OPTIMUM BINARY SEARCH TREES ON THE HIERARCHICAL MEMORY MODEL

BY

SHRIPAD THITE

B.E., University of Poona, 1997

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2001

Urbana, Illinois
ABSTRACT

The Hierarchical Memory Model (HMM) of computation is similar to the standard Random Access Machine (RAM) model except that the HMM has a non-uniform memory organized in a hierarchy of levels numbered 1 through h. The cost of accessing a memory location increases with the level number, and accesses to memory locations belonging to the same level cost the same. Formally, the cost of a single access to the memory location at address α is given by μ(α), where μ : N → N is the memory cost function, and the h distinct values of μ model the different levels of the memory hierarchy.

We study the problem of constructing and storing a binary search tree (BST) of minimum cost, over a set of keys, with probabilities for successful and unsuccessful searches, on the HMM with an arbitrary number of memory levels, and for the special case h = 2.

While the problem of constructing optimum binary search trees has been well studied for the standard RAM model, the additional parameter μ for the HMM increases the combinatorial complexity of the problem. We present two dynamic programming algorithms to construct optimum BSTs bottom-up. These algorithms run efficiently under some natural assumptions about the memory hierarchy. We also give an efficient algorithm to construct a BST that is close to optimum, by modifying a well-known linear-time approximation algorithm for the RAM model. We conjecture that the problem of constructing an optimum BST for the HMM with an arbitrary memory cost function μ is NP-complete.
To my father
“Results? Why, man, I have gotten lots of results! If I find 10,000 ways something won’t work, I haven’t failed.”

— Thomas Alva Edison. (www.thomasedison.com)
ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Michael Loui. This thesis would have been of much poorer quality if not for the copious amounts of time and red ink devoted by him. Prof. Loui has been a wonderful and understanding guide and mentor, and I feel privileged to have had him as an advisor.

Thanks to Jeff Erickson and Sariel Har-Peled for taking the time to read and suffer early drafts, and for numerous helpful discussions. Special thanks to Jeff Erickson for letting me spend an inordinate amount of time on this project while I was supposed to be working on something else. I am extremely grateful to Mitch Harris for being there on so many occasions to listen to my ramblings, to bounce ideas off of, and often just for being there. I would also like to thank Prof. Ed Reingold; it was during his CS 473 class in fall 1998 that the topic of optimum binary search trees (on the RAM model) came up for discussion.

I would like to thank my mentor at the Los Alamos National Laboratory, Madhav Marathe, for providing support and an environment in which to explore the general subject of hierarchical memory models during my internship there in summer 1998.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 What is a binary search tree?</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Searching in a BST</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Weighted binary search trees</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Why study binary search trees?</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Overview</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Background and Related Work</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Binary search trees and related problems</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1 Constructing optimum binary search trees on the RAM</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1.1 Dynamic programming algorithms</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1.2 Speed-up in dynamic programming</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2 Alphabetic trees</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3 Huffman trees</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4 Nearly optimum search trees</td>
<td>15</td>
</tr>
<tr>
<td>2.1.5 Optimal binary decision trees</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Models of computation</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 The need for an alternative to the RAM model</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1.1 Modern computer organization</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1.2 Locality of reference</td>
<td>18</td>
</tr>
<tr>
<td>2.2.1.3 Memory effects</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1.4 Complexity of communication</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2 External memory algorithms</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3 Non-uniform memory architecture</td>
<td>22</td>
</tr>
<tr>
<td>2.2.4 Models for non-uniform memory</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>Algorithms for Constructing Optimum and Nearly Optimum Binary Search Trees</td>
<td>26</td>
</tr>
<tr>
<td>3.1 The HMM model</td>
<td>26</td>
</tr>
<tr>
<td>3.2 The HMM$_2$ model</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Optimum BSTs on the HMM model</td>
<td>28</td>
</tr>
</tbody>
</table>
3.3.1 Storing a tree in memory optimally ... 30
3.3.2 Constructing an optimum tree when the memory assignment is
fixed ... 31
3.3.3 Naive algorithm ... 32
3.3.4 A dynamic programming algorithm: ALGORITHM PARTS 33
3.3.5 Another dynamic programming algorithm: ALGORITHM TRUNKS ... 37
3.3.6 A top-down algorithm: ALGORITHM SPLIT 41
3.4 Optimum BSTs on the HMM$_2$ model ... 42
3.4.1 A dynamic programming algorithm 42
 3.4.1.1 ALGORITHM TWOLEVEL 43
 3.4.1.2 Procedure TL-PHASE-I 44
 3.4.1.3 Procedure TL-PHASE-II 44
 3.4.1.4 Correctness of ALGORITHM TWOLEVEL 46
 3.4.1.5 Running time of ALGORITHM TWOLEVEL 46
3.4.2 Constructing a nearly optimum BST 48
 3.4.2.1 An approximation algorithm 48
 3.4.2.2 Analysis of the running time 49
 3.4.2.3 Quality of approximation 53
 3.4.2.4 Lower bounds ... 57
 3.4.2.5 Approximation bound 58

4 Conclusions and Open Problems .. 59
4.1 Conclusions ... 59
4.2 Open problems ... 61
 4.2.1 Efficient heuristics .. 61
 4.2.2 NP-hardness ... 61
 4.2.3 An algorithm efficient on the HMM 61
 4.2.4 BSTs optimum on both the RAM and the HMM 61
 4.2.5 A monotonicity principle 63
 4.2.6 Dependence on the parameter h 66

References ... 68
LIST OF FIGURES

Figure Page
1.1 A binary search tree over the set \{1, 2, 3, 5, 8, 13, 21\} 2
2.1 ALGORITHM K1 8
2.2 ALGORITHM K2 9
3.1 ALGORITHM Parts 35
3.2 PROCEDURE Partition-Memory 36
3.3 ALGORITHM Trunks 39
3.4 ALGORITHM TwoLevel 44
3.5 PROCEDURE TL-phase-I 45
3.6 PROCEDURE TL-phase-II 47
3.7 ALGORITHM Approx-BST 50
3.8 ALGORITHM Approx-BST (cont’d.) 51
4.1 Summary of results 60
4.2 An optimum BST on the unit-cost RAM model. 62
4.3 An optimum BST on the HMM model. 63
4.4 The cost of an optimum BST is not a unimodal function. 66
CHAPTER 1

Introduction

1.1 What is a binary search tree?

For a set of n distinct keys x_1, x_2, \ldots, x_n from a totally ordered universe ($x_1 \prec x_2 \prec \ldots \prec x_n$), a binary search tree (BST) T is an ordered, rooted binary tree with n internal nodes. The internal nodes of the tree correspond to the keys x_1 through x_n such that an inorder traversal of the nodes visits the keys in order of precedence, i.e., in the order x_1, x_2, \ldots, x_n. The external nodes correspond to intervals between the keys, i.e., the j-th external node represents the set of elements between x_{j-1} and x_j. Without ambiguity, we identify the nodes of the tree by the corresponding keys.

For instance, a binary search tree on the set of integers $\{1, 2, 3, 5, 8, 13, 21\}$ with the natural ordering of integers could look like the tree in figure 1.1. The internal nodes of the tree are labeled $\{1, 2, 3, 5, 8, 13, 21\}$ and the external nodes (leaves) are labeled A through H in order.

Let $T_{i,j}$ for $1 \leq i \leq j \leq n$ denote a BST on the subset of keys from x_i through x_j. We define $T_{i+1,i}$ to be the unique BST over the empty subset of keys from x_{i+1} through x_i which consists of a single external node with probability of access q_i. We will use T to denote $T_{1,n}$.

A binary search tree with n internal nodes is stored in n locations in memory: each memory location contains a key x_i and two pointers to the memory locations containing the left and right children of x_i. If the left (resp. right) subtree is empty, then the left (resp. right) pointer is NIL.
In this section, we will restrict our attention to the standard RAM model of computation.

