Walking Your Dog in the Woods in Polynomial Time

Shripad Thite
California Institute of Technology
shripad@caltech.edu

Joint work with
Erin Wolf Chambers, Éric Colin de Verdière, Jeff Erickson,
Sylvain Lazard, Francis Lazarus
Fréchet distance between curves

Dog-leash distance: Minimum length of a straight leash joining a dog and its owner that allows them to walk along their respective curves, from one endpoint to the other, continuously without backtracking
Woods have trees … and other obstacles

New condition: Leash must move *continuously* in the ambient metric space

If there are obstacles, a longer leash may be required because the leash cannot jump over them

Goal: Walk the dog with the shortest leash possible
Homotopic Fréchet distance

Dog-leash distance in a general metric space where the leash must move continuously

We give a polynomial-time algorithm to compute the homotopic Fréchet distance between two polygonal curves in the plane with polygonal obstacles.
Leash motion encodes a continuous deformation between A and B, without penetrating obstacles.

The “cost” of the deformation is the maximum distance any point has to travel.
Application 2: Measuring similarity

Robotics: Given two paths, how similar are they?

Paths that go around obstacles differently are not similar.
Leash map

Continuous function \(\ell : [0, 1] \times [0, 1] \rightarrow S \)

arc-length time metric space

s.t. \(\ell(\cdot, t) \) is the leash at time \(t \) joining \(A(u(t)) \) and \(B(v(t)) \) (\(\ell \) encodes re-parameterizations \(u, v \) of \(A, B \))
Homotopic Fréchet distance

The \textbf{cost} of a leash map ℓ is the longest length of the leash at any time during the leash motion:

$$\text{cost}(\ell) := \sup_{t \in [0,1]} \{ \text{Length of } \ell(\cdot, t) \}$$
Homotopic Fréchet distance

The **cost** of a leash map ℓ is the longest length of the leash at any time during the leash motion:

$$\text{cost}(\ell) := \sup_{t \in [0,1]} \{ \text{Length of } \ell(\cdot, t) \}$$

The **homotopic Fréchet distance** is the minimum cost of any leash map:

$$F(A, B) := \inf_{\text{leash map } \ell} \{ \text{cost}(\ell) \}$$
Punctured plane

Let A, B be two given curves in \mathbb{E}^2
Let P be a set of points in the plane $= \text{obstacles}$
A **leash** is a curve joining a point of A and a point of B

Leash must move continuously in the punctured plane $\mathbb{E}^2 \setminus P$, so it cannot jump over obstacles
Relative homotopy

Two leashes are relatively homotopic if one can be continuously transformed into the other in the punctured plane while keeping their endpoints on the respective curves.
Relative homotopy

Two leashes are \textit{relatively homotopic} if one can be continuously transformed into the other in the punctured plane while keeping their endpoints on the respective curves.

Every leash map ℓ_h describes a set of leashes belonging to some relative homotopy class h.
Homotopic Fréchet distance redux

Let h be a relative homotopy class
Homotopic Fréchet distance redux

Let h be a relative homotopy class

Let ℓ_h be a leash map in homotopy class h
Homotopic Fréchet distance redux

Let h be a relative homotopy class

Let ℓ_h be a leash map in homotopy class h

Define $F_h(A, B) := \inf_{\ell_h} \{ \text{cost}(\ell_h) \}$
Homotopic Fréchet distance redux

Let h be a relative homotopy class.

Let ℓ_h be a leash map in homotopy class h.

Define $F_h(A, B) := \inf_{\ell_h} \{ \text{cost}(\ell_h) \}$

Homotopic Fréchet distance

$F(A, B) := \min_h \{ F_h(A, B) \}$
Geodesic leashes

Lemma: There exists an optimum leash map such that the leash at every time is the shortest path in its homotopy class.
Geodesic leashes

Lemma: There exists an optimum leash map such that the leash at every time is the shortest path in its homotopy class.

