt{n})$</td>
</tr>
<tr>
<td>Independent Set</td>
<td>UDG</td>
<td>$2^{\Omega(\frac{3}{\sqrt{n}})} \ast, 2^{O(\sqrt{n})}$</td>
</tr>
<tr>
<td>Dominating Set</td>
<td>UDG</td>
<td>$2^{\Omega(\frac{3}{\sqrt{n}})} \ast, 2^{\tilde{O}(\sqrt{n})}$</td>
</tr>
<tr>
<td>q-Coloring, $q=\text{const}$</td>
<td>UDG</td>
<td>$2^\Theta(\sqrt{n})$</td>
</tr>
<tr>
<td>Hamiltonian Cycle</td>
<td>UDG</td>
<td>$2^\Theta(\sqrt{n})$</td>
</tr>
</tbody>
</table>
Algorithm for Hamiltonian Cycle
Take a diameter 1 square grid.
Algorithm – simplify in cliques

- Take a diameter 1 square grid.
- Centers inside any grid cell form cliques.
Algorithm – simplify in cliques

- Take a diameter 1 square grid.
- Centers inside any grid cell form cliques.
- Two cells are *neighbors* if there is an edge between them.

How many times should a Hamiltonian Cycle alternate between two neighboring cells?

Answer: (by Ito & Kadoshita, 2010)

At most constant times.

With a treewidth based Ham. Cycle algorithm, we get $2^{O(\sqrt{n})}$ time.
Algorithm – simplify in cliques

- Take a diameter 1 square grid.
- Centers inside any grid cell form cliques.
- Two cells are *neighbors* if there is an edge between them.
- How many times should a Hamiltonian Cycle alternate between two neighboring cells?

![Grid diagram](image)
Algorithm – simplify in cliques

- Take a diameter 1 square grid.
- Centers inside any grid cell form cliques.
- Two cells are *neighbors* if there is an edge between them.
- How many times should a Hamiltonian Cycle alternate between two neighboring cells?
- Answer: (by Ito & Kadoshita, 2010)
 At most constant times.
Algorithm – simplify in cliques

- Take a diameter 1 square grid.
- Centers inside any grid cell form cliques.
- Two cells are *neighbors* if there is an edge between them.
- How many times should a Hamiltonian Cycle alternate between two neighboring cells?
- Answer: (by Ito & Kadoshita, 2010)
 At most constant times.

With a treewidth based Ham. Cycle algorithm, we get $2^{O(\sqrt{n})}$ time.
Lower bound for Hamiltonian Cycle
Starting out

Φ is a 3-SAT formula on \(n \) variables and \(m \) clauses. We modify a classical directed HC reduction (by Kleinberg and Tardos):

\[\Phi := (x_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_4). \]
Starting out

Φ is a 3-SAT formula on \(n \) variables and \(m \) clauses.

We modify a classical directed HC reduction (by Kleinberg and Tardos):

- \(\Phi := (x_1 \lor \overline{x}_2 \lor x_3) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_4) \).
- Double chains of length \(3m + 3 \) for each variable
Starting out

\(\Phi \) is a 3-SAT formula on \(n \) variables and \(m \) clauses. We modify a classical \textcolor{green}{directed} HC reduction (by Kleinberg and Tardos):

- \(\Phi := (x_1 \lor \overline{x}_2 \lor x_3) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_4). \)
- Double chains of length \(3m + 3 \) for each variable
- Get from \(v_{\text{start}} \) to \(v_{\text{end}} \) by going through each variable row in some direction (left to right = TRUE)
Starting out

Φ is a 3-SAT formula on \(n \) variables and \(m \) clauses. We modify a classical directed HC reduction (by Kleinberg and Tardos):

- \(\Phi := (x_1 \lor \overline{x}_2 \lor x_3) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_4) \).
- Double chains of length \(3m + 3 \) for each variable
- Get from \(v_{start} \) to \(v_{end} \) by going through each variable row in some direction (left to right = TRUE)
- Walk around each clause loop on the path of one of its true literals.
... and fix a drawing of the undirected version

By changing each vertex to an in- mid- and out-vertex, we get G.

G has an *undirected* Hamiltonian Cycle iff Φ is satisfiable.
We cannot just change edges to chains of unit disks.
Edges to threads and snakes

Note

We cannot just change edges to chains of unit disks.

We use *snakes* instead, inspired by Itai et al. (1982).
We had trouble with two crossing snakes.

Thread: chain of unit disks
Crossings

We had trouble with two crossing snakes.

Thread: chain of unit disks

We can cross a snake and a thread.

Luckily that’s all we need.
Threads

If $\deg(v) = 2$:
Edges incident to v are present in all Hamiltonian Cycles.

Such edges can be replaced by threads.
After some adjustments around vertices:

Fig: A variable’s row crosses a clause loop.
Final construction

Theorem
There is a HC in the construction iff G has a HC iff Φ is satisfiable.

Theorem
The construction fits in a box of size $O(n + m) \times O(n + m)$, and uses $O((n + m)^2)$ unit disks.

Wlog. $m = \Theta(n)$, so a $2^{o(\sqrt{|V|})}$ algorithm would violate ETH.
In the meantime...
Hamiltonian Cycle in grids is NP-complete, and (Itai et al. (1982)) implies a $2^\Omega(\sqrt[3]{n})$ lower bound.

Theorem

The best algorithm for Hamiltonian Cycle in grid graphs under ETH has running time $2^{\Theta(\sqrt{n})}$.

The gadgetry requires more finesse. (Bipartiteness!)
Higher dimensions, other problems, conclusion

Ongoing work includes:

- In d dimensions the running time should be $2^{\Theta(n^{1-1/d})}$ for unit balls.
- Coloring: for $\ell = n^\alpha$ colors, $2^{\tilde{\Theta}(\sqrt{n\ell})}$ in 2 dimensions and $2^{\tilde{\Theta}(n^{1-1/d}\ell^{1/d})}$ generally by Biró et al. (2017)
- General approach for ETH lower bounds
Ongoing work includes:

- In d dimensions the running time should be $2^{\Theta(n^{1-1/d})}$ for unit balls.
- Coloring: for $\ell = n^\alpha$ colors, $2^{\tilde{\Theta}(\sqrt{n\ell})}$ in 2 dimensions and $2^{\tilde{\Theta}(n^{1-1/d}\ell^{1/d})}$ generally by Biró et al. (2017)
- General approach for ETH lower bounds

Open:

- Algorithms in disk and ball graphs of arbitrary radii, e.g. for Hamiltonian Cycle? (Independent set and Coloring behave well)
Ongoing work includes:

- In d dimensions the running time should be $2^\Theta(n^{1-1/d})$ for unit balls.
- Coloring: for $\ell = n^\alpha$ colors, $2^{\widetilde{O}(\sqrt{n\ell})}$ in 2 dimensions and $2^{\widetilde{O}(n^{1-1/d}\ell^{1/d})}$ generally by Biró et al. (2017)
- General approach for ETH lower bounds

Open:

- Algorithms in disk and ball graphs of arbitrary radii, e.g. for Hamiltonian Cycle? (Independent set and Coloring behave well)
- Can we get by without a representation?
ETH says $2^{\Theta(\sqrt{n})!}$

Thank you! Questions?