1.1.1 Searching in a BST

A search in $T_{i,j}$ proceeds recursively as follows. The search argument y is compared with the root x_k ($i \leq k \leq j$). If $y = x_k$, then the search terminates successfully. Otherwise, if $y < x_k$ (resp. $y > x_k$), then the search proceeds recursively in the left subtree, $T_{i,k-1}$ (resp. the right subtree, $T_{k+1,j}$); if the left subtree (resp. right subtree) of x_k is an external node, i.e., a leaf, then the search fails without visiting any other nodes because $x_{k-1} < y < x_k$ (resp. $x_k < y < x_{k+1}$). (We adopt the convention that $x_0 < y < x_1$ means $y < x_1$, and $x_n < y < x_{n+1}$ means $y > x_n$.)

The depth of an internal or external node v is the number of nodes on the path to the node from the root, denoted by $\delta_T(v)$, or simply $\delta(v)$ when the tree T is implicit. Hence, for instance, the depth of the root is 1. The cost of a successful or unsuccessful search is the number of comparisons needed to determine the outcome. Therefore, the cost of a successful search that terminates at some internal node x_i is equal to the depth of x_i, i.e.,
\(\delta(x_i) \). The cost of an unsuccessful search that would have terminated at the external node \(z_j \) is one less than the depth of \(z_j \), i.e., \(\delta(z_j) - 1 \).

So, for instance, the depth of the internal node labeled 8 in the tree of figure 1.1 is 3. A search for the key 8 would perform three comparisons, with the nodes labeled 13, 5, and 8, before terminating successfully. Therefore, the cost of a successful search that terminates at the node labeled 8 is the same as the path length of the node, i.e., 3. On the other hand, a search for the value 4 would perform comparisons with the nodes labeled 13, 5, 1, and 3 in that order and then would terminate with failure, for a total of four comparisons. This unsuccessful search would have visited the external node labeled D; therefore, the cost of a search that terminates at D is one less than the depth of D, i.e., \(5 - 1 = 4 \).

Even though the external nodes are conceptually present, they are not necessary for implementing the BST data structure. If any subtree of an internal node is empty, then the pointer to that subtree is assumed to be \texttt{Nil}; it is not necessary to “visit” this empty subtree.

1.1.2 Weighted binary search trees

In the weighted case, we are also given the probability that the search argument \(y \) is equal to some key \(x_i \) for \(1 \leq i \leq n \) and the probability that \(y \) lies between \(x_j \) and \(x_{j+1} \) for \(0 \leq j \leq n \). Let \(p_i \), for \(i = 1, 2, \ldots, n \), denote the probability that \(y = x_i \). Let \(q_j \), for \(j = 0, 1, \ldots, n \), denote the probability that \(x_j \prec y \prec x_{j+1} \). We have

\[
\sum_{i=1}^{n} p_i + \sum_{j=0}^{n} q_j = 1.
\]

Define \(w_{i,j} \) as

\[
w_{i,j} = \sum_{k=i}^{j} p_k + \sum_{k=j+1}^{n} q_k.
\] (1.1)

Therefore, \(w_{1,n} = 1 \), and \(w_{i+1,i} = q_i \). (Note that this definition differs from the function \(w(i,j) \) referred to by Knuth [Knu73]. Under definition (1.1), \(w_{i,j} \) is the sum of the probabilities associated with the subtree over the keys \(x_i \) through \(x_j \). Under Knuth’s definition, \(w(i,j) = w_{i+1,j} \) is the sum of the probabilities associated with the keys \(x_{i+1} \) through \(x_j \).)

Recall that the cost of a successful search that terminates at the internal node \(x_i \) is \(\delta(x_i) \), and the cost of an unsuccessful search that terminates at the external node \(z_j \) is
\(\delta(z_i) - 1 \). We define the cost of \(T \) to be the expected cost of a search:

\[
\text{cost}(T) = \sum_{i=1}^{n} p_i \cdot \delta_T(x_i) + \sum_{j=0}^{n} q_j \cdot (\delta_T(z_j) - 1).
\] (1.2)

In other words, the cost of \(T \) is the weighted sum of the depths of the internal and external nodes of \(T \).

An optimum binary search tree \(T^* \) is one with minimum cost. Let \(T^*_{t,j} \) denote the optimum BST over the subset of keys from \(x_i \) through \(x_j \) for all \(i, j \) such that \(1 \leq i \leq j \leq n \); \(T^*_{t+1,i} \) denotes the unique optimum BST consisting of an external node with probability of access \(q_i \).

1.2 Why study binary search trees?

The binary search tree is a fundamental data structure that supports the operations of inserting and deleting keys, as well as searching for a key. The straightforward implementation of a BST is adequate and efficient for the static case when the probabilities of accessing keys are known \textit{a priori} or can at least be estimated. More complicated implementations, such as red-black trees [CLR90], AVL trees [AVL62, Knu73], and splay trees [ST85], guarantee that a sequence of operations, including insertions and deletions, can be executed efficiently.

In addition, the binary search tree also serves as a model for studying the performance of algorithms like \textsc{Quicksort} [Knu73, CLR90]. The recursive execution of \textsc{Quicksort} corresponds to a binary tree where each node represents a partition of the elements to be sorted into left and right parts, consisting of elements that are respectively less than and greater than the pivot element. The running time of \textsc{Quicksort} is the sum of the work done by the algorithm corresponding to each node of this recursion tree.

A binary search tree also arises implicitly in the context of binary search. The BST corresponding to binary search achieves the theoretical minimum number of comparisons that are necessary to search using only key comparisons.

When an explicit BST is used as a data structure, we want to construct one with minimum cost. When studying the performance of \textsc{Quicksort}, we want to prove lower
bounds on the cost and hence the running time. Therefore, the problem of constructing optimum BSTs is of considerable interest.

1.3 Overview

In chapter 2, we survey background work on binary search trees and computational models for non-uniform memory computers.

In chapter 3, we give algorithms for constructing optimum binary search trees. In section 3.3, we consider the most general variant of the HMM model, with an arbitrary number of memory levels. We present two dynamic programming algorithms and a top-down algorithm to construct optimum BSTs on the HMM. In section 3.4, we consider the special case of the HMM model with only two memory levels. For this model, we present a dynamic programming algorithm to construct optimum BSTs in section 3.4.1, and in section 3.4.2, a linear-time heuristic to construct a BST close to the optimum.

Finally, we conclude with a summary of our results and a discussion of open problems in chapter 4.
CHAPTER 2

Background and Related Work

In this chapter, we survey related work on the problem of constructing optimum binary search trees, and on computational models for hierarchical memory. In section 2.1 we discuss the optimum binary search tree problem and related problems. In section 2.2, we discuss memory effects in modern computers and present arguments for better theoretical models. In section 2.2.2, we survey related work on designing data structures and algorithms, and in section 2.2.4, we discuss proposed models of computation for hierarchical-memory computers.

2.1 Binary search trees and related problems

The binary search tree has been studied extensively in different contexts. In sections 2.1.1 through 2.1.5, we will summarize previous work on the following related problems that have been studied on the RAM model of computation:

- constructing a binary search tree such that the expected cost of a search is minimized;
- constructing an alphabetic tree such that the sum of the weighted path lengths of the external nodes is minimized;
- constructing a prefix-free code tree with no restriction on the lexicographic order of the nodes such that the weighted path lengths of all nodes is minimized;
- constructing a binary search tree close to optimum by an efficient heuristic;
- constructing an optimal binary decision tree.
2.1.1 Constructing optimum binary search trees on the RAM

2.1.1.1 Dynamic programming algorithms

Theorem 2.1.1 (Knuth [Knu71], [Knu73]). An optimum BST can be constructed by a
dynamic programming algorithm that runs in $O(n^2)$-time and $O(n^2)$-space.