Hence, w.l.o.g., $\ell_{h}(\cdot, t)$ is the (unique) shortest path in homotopy class h between its endpoints.
Geodesic leashes

Lemma: There exists an optimum leash map such that the leash at every time is the shortest path in its homotopy class.

Hence, w.l.o.g., $\ell_h(\cdot, t)$ is the (unique) shortest path in homotopy class h between its endpoints.

We allow the leash to pass through obstacle points. A turning angle at every obstacle point uniquely identifies the homotopy class of the leash. Now, unique shortest paths exist in every homotopy class.
Key lemma

The optimum homotopy class h^* must contain a straight-line leash

m edges \hspace{2cm} |P|$ obstacles \hspace{2cm} n edges
Key lemma

The optimum homotopy class h^* must contain a straight-line leash

Our algorithm: List all $O(mn|P|^2)$ homotopy classes h that contain a straight-line leash and compute $F_h(A, B)$ in $O(mn|P| \log mn|P|)$ time using parametric search
Polygonal obstacles

The optimum leash map ℓ^* may be pinned at a common subpath π, i.e., a globally shortest p-q path

Enumerate $O(mn|P|^4)$ homotopy classes h
Compute $F_h(A, B)$ from two independent leash maps
Open: On a convex polyhedron

Leash is not always a geodesic!

e.g., leash must have enough slack to cross over a vertex (a ‘mountain’)

Challenge: Characterize an optimum leash map
Thank you!
Extra slides
Computing F_h

Decision problem: Given a real $d \geq 0$, is $F_h(A, B) \leq d$?
Computing F_h

Decision problem: Given a real $d \geq 0$, is $F_h(A, B) \leq d$?

Observation: There are polynomially many critical values of d at which the answer may change from ‘no’ to ‘yes’

$$d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq d_{i+1} \leq d_{i+2} \leq \ldots$$
Computing F_h

Decision problem: Given a real $d \geq 0$, is $F_h(A, B) \leq d$?

Observation: There are polynomially many critical values of d at which the answer may change from ‘no’ to ‘yes’

\[
d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq d_{i+1} \leq d_{i+2} \leq \ldots
\]

\[
\times \quad \times \quad \times \quad \times \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark
\]
Computing F_h

Decision problem: Given a real $d \geq 0$, is $F_h(A, B) \leq d$?

Observation: There are polynomially many critical values of d at which the answer may change from ‘no’ to ‘yes’

\[d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq d_{i+1} \leq d_{i+2} \leq \ldots \]

\[
\begin{array}{ccccccc}
\times & \times & \times & \times & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\end{array}
\]

Goal: Find the smallest critical value d for which the answer above is ‘yes’
Is $F_h \leq d$?

Is there a monotone path from $(0, 0)$ to (m, n) in free space?

Lemma: In each cell $C_{i,j}$, the free space is convex

http://www.cim.mcgill.ca/~stephane/cs507/Project.html, Stéphane Pelletier, 2002
Parametric search [Megiddo ’83]

Let \(A_s \) be an algorithm to decide, given a critical value \(d_i \), whether \(F_h(A, B) \leq d_i \), with running time \(O(T_s) \)

Ask me later if you want me to describe \(A_s \)

\[
d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots
\]

\[\times \quad \times \quad \times \quad \times \quad \times \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark\]
Parametric search [Megiddo '83]

Let A_s be an algorithm to decide, given a critical value d_i, whether $F_h(A, B) \leq d_i$, with running time $O(T_s)$

Ask me later if you want me to describe A_s

\[
d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots
\]

\[
\times \quad \times \quad \times \quad \times \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark
\]

We simulate A_s on input d^*, with d^* as a symbolic variable
Parametric search [Megiddo ’83]

Let A_s be an algorithm to decide, given a critical value d_i, whether $F_h(A, B) \leq d_i$, with running time $O(T_s)$.

Ask me later if you want me to describe A_s.

$$d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots$$

We simulate A_s on input d^*, with d^* as a symbolic variable.