Proof: By the principle of optimality, a binary search tree T^* is optimum if and only if
each subtree of T^* is optimum. The standard dynamic programming algorithm proceeds
as follows:

Recall that $\text{cost}(T^*_i)$ denotes the cost of an optimum BST T^*_i over the keys $x_i, x_{i+1},$
\ldots, x_j and the corresponding probabilities $p_i, p_{i+1}, \ldots, p_j$ and $q_{i-1}, q_i, \ldots, q_j$. By the
principle of optimality and the definition of the cost function in equation (1.2),

$$\text{cost}(T^*_i) = w_{i,j} + \min_{k \leq i \leq j} (\text{cost}(T^*_{i,k}) + \text{cost}(T^*_{k+1,j})) \quad \text{for } i \leq j$$

$$\text{cost}(T^*_{i+1,j}) = w_{i+1,j} = q_i \quad (2.1)$$

Recurrence (2.1) suggests a dynamic programming algorithm, algorithm K1 in figure 2.1, that constructs optimum sub-trees bottom-up. Algorithm K1 is the standard
dynamic programming algorithm. For each d from 0 through $n - 1$, and for each i, j such
that $j - i = d$, the algorithm evaluates the cost of a subtree with x_k as the root, for every
possible choice of k between i and j, and selects the one for which this cost is minimized.

Algorithm K1 constructs arrays c and r, such that $c[i, j]$ is the cost of an optimum
BST T^*_i over the subset of keys from x_i through x_j and $r[i, j]$ is the index of the root of
such an optimum BST. The structure of the tree can be retrieved in $O(n)$ time from the
array r at the end of the algorithm as follows. Let $T[i, j]$ denote the optimum sub-tree
constructed by algorithm K1 and represented implicitly using the array r. The index
of the root of this sub-tree is given by the array entry $r[i, j]$. Recursively, the left and right
sub-trees of the root are $T[i, r[i, j] - 1]$ and $T[r[i, j] + 1, j]$ respectively.

For each fixed d and i, the algorithm takes $O(d)$ time to evaluate the choice of x_k as
the root for all k such that $i \leq k \leq j = i + d$, and hence, $\sum_{d=0}^{n-1} \sum_{i=1}^{n-d} O(d) = O(n^3)$ time
overall.

Knuth [Knu71] showed that the following monotonicity principle can be used to reduce
the time complexity to $O(n^2)$: for all i, j, $1 \leq i \leq j \leq n$, let $R(i, j)$ denote the index of the
Algorithm K1([p_1...p_n],[q_0...q_n]):

(Initialization phase.)
(An optimum BST over the empty subset of keys from x_{i+1} through x_i)
(consists of just the external node with probability q_i.)
(The root of this subtree is undefined.)

for $i := 0$ to n
 $c[i+1, i] \leftarrow w_{i+1, i} = q_i$
 $r[i+1, i] \leftarrow \text{NIL}$

for $d := 0$ to $n-1$
 for $i := 1$ to $n-d$
 $j \leftarrow i + d$

 *(Initially, the optimum subtree $T^*_{i,j}$ is unknown.)*
 $c[i, j] \leftarrow \infty$

 for $k := i$ to j
 Let T' be the tree with x_k at the root, and $T^*_{i, k-1}$ and $T^*_{k+1, j}$ as the left and right subtrees, respectively, i.e.,

 ![Diagram of tree](attachment:tree_diagram.png)

 Let c' be the cost of T':
 $c' \leftarrow w_{i,j} + c[i, k-1] + c[k+1, j]$

 (Is T' better than the minimum-cost tree so far?)
 if $c' < c[i, j]$
 $r[i, j] \leftarrow k$
 $c[i, j] \leftarrow c'$

Figure 2.1 Algorithm K1
Algorithm K2 \([p_1..p_n], [q_0..q_n]\):

(Initialization phase.)

for \(i := 0\) to \(n\)

\[
c[i + 1, i] \leftarrow w_{i+1,i} = q_i
\]

\[
r[i + 1, i] \leftarrow \text{NIL}
\]

for \(d := 0\) to \(n - 1\)

for \(i := 1\) to \(n - d\)

\(j \leftarrow i + d\)

\(c[i, j] \leftarrow \infty\)

for \(k := r[i, j - 1]\) to \(r[i + 1, j]\)

Let \(T'\) be the tree

![Diagram](image)

\(c' \leftarrow w_{i,j} + c[i, k - 1] + c[k + 1, j]\)

if \(c' < c[i, j]\)

\(r[i, j] \leftarrow k\)

\(c[i, j] \leftarrow c'\)

Figure 2.2 Algorithm K2

_root of an optimum BST over the keys \(x_i, x_{i+1}, \ldots, x_j\) (if more than one root is optimum, let \(R(i,j)\) be the smallest such index); then

\[
R(i,j - 1) \leq R(i,j) \leq R(i + 1, j).
\]

(2.2)

Therefore, the innermost loop in **Algorithm K1** can be modified to produce **Algorithm K2** (figure 2.2) with improved running time.

Since \((j - 1) - i = j - (i + 1) = d - 1\) whenever \(j - i = d\), the values of \(r[i, j - 1]\) and \(r[i + 1, j]\) are available during the iteration when \(j - i = d\). The number of times that the body of the innermost loop in **Algorithm K2** is executed is \(r[i + 1, j] - r[i, j - 1] + 1\) when
j - i = d. Therefore, the running time of algorithm K2 is proportional to

\[
\sum_{d=0}^{n-1} \sum_{i=1}^{n-d} (r[i + 1, j] - r[i, j - 1] + 1)
\]

where j = i + d

\[
= \sum_{d=0}^{n-1} (r[n - d + 1, n + 1] - r[1, d] + n - d) \\
\leq \sum_{d=0}^{n-1} (2n - d)
\]

since \(r[n - d + 1, n + 1] - r[1, d] \leq (n + 1) - 1\)

\[
= O(n^2).
\]

The use of the monotonicity principle above is in fact an application of the general technique due to Yao [Yao82] to speed-up dynamic programming under some special conditions. (See subsection 2.1.1.2 below.)

The space required by both algorithms for the tables \(r\) and \(c\) is \(O(n^2)\).

\[\square\]

2.1.1.2 Speed-up in dynamic programming

For the sake of completeness, we reproduce below results due to Yao [Yao82].

Consider a recurrence to compute the value of \(c(1, n)\) for the function \(c()\) defined by the following recurrence

\[
c(i, j) = w(i, j) + \min_{i \leq k \leq j} (c(i, k - 1) + c(k + 1, j)) \quad \text{for } 1 \leq i \leq j \leq n
\]

\[
c(i + 1, i) = q_i
\]

(2.3)

where \(w()\) is some function and \(q_i\) is a constant for \(1 \leq i \leq n\). The form of the recurrence suggests a simple dynamic programming algorithm that computes \(c(i, j)\) from \(c(i, k - 1)\) and \(c(k + 1, j)\) for all \(k\) from \(i\) through \(j\). This algorithm spends \(O(j - i)\) time computing the optimum value of \(c(i, j)\) for every pair \(i, j\), such that \(1 \leq i \leq j \leq n\), for a total running time of \(\sum_{i=1}^{n} \sum_{j=i}^{n} O(j - i) = O(n^3)\).

The function \(w(i, j)\) satisfies the \textit{concave quadrangle inequality} (Q1) if:

\[w(i, j) + w(i', j') \leq w(i', j) + w(i, j')\]

(2.4)
for all \(i, i', j, j'\) such that \(i \leq i' \leq j \leq j'\). In addition, \(w(i, j)\) is monotone with respect to set inclusion of intervals if \(w(i, j) \leq w(k, l)\) whenever \([i, j] \subseteq [k, l]\), i.e., \(k \leq i \leq j \leq l\).

Let \(c_k(i, j)\) denote \(w(i, j) + c(i, k - 1) + c(k + 1, j)\) for each \(k, i \leq k \leq j\). Let \(K(i, j)\) denote the maximum \(k\) for which the optimum value of \(c(i, j)\) is achieved in recurrence (2.3), i.e., for \(i \leq j\),

\[
K(i, j) = \max\{k \mid c_k(i, j) = c(i, j)\}
\]

Hence, \(K(i, i) = i\).

Lemma 2.1.2 (Yao [Yao82]). If \(w(i, j)\) is monotone and satisfies the concave quadrangle inequality (2.4), then the function \(c(i, j)\) defined by recurrence (2.3) also satisfies the concave QI, i.e.,

\[
c(i, j) + c(i', j') \leq c(i', j) + c(i, j')
\]

for all \(i, i', j, j'\) such that \(i \leq i' \leq j \leq j'\).

Proof (Mehlhorn [Meh84]): Consider \(i, i', j, j'\) such that \(1 \leq i \leq i' \leq j \leq j' \leq n\). The proof of the lemma is by induction on \(l = j' - i\).

Base cases: The case \(l = 0\) is trivial. If \(l = 1\), then either \(i = i'\) or \(j = j'\), so the inequality

\[
c(i, j) + c(i', j') \leq c(i', j) + c(i, j')
\]

is trivially true.

Inductive step: Consider the two cases: \(i' = j\) and \(i' < j\).

Case 1: \(i' = j\). In this case, the concave QI reduces to the inequality:

\[
c(i, j) + c(j, j') \leq c(i, j') + w(j, j).
\]

Let \(k = K(i, j')\). Clearly, \(i \leq k \leq j'\).

Case 1a: \(k + 1 \leq j\).

\[
c(i, j) + c(j, j') \leq w(i, j) + c(i, k - 1) + c(k + 1, j) + c(j, j')
\]

by the definition of \(c(i, j)\)

\[
\leq w(i, j') + c(i, k - 1) + c(k + 1, j) + c(j, j')
\]

by the monotonicity of \(w()\)
Now if \(k+1 \leq j \), then from the induction hypothesis, \(c(k+1,j) + c(j,j') \leq c(k+1,j') + w(j,j) \).

Therefore,

\[
c(i,j) + c(j,j') \leq w(i,j') + c(i,k - 1) + c(k+1,j') + w(j,j)
= c(i,j') + w(j,j)
\]

because \(k = K(i,j') \), and by definition of \(c(i,j') \).

Case 1b: \(k \geq j \).

\[
c(i,j) + c(j,j') \leq c(i,j) + w(j,j') + c(j,k - 1) + c(k+1,j')
\]

by the definition of \(c(j,j') \)

\[
\leq c(i,j) + w(i,j') + c(j,k - 1) + c(k+1,j')
\]

by the monotonicity of \(w(\) \)

Now if \(k \geq j \), then from the induction hypothesis, \(c(i,j) + c(j,k - 1) \leq c(i,k - 1) + w(j,j) \).

Therefore,

\[
c(i,j) + c(j,j') \leq w(i,j') + c(i,k - 1) + w(j,j) + c(k+1,j')
= c(i,j') + w(j,j)
\]

by the definition of \(c(i,j') \).

Case 2: \(i' < j \). Let \(y = K(i',j) \) and \(z = K(i,j') \).

Case 2a: \(z \leq y \). Note that \(i \leq z \leq y \leq j \).

\[
c(i',j') + c(i,j) = c_y(i',j') + c_z(i,j)
= (w(i',j') + c(i',y - 1) + c(y + 1,j')) + (w(i,j) + c(i,z - 1) + c(z + 1,j))
\]

from the concave QI for \(w \)

\[
\leq (w(i,j') + w(i',j')) + (c(i',y - 1) + c(i,z - 1) + c(z + 1,j) + c(y + 1,j'))
\]

from the induction hypothesis,

i.e., the concave QI applied to \(z \leq y \leq j \leq j' \)

\[
= c(i,j') + c(i',j)
\]

by definition of \(c(i,j') \) and \(c(i',j) \).
Case 2b: $y \leq z$. This case is symmetric to case 2a above.

\[\]

Theorem 2.1.3 (Yao [Yao82]). *If the function $w(i, j)$ is monotone and satisfies the concave quadrangle inequality, then*

\[K(i, j - 1) \leq K(i, j) \leq K(i + 1, j). \]

Proof (Mehlhorn [Meh84]): The theorem is trivially true when $j = i + 1$ because $i \leq K(i, j) \leq j$. We will prove $K(i, j - 1) \leq K(i, j)$ for the case $i < j - 1$, by induction on $j - i$.

Recall that $K(i, j - 1)$ is the largest index k that achieves the minimum value of $c(i, j - 1) = w(i, j - 1) + c(i, k - 1) + c(k + 1, j - 1)$ (cf. equation (2.3)). Therefore, it suffices to show that

\[c_k(i, j - 1) \leq c_k(i, j - 1) \implies c_k(i, j) \leq c_k(i, j) \]

for all $i \leq k \leq k' \leq j$. We prove the stronger inequality

\[c_k(i, j - 1) - c_{k'}(i, j - 1) \leq c_k(i, j) - c_{k'}(i, j) \]

which is equivalent to

\[c_k(i, j - 1) + c_{k'}(i, j) \leq c_k(i, j - 1) + c_{k'}(i, j). \]

The last inequality above is expanded to

\[c(i, k - 1) + c(k + 1, j - 1) + c(i, k' - 1) + c(k' + 1, j) \]

\[\leq c(i, k' - 1) + c(k' + 1, j - 1) + c(i, k - 1) + c(k + 1, j) \]

or

\[c(k + 1, j - 1) + c(k' + 1, j) \leq c(k' + 1, j - 1) + c(k + 1, j). \]

But this is simply the concave quadrangle inequality for the function $c(i, j)$ for $k \leq k' \leq j - 1 \leq j$, which is true by the induction hypothesis.

As a consequence of theorem 2.1.3, if we compute $c(i, j)$ by diagonals, in order of increasing values of $j - i$, then we can limit our search for the optimum value of k to the
range from $K(i, j - 1)$ through $K(i - 1, j)$. The cost of computing all entries on one diagonal where $j = i + d$ is

$$
\sum_{i=1}^{n-d} (K(i + 1, j) - K(i, j - 1) + 1)
$$

$$
= K(n - d + 1, n + 1) - K(1, d) + n - d
$$

$$
\leq (n + 1) - 1 + (n - d)
$$

$$
< 2n.
$$

The speed-up technique in this section is used to improve the running time of the standard dynamic programming algorithm to compute optimum BSTs. It is easy to see that the parameters of the optimum BST problem satisfy the conditions required by Theorem 2.1.3.

2.1.2 Alphabetic trees

The special case of the problem of constructing an optimum BST when $p_1 = p_2 = \cdots = p_n = 0$ is known as the **alphabetic tree problem**. This problem arises in the context of constructing optimum binary code trees. A binary codeword is a string of 0's and 1's. A prefix-free binary code is a sequence of binary codewords such that no codeword is a prefix of another. Corresponding to a prefix-free code with $n + 1$ codewords, there is a rooted binary tree with n internal nodes and $n + 1$ external nodes where the codewords correspond to the external nodes of the tree.

In the alphabetic tree problem, we require that the codewords at the external nodes appear in order from left to right. Taking the left branch of the tree stands for a 0 bit and taking the right branch stands for a 1 bit in the codeword; thus, a path in the tree from the root to the j-th external node represents the bits in the j-th codeword. This method of coding preserves the lexicographic order of messages. The probability q_j of the j-th codeword is the likelihood that the symbol corresponding to that codeword will appear in any message. Thus, in this problem, $p_1 = p_2 = \cdots = p_n = 0$ and $\sum_{j=0}^{n} q_j = 1$.