The control flow of A_s depends on comparisons of the form $d^* \leq d_j$ where d_j is a critical value.

Each d_j is a distance, i.e., a quadratic function of input coordinates.
Let A_s be an algorithm to decide, given a critical value d_i, whether $F_h(A, B) \leq d_i$, with running time $O(T_s)$.

Ask me later if you want me to describe A_s.

$d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots$

We simulate A_s on input d^*, with d^* as a symbolic variable.

The control flow of A_s depends on comparisons of the form $d^* \leq d_j$ where d_j is a critical value.

Each d_j is a distance, i.e., a quadratic function of input coordinates.

$d^* \leq d_j$? Run A_s on input d_j, in $O(T_s)$ time.
Parametric search [Megiddo ’83]

Let A_s be an algorithm to decide, given a critical value d_i, whether $F_h(A, B) \leq d_i$, with running time $O(T_s)$

Ask me later if you want me to describe A_s

$$d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots$$

We simulate A_s on input d^*, with d^* as a symbolic variable

The control flow of A_s depends on comparisons of the form $d^* \leq d_j$ where d_j is a critical value

Each d_j is a distance, i.e., a quadratic function of input coordinates.

$d^* \leq d_j$? Run A_s on input d_j, in $O(T_s)$ time

Total running time $= O(T_s^2)$
Parametric search on steroids \cite{M’83}

Let A_p be a \textbf{parallel} algorithm to decide, given d_i, whether $F_h(A, B) \leq d_i$, with parallel running time $O(T_p)$ on k processors.

$\begin{align*}
 d_1 &\leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots \\
 \times &\quad \times \quad \times \quad \times \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark
\end{align*}$

Ask me later if you want me to describe A_p.
Let A_p be a parallel algorithm to decide, given d_i, whether $F_h(A, B) \leq d_i$, with parallel running time $O(T_p)$ on k processors.

We simulate A_p sequentially on input d^*, with d^* as a symbolic variable.

$\begin{align*}
 d_1 & \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots \\
 \times & \quad \times \quad \times \quad \times \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark
\end{align*}$
Parametric search on steroids [M’83]

Let A_p be a parallel algorithm to decide, given d_i, whether $F_h(A, B) \leq d_i$, with parallel running time $O(T_p)$ on k processors.

Ask me later if you want me to describe A_p

$$d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots$$

$\times \quad \times \quad \times \quad \times \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark$

We simulate A_p sequentially on input d^*, with d^* as a symbolic variable.

The control flow of A_p depends on comparisons of the form $d^* \leq d_j$ where d_j is a critical value.
Parametric search on steroids [M’83]

Let A_p be a parallel algorithm to decide, given d_i, whether $F_h(A, B) \leq d_i$, with parallel running time $O(T_p)$ on k processors.

\[d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots\]

We simulate A_p sequentially on input d^*, with d^* as a symbolic variable.

The control flow of A_p depends on comparisons of the form $d^* \leq d_j$ where d_j is a critical value.

In each parallel stage, do binary search on $O(k)$ values d_j.

Ask me later if you want me to describe A_p.
Parametric search on steroids [M’83]

Let A_p be a parallel algorithm to decide, given d_i, whether $F_h(A, B) \leq d_i$, with parallel running time $O(T_p)$ on k processors.

$$d_1 \leq d_2 \leq \ldots \leq d_{i-1} \leq d^* \leq \ldots \leq d_j \leq \ldots$$

We simulate A_p sequentially on input d^*, with d^* as a symbolic variable.

The control flow of A_p depends on comparisons of the form $d^* \leq d_j$ where d_j is a critical value.

In each parallel stage, do binary search on $O(k)$ values d_j.

Total running time $= O(T_s T_p \log k + kT_p)$ \(\text{better than} \ O(T_s^2)\)
Example 1
Example 2

1

3

2

4, 5, 6

2, 3, 4

6

5
Example 2
Example 3
Example 3
Example 3
Example 3
Example 3