Hu and Tucker [HT71] developed a two-phase algorithm that constructs an optimum alphabetic tree. In the first phase, starting with a sequence of $n + 1$ nodes, pairs of nodes
are recursively combined into a single tree to obtain an assignment of level numbers to the nodes. The tree constructed in the first phase does not necessarily have the leaves in order. In the second phase, the nodes are recombined into a tree where the nodes are now in lexicographic order and the depth of a node is the same as the level number assigned to it in the first phase. It is non-trivial to prove that there exists an optimum alphabetic tree with the external nodes at the same depths as the level numbers constructed in the first phase.

The algorithm uses a priority queue with at most \(n + 1 \) elements on which it performs \(O(n) \) operations. With the appropriate implementation, such as a leftist tree [Knu73] or a Fibonacci heap [CLR90], the algorithm requires \(O(n \log n) \) time and \(O(n) \) space.

2.1.3 Huffman trees

If we relax the condition in the alphabetic tree problem that the codewords should be in lexicographic order, then the problem of constructing an optimum prefix-free code is the Huffman tree problem. Huffman's classic result [Huf52] is that a simple greedy algorithm, running in time \(O(n \log n) \), suffices to construct a minimum-cost code tree.

2.1.4 Nearly optimum search trees

The best known algorithm, algorithm K2 due to Knuth [Knu71], to construct an optimum search tree requires \(O(n^2) \) time and space (Theorem 2.1.1). If we are willing to sacrifice optimality for efficiency, then we can use a simple linear-time heuristic due to Mehlhorn [Meh84] to construct a tree \(T \) that is not too far from optimum. In fact, if \(T^* \) is a tree with minimum cost, then

\[
\text{cost}(T) - \text{cost}(T^*) \leq \lg (\text{cost}(T^*)) \approx \lg H
\]

where \(H = \sum_{i=1}^{n} p_i \lg (1/p_i) + \sum_{j=0}^{n} q_j \lg (1/q_j) \) is the entropy of the probability distribution.
2.1.5 Optimal binary decision trees

We remark that the related problem of constructing an optimal binary decision tree is known to be NP-complete. Hyafil and Rivest [HR76] proved that the following problem is NP-hard:

Problem 1. Let $S = \{s_1, s_2, \ldots, s_n\}$ be a finite set of objects and let $T = \{t_1, t_2, \ldots, t_m\}$ be a finite set of tests. For each test t_i and object x_j, $1 \leq i \leq m$ and $1 \leq j \leq n$, we have either $t_i(x_j) = \text{TRUE}$ or $t_i(x_j) = \text{FALSE}$. Construct an identification procedure for the objects in S such that the expected number of tests required to completely identify an element of S is minimal. In other words, construct a binary decision tree with the tests at the internal nodes and the objects in S at the external nodes, such that the sum of the path lengths of the external nodes is minimized.

The authors showed, via a reduction from **Exact Cover by 3-Sets (X3C)** [GJ79], that the optimal binary decision tree problem remains NP-hard even when the tests are all subsets of S of size 3 and $t_i(x_j) = \text{TRUE}$ if and only if x_j is an element of set t_i.

For more details on the optimum binary search tree problem and related problems, we refer the reader to the excellent survey article by S. V. Nagaraj [Nag97].

2.2 Models of computation

The Random Access Machine (RAM) [Pap95, BC94] is used most often in the design and analysis of algorithms.

2.2.1 The need for an alternative to the RAM model

The RAM is a sequential model of computation. It consists of a single processor with a predetermined set of instructions. Different variants of the RAM model assume different instruction sets—for instance, the real RAM [PS85] can perform exact arithmetic on real numbers. See also Louis Mak’s Ph.D. thesis [Mak95].

In the RAM model, memory is organized as a potentially unbounded array of locations, numbered 1, 2, 3, \ldots, each of which can store an arbitrarily large integer value. On the
RAM, the memory organization is uniform; i.e., it takes the same amount of time to access any location in memory.

While the RAM model serves to approximate a real computer fairly well, in some cases, it has been observed empirically that algorithms (and data structures) behave much worse than predicted on the RAM model: their running times are substantially larger than what even a careful analysis on the RAM model would predict because of memory effects such as paging and caching. In the following subsections, we review the hierarchical memory organization of modern computers, and how it leads to memory effects so that the cost of accessing memory becomes a significant part of the total running time of an algorithm. We survey empirical observations of these memory effects, and the study of data structures and algorithms that attempt to overcome bottlenecks due to slow memory.

2.2.1.1 Modern computer organization

Modern computers have a hierarchical memory organization [HP96]. Memory is organized into levels such as the processor's registers, the cache (primary and secondary), main memory, secondary storage, and even distributed memory.

The first few levels of the memory hierarchy comprising the CPU registers, cache, and main memory are realized in silicon components, i.e., hardware devices such as integrated circuits. This type of fast memory is called "internal" storage, while the slower magnetic disks, CD-ROMs, and tapes used for realizing secondary and tertiary storage comprise the "external" storage.

Registers have the smallest access time, and magnetic disks and tapes are the slowest. Typically, the memory in one level is an order of magnitude faster than in the next level. So, for instance, access times for registers and cache memory are a few nanoseconds, while accessing main memory takes tens of nanoseconds.

The sizes (numbers of memory locations) of the levels also increase by an order of magnitude from one level to the next. So, for instance, typical cache sizes are measured in kilobytes while main memory sizes are of the order of megabytes and larger. The reason for these differences is that faster memory is more expensive to manufacture and therefore is available in smaller quantities.
Most multi-programmed systems allow the simultaneous execution of programs in a time-sharing fashion even when the sum of the memory requirements of the programs exceeds the amount of physical main memory available. Such systems implement virtual memory: not all data items referenced by a program need to reside in main memory. The virtual address space, which is much larger than the real address space, is usually partitioned into pages. Pages can reside either in main memory or on disk. When the processor references an address belonging to a page not currently in the main memory, the page must be loaded from disk into main memory. Therefore, the time to access a memory location also depends on whether the corresponding page of virtual memory is currently in main memory.

Consequently, the memory organization is highly non-uniform, and the assumption of uniform memory cost in the RAM model is unrealistic.

2.2.1.2 Locality of reference

Many algorithms exhibit the phenomenon of spatial and temporal locality [Smi82]. Data items are accessed in regular patterns so that the next item to be accessed is very likely to be one that is stored close to the last few items accessed. This phenomenon is called spatial locality. It occurs because data items that are logically “close” to each other also tend to be stored close together in memory. For instance, an array is a typical data structure used to represent a list of related items of the same type. Consecutive array elements are also stored in adjacent memory locations. (See, however, Chatterjee et al. [CJLM99] for a study of the advantage of a nonlinear layout of arrays in memory. Also, architectures with interleaved memory store consecutive array elements on different memory devices to facilitate parallel or pipelined access to a block of addresses.)

A data item that is accessed at any time is likely to be accessed again in the near future. For example, the index variable in a loop is probably also used in the body of the loop. Therefore, during the execution of the loop, the variable is accessed several times in quick succession. This is the phenomenon of temporal locality.

In addition, the hardware architecture mandates that the processor can operate only on data present in its registers. Therefore, executing an operation requires extra time to
move the operands into registers and store the result back to free up the registers for the next operation. Typically, data can be moved only between adjacent levels in the memory hierarchy, such as between the registers and the primary cache, cache and main memory, and the main memory and secondary storage, but not directly between the registers and secondary storage.

Therefore, an algorithm designer must make efficient use of available memory, so that data is available in the fastest possible memory location whenever it is required. Of course, moving data around involves extra overhead. The memory allocation problem is complicated by the dynamic nature of many algorithms.

2.2.1.3 Memory effects

The effects of caches on the performance of algorithms have been observed in a number of contexts. Smith [Smi82] presented a large number of empirical results obtained by simulating the data access patterns of real programs on different cache architectures. LaMarca and Ladner [LL99] investigated the effect of caches on the performance of sorting algorithms, both experimentally and analytically. The authors showed how to restructure MERGESORT, QUICKSORT, and Heapsort to improve the utilization of the cache and reduce the execution time of these algorithms. Their theoretical prediction of cache misses incurred closely matches the empirically observed performance.

LaMarca and Ladner [LL96] also investigated empirically the performance of heap implementations on different architectures. They presented optimizations to reduce the cache misses incurred by heaps and gave empirical data about how their optimizations affected overall performance on a number of different architectures.

The performance of several algorithms such as matrix transpositions and FFT on the virtual memory model was studied by Aggarwal and Chandra [AC88]. The authors modeled virtual memory as a large flat address-space which is partitioned into blocks. Each block of virtual memory is mapped into a block of real memory. A block of memory must be loaded into real memory before it can be accessed. The authors showed that some algorithms must still run slowly even if the algorithms were able to predict memory accesses in advance.
2.2.1.4 Complexity of communication

Algorithms that operate on large data sets spend a substantial amount of time accessing data (reading from and writing to memory). Consequently, memory access time (also referred to in the literature as I/O- or communication-time) frequently dominates the computation time. Therefore, the RAM model, which does not account for memory effects, is inadequate for accurately predicting the performance of such algorithms.

Depending on the machine organization, either the time to compute results or the time to read/write data may dominate the running time of an algorithm. A computation graph represents the dependency relationship between data items—there is a directed edge from vertex \(u \) to vertex \(v \) if the operation that computes the value at \(v \) requires that the value at \(u \) be already available. For computation on a collection of values whose dependencies form a grid graph, the tradeoff between the computation time and memory access time was quantified by Papadimitriou and Ullman [PU87].

The I/O-complexity of an algorithm is the cost of inputs and outputs between faster internal memory and slower secondary memory. Aggarwal and Vitter [AV88] proved tight upper and lower bounds for the I/O-complexity of sorting, computing the FFT, permuting, and matrix transposition. Hong and Kung [HK81] introduced an abstract model of pebbling a computation graph to analyze the I/O-complexity of algorithms. The vertices of the graph that hold pebbles represent data items that are loaded into main memory. With a limited number of pebbles available, the number of moves needed to transfer all the pebbles from the input vertices to the output vertices of the computation graph is the number of I/O operations between main memory and external memory.

Interprocessor communication is a significant bottleneck in multiprocessor architectures, and it becomes more severe as the number of processors increases. In fact, depending on the degree of parallelism of the problem itself, the communication time between processors frequently limits the execution speed. Aggarwal et al. [ACS90] proposed the LPRAM model for parallel random access machines that incorporates both the computational power and communication delay of parallel architectures. For this model, they proved upper bounds on both computation time and communication steps using \(p \) proces-
sors for a number of algorithms, including matrix multiplication, sorting, and computing an n-point FFT.

2.2.2 External memory algorithms

Vitter [Vit] surveyed the state of the art in the design and analysis of data structures and algorithms that operate on data sets that are too large to fit in main memory. These algorithms try to reduce the performance bottleneck of accesses to slower external memory.

There has been considerable interest in the area of I/O-efficient algorithms for a long time. Knuth [Knu73] investigated sorting algorithms that work on files that are too large to fit in fast internal memory. For example, when the file to be sorted is stored on a sequential tape, a process of loading blocks of records into internal memory where they are sorted and using the tape to merge the sorted blocks turns out quite naturally to be more efficient than running a sorting algorithm on the entire file.

Grossman and Silverman [GS73] considered the very general problem of storing records on a secondary storage device to minimize expected retrieval time, when the probability of accessing any record is known in advance. The authors model the pattern of accesses by means of a parameter that characterizes the degree to which the accesses are sequential in nature.

There has been interest in the numerical computing field in improving the performance of algorithms that operate on large matrices [CS]. A successful strategy is to partition the matrix into rectangular blocks, each block small enough to fit entirely in main memory or cache, and operate on the blocks independently.

The same blocking strategy has been employed for graph algorithms [ABCP98, CGG+95, NGV96]. The idea is to cover an input graph with subgraphs; each subgraph is a small diameter neighborhood of vertices just big enough to fit in main memory. A computation on the entire graph can be performed by loading each neighborhood subgraph into main memory in turn, computing the final results for all vertices in the subgraph, and storing back the results.

Gil and Itai [GI99] studied the problem of storing a binary tree in a virtual memory system to minimize the number of page faults. They considered the problem of allocating
the nodes of a given binary tree (not necessarily a search tree) to virtual memory pages, called a packing, to optimize the cache performance for some pattern of accesses to the tree nodes. The authors investigated the specific model for tree accesses in which a node is accessed only via the path from the root to that node. They presented a dynamic programming algorithm to find a packing that minimizes the number of page faults incurred and the number of different pages visited while accessing a node. In addition, the authors proved that the problem of finding an optimal packing that also uses the minimum number of pages in NP-complete, but they presented an efficient approximation algorithm.

2.2.3 Non-uniform memory architecture

In a non-uniform memory architecture (NUMA), each processor contains a portion of the shared memory, so access times to different parts of the shared address space can vary, sometimes significantly.

NUMA architectures have been proposed for large-scale multiprocessor computers. For instance, Wilson [Wil87] proposed an architecture with hierarchies of shared buses and caches. The author proposed extensions of cache coherency protocols to maintain cache coherency in this model and presented simulations to demonstrate that a 128 processor computer could be constructed using this architecture that would achieve a substantial fraction of its peak performance.

A related architecture proposed by Hagersten et al. [HLH92], called the Cache-Only Memory Architecture (COMA), is similar to a NUMA in the sense that each processor holds a portion of the shared address space. In the COMA, however, the allocation of the shared address space among the processors can be dynamic. All of the distributed memory is organized like large caches. The cache belonging to each processor serves two purposes—it caches the recently accessed data for the processor itself and also contains a portion of the shared memory. A coherence protocol is used to manage the caches.

2.2.4 Models for non-uniform memory

One motivation for a better model of computation is the desire to model real computers more accurately. We want to to be able to design and analyze algorithms, predict their
performance, and characterize the hardness of problems. Consequently, we want a simple, elegant model that provides a faithful abstraction of an actual computer. Below, we survey the theoretical models of computation that have been proposed to model memory effects in actual computers.

The seminal paper by Aggarwal et al. [AACS87] introduced the Hierarchical Memory Model (HMM) of computation with logarithmic memory access cost, i.e., access to the memory location at address \(a \) takes time \(\Theta(\log a) \). The HMM model seems realistic enough to model a computer with multiple levels in the memory hierarchy. It confirms with our intuition that successive levels in memory become slower but bigger. Standard polynomial-time RAM algorithms can run on this HMM model with an extra factor of at most \(O(\log n) \) in the running time. The authors showed that some algorithms can be rewritten to reduce this factor by taking advantage of locality of reference, while other algorithms cannot be improved asymptotically.

Aggarwal et al. [ACS87] proposed the Hierarchical Memory model with Block Transfer (HMBT) as a better model that incorporates the cost of data transfer between levels in the memory hierarchy. The HMBT model allows data to be transferred between levels in blocks in a pipelined manner, so that it takes only constant time per unit of memory after the initial item in the block. The authors considered variants of the model with different memory access costs: \(f(a) = \log a \), \(f(a) = a^\beta \) for \(0 < \beta < 1 \), and \(f(a) = a \).

Aggarwal and Chandra [AC88] proposed a model \(\text{VM}_r \) for a computer with virtual memory. The virtual memory on the \(\text{VM}_r \) model consists of a hierarchical partitioning of memory into contiguous intervals or blocks. Some subset of the blocks at any level are stored in faster (real) memory at any time. The blocks and sub-blocks of virtual memory are used to model disk blocks, pages of real memory, cache lines, etc. The authors' model for the real memory is the HMBT model \(\text{BT}_r \) in which blocks of real memory can be transferred between memory levels in unit time per location after the initial access, i.e., in a pipelined manner. The \(\text{VM}_r \) is considered a higher-level abstraction on which to analyze application programs, while the running time is determined by the time taken by the underlying block transfers. In both the models considered, the \(\text{VM}_r \) and the \(\text{BT}_r \), the parameter \(f \) is a memory cost function representing the cost of accessing a location in real or virtual memory.
The Uniform Memory Hierarchy (UMH) model of computation proposed by Alpern et al. [ACFS94] incorporates a number of parameters that model the hierarchical nature of computer memory. Like the HMBT, the UMH model allows data transfers between successive memory levels via a bus. The transfer cost along a bus is parameterized by the bandwidth of the bus. Other parameters include the size of a block and the number of blocks in each level of memory.

Regan [Reg96] introduced the Block Move (BM) model of computation that extended the ideas of the HMBT model proposed by Aggarwal et al. [ACS87]. The BM model allows more complex operations such as shuffling and reversing of blocks of memory, as well as the ability to apply other finite transductions besides "copy" to a block of memory. The memory-access cost of a block transfer, similar to that in the HMBT model, is unit cost per location after the initial access. Regan proved that different variants of the model are equivalent up to constant factors in the memory-access cost. He studied complexity classes for the BM model and compared them with standard complexity classes defined for the RAM and the Turing machine.

Two extensions of the HMBT model, the Parallel HMBT (P-HMBT) and the pipelined P-HMBT (PP-HMBT), were investigated by Juurlink and Wijshoff [JW94]. In these models, data transfers between memory levels may proceed concurrently. The authors proved tight bounds on the total running time of several problems on the P-HMBT model with access cost function \(f(a) = \lfloor \log a \rfloor \). The P-HMBT model is identical to the HMBT model except that block transfers of data are allowed to proceed in parallel between memory levels, and a transfer can take place only between successive levels. In the PP-HMBT model, different block transfers involving the same memory location can be pipelined. The authors showed that the P-HMBT and HMBT models are incomparable in strength, in the sense that there are problems that can be solved faster on one model than on the other; however, the PP-HMBT model is strictly more powerful than both the HMBT and the P-HMBT models.

A number of models have also been proposed for parallel computers with hierarchical memory.

Valiant [Val89] proposed the Bulk-Synchronous Parallel (BSP) model as an abstract model for designing and analyzing parallel programs. The BSP model consists of com-
ponents that perform computation and memory access tasks and a router that delivers messages point-to-point between the components. There is a facility to synchronize all or a subset of components at the end of each superstep. The model emphasizes the separation of the task of computation and the task of communicating between components. The purpose of the router is to implement access by the components to shared memory in parallel. In [Val90], Valiant argues that the BSP model can be implemented efficiently in hardware, and therefore, it serves as both an abstract model for designing, analyzing and implementing algorithms as well as a realistic architecture realizable in hardware.

Culler et al. [CKP+96] proposed the LogP model of a distributed-memory multiprocessor machine in which processors communicate by point-to-point messages. The performance characteristics of the interconnection network are modeled by four parameters L, o, g, and P: L is the latency incurred in transmitting a message over the network, o is the overhead during which the processor is busy transmitting or receiving a message, g is the minimum gap (time interval) between consecutive message transmissions or reception by a processor, and P is the number of processors or memory modules. The LogP model does not model local architectural features, such as caches and pipelines, at each processor.

For a comprehensive discussion of computational models, including models for hierarchical memory, we refer the reader to the book by Savage [Sav98].

For the rest of this thesis, we focus on a generalization of the HMM model due to Aggarwal et al. [AACS87] where the memory cost function can be an arbitrary nondecreasing function, not just logarithmic.

Now that we have a more realistic model of computation, our next goal is to re-analyze existing algorithms and data structures, and either prove that they are still efficient in this new model or design better ones. Also, in the cases where we observe worse performance on the new model, we would also like to be able to prove nontrivial lower bounds. This leads to our primary interest in this thesis, which studies the problem of constructing minimum-cost binary search trees on a hierarchical memory model of computation.
CHAPTER 3

Algorithms for Constructing Optimum and Nearly Optimum Binary Search Trees

3.1 The HMM model

Our version of the HMM model of computation consists of a single processor with a potentially unbounded number of memory locations with addresses 1, 2, 3, ... We identify a memory location by its address. A location in memory can store a finite but arbitrarily large integer value.

The processor can execute any instruction in constant time, not counting the time spent reading from or writing to memory. Some instructions read operands from memory or write results into the memory. Such instructions can address any memory location directly by its address; this is called “random access” to memory, as opposed to sequential access. At most one memory location can be accessed at a time. The time taken to read and write a memory location is the same.

The HMM is controlled by a program consisting of a finite sequence of instructions. The state of the HMM is defined by the sequence number of the current instruction and the contents of memory.

In the initial state, the processor is just about to execute the first instruction in its program. If the length of the binary representation of the input is \(n \), then memory locations 1 through \(n \) contain the input, and all memory locations at higher addresses contain zeros. The program is not stored in memory but encoded in the processor's finite control.

The memory organization of the HMM model is dramatically different from that of the RAM. On the HMM, accessing different memory locations may take different amounts of
time. Memory is organized in a hierarchy, from fastest to slowest. Within each level of
the hierarchy, the cost of accessing a memory location is the same.

More precisely, the memory of the HMM is organized into a hierarchy \(M_1, M_2, \ldots, M_h \) with \(h \) different levels, where \(M_l \) denotes the set of memory locations in level \(l \) for \(1 \leq l \leq h \). Let \(m_l = |M_l| \) be the number of memory locations in \(M_l \). The time to
access every location in \(M_1 \) is the same. Let \(c_1 \) be the time taken to access a single
memory location in \(M_1 \). Without loss of generality, the levels in the memory hierarchy are
organized from fastest to slowest, so that \(c_1 < c_2 < \ldots < c_h \). We will refer to the memory
locations with the lowest cost of access, \(c_1 \), as the “cheapest” memory locations.

For an HMM, we define a memory cost function \(\mu : \mathbb{N} \to \mathbb{N} \) that gives the cost \(\mu(a) \)
of a single access to the memory location at address \(a \). The function \(\mu \) is defined by the
following increasing step function:

\[
\mu(a) = \begin{cases}
 c_1 & \text{for } 0 < a \leq m_1 \\
 c_2 & \text{for } m_1 < a \leq m_1 + m_2 \\
 c_3 & \text{for } m_1 + m_2 < a \leq m_1 + m_2 + m_3 \\
 \vdots \\
 c_h & \text{for } \sum_{l=1}^{h-1} m_l < a \leq \sum_{l=1}^{h} m_l .
\end{cases}
\]

We do not make any assumptions about the relative sizes of the levels in the hierarchy,
although we expect that \(m_1 < m_2 < \ldots < m_h \) in an actual computer.

A memory configuration with \(s \) locations is a sequence \(C_s = \langle n_l \mid 1 \leq l \leq h \rangle \) where
each \(n_l \) is the number of memory locations from level \(l \) in the memory hierarchy and
\(\sum_{l=1}^{h} n_l = s \).

The running time of a program on the HMM model consists of the time taken by the
processor to execute the instructions according to the program and the time taken to access
memory. Clearly, if even the fastest memory on the HMM is slower than the uniform-cost
memory on the RAM, then the same program will take longer on the HMM than on the
RAM. Assume that the RAM memory is unit cost per access, and that \(1 \leq c_1 < c_2 < \ldots < c_h \). Then, the running time of an algorithm on the HMM will be at most \(c_h \) times
that on the RAM. An interesting question is whether the algorithm can be redesigned to
take advantage of locality of reference so that its running time on the HMM is less than
c_h times the running time on the RAM.

3.2 The HMM_2 model

The Hierarchical Memory Model with two memory levels (HMM_2) is the special case
of the general HMM model with h = 2. In the HMM_2, memory is organized in a hierarchy
consisting of only two levels, denoted by \(M_1 \) and \(M_2 \). There are \(m_1 \) locations in \(M_1 \) and
\(m_2 \) locations in \(M_2 \). The total number of memory locations is \(m_1 + m_2 = n \). A single
access to any location in \(M_1 \) takes time \(c_1 \), and an access to any location in \(M_2 \) takes
time \(c_2 \), with \(c_1 < c_2 \). We will refer to the memory locations in \(M_1 \) as the “cheaper” or
“less expensive” locations.

3.3 Optimum BSTs on the HMM model

We study the following problem for the HMM model with \(n \) memory locations and an
arbitrary memory cost function \(\mu : \{1, 2, \ldots, n\} \to \mathbb{N} \).

Problem 2. [Constructing an optimum BST on the HMM] Suppose we are given a set of \(n \)
keys, \(x_1, x_2, \ldots, x_n \) in order, the probabilities \(\pi_i \) for \(1 \leq i \leq n \) that a search argument \(y \)
equals \(x_i \), and the probabilities \(q_j \) for \(0 \leq j \leq n \) that \(x_{j-1} < y < x_j \). The problem is to
construct a binary search tree \(T \) over the set of keys and compute a memory assignment
function \(\phi : V(T) \to \{1, 2, \ldots, n\} \) that assigns the (internal) nodes of \(T \) to memory locations
such that the expected cost of a search is minimized.

Let \(\langle T, \phi \rangle \) denote a potential solution to the above problem: \(T \) is the combinatorial
structure of the tree, and the memory assignment function \(\phi \) maps the internal nodes of
\(T \) to memory locations.

If \(v \) is an internal node of \(T \), then \(\phi(v) \) is the address of the memory location where \(v \)
is stored, and \(\mu(\phi(v)) \) is the cost of a single access to \(v \). If \(v \) stores the key \(x_i \), then we will
sometimes write \(\phi(x_i) \) for \(\phi(v) \). On the other hand, if \(v \) is an external node of \(T \), then such
a node does not actually exist in the tree; however, it does contribute to the probability
that its parent node is accessed. Therefore, for an external node \(v \), we use \(\phi(v) \) to denote the memory location where the parent of \(v \) is stored. Let \(T_v \) denote the subtree of \(T \) rooted at \(v \). Now \(T_v \) is a binary search tree over some subset, say \(\{x_i, x_{i+1}, \ldots, x_j\} \), of keys; let \(w(T_v) \) denote the sum of the corresponding probabilities:
\[
w(T_v) = w_{t,i} = \sum_{k=i}^j p_k + \sum_{k=i-1}^j q_k.
\]
(If \(v \) is the external node \(z_j \), we use the convention that \(v \) is a subtree over the empty set of keys from \(x_{j+1} \) through \(x_j \), and \(w(T_v) = w_{j+1,j} = q_j \).) Therefore, \(w(T_v) \) is the probability that the search for a key in \(T \) proceeds anywhere in the subtree \(T_v \).

On the HMM model, making a single comparison of the search argument \(y \) with the key \(x_i \) incurs, in addition to the constant computation time, a cost of \(\mu(\phi(x_i)) \) for accessing the memory location where the corresponding node of \(T \) is stored. By the cost of \(\langle T, \phi \rangle \), we mean the expected cost of a search:
\[
\text{cost}(\langle T, \phi \rangle) = \sum_{i=1}^n w(T_{x_i}) \cdot \mu(\phi(x_i)) + \sum_{j=0} w(T_{z_j}) \cdot \mu(\phi(z_j))
\]
(3.1)
where the first summation is over all \(n \) internal nodes \(x_i \) of \(T \) and the second summation is over the \(n + 1 \) external nodes \(z_j \).

Here is another way to derive the above formula—the search algorithm accesses the node \(v \) whenever the search proceeds anywhere in the subtree rooted at \(v \), and the probability of this event is precisely \(w(T_v) = w_{t,i} \). The contribution of the node \(v \) to the total cost is the probability \(w(T_v) \) of accessing \(v \) times the cost \(\mu(\phi(v)) \) of a single access to the memory location containing \(v \).

The pair \(\langle T^*, \phi^* \rangle \) is an optimum solution to an instance of problem 2 if \(\text{cost}(\langle T^*, \phi^* \rangle) \) is minimum over all binary search trees \(T \) and functions \(\phi \) assigning the nodes of \(T \) to memory locations. We show below in Lemma 3.3.1 that for a given tree \(T \) there is a unique function \(\phi \) that optimally assigns nodes of \(T \) to memory locations.

It is easy to see that on the standard RAM model where every memory access takes unit time, equation (3.1) is equivalent to equation (1.2). Each node \(v \) contributes once to the sum on the right side of (3.1) for each of its ancestors in \(T \).
3.3.1 Storing a tree in memory optimally

The following lemmas show that the problem of constructing optimum BSTs specifically on the HMM model is interesting because of the interplay between the two parameters—the combinatorial structure of the tree and the memory assignment; restricted versions of the general problem have simple solutions.

Consider the following restriction of problem 2 with the combinatorial structure of the BST T fixed.

Problem 3. Given a binary search tree T over the set of keys x_1 through x_n, compute an optimum memory assignment function $\phi : V(T) \rightarrow \{1, 2, \ldots, n\}$ that assigns the nodes of T to memory locations such that the expected cost of a search is minimized.

Let $\pi(v)$ denote the parent of the node v in T; if v is the root, then let $\pi(v) = v$. Let ϕ^* denote an optimum memory assignment function that assigns the nodes of T to locations in memory.

Lemma 3.3.1. With T fixed, for every node v of T,

$$\mu(\phi^*(\pi(v))) \leq \mu(\phi^*(v)).$$

In other words, for a fixed BST T, there exists an optimal memory assignment function that assigns every node of T to a memory location that is no more expensive than the memory locations assigned to its children.

Proof: Assume to the contrary that for a particular node v, we have $\mu(\phi^*(\pi(v))) > \mu(\phi^*(v))$. The contribution of v and $\pi(v)$ to the total cost of the tree in the summation (3.1) is

$$w(T_{\pi(v)})\mu(\phi^*(\pi(v))) + w(T_v)\mu(\phi^*(v)).$$

The node $\pi(v)$ is accessed whenever the search proceeds anywhere in the subtree rooted at $\pi(v)$, and likewise with v. Since each $p_i, q_j \geq 0$, $\pi(v)$ is accessed at least as often as v, i.e., $w(T_{\pi(v)}) \geq w(T_v)$.

Therefore, since $\mu(\phi^*(v)) < \mu(\phi^*(\pi(v)))$ by our assumption,

$$w(T_{\pi(v)})\mu(\phi^*(v)) + w(T_v)\mu(\phi^*(\pi(v))) \leq w(T_{\pi(v)})\mu(\phi^*(v))) + w(T_v)\mu(\phi^*(v))$$
so that we can swap the memory locations where \(v \) and its parent \(\pi(v) \) are stored and not increase the cost of the solution. \(\square \)

As a consequence, the root of any subtree is stored in the cheapest memory location among all nodes in that subtree.

Lemma 3.3.2. For fixed \(T \), the optimum memory assignment function, \(\phi^* \), can be determined by a greedy algorithm. The running time of this greedy algorithm is \(O(n \log n) \) on the RAM.

Proof: It follows from Lemma 3.3.1 that under some optimum memory assignment, the root of the tree must be assigned the cheapest available memory location. Again from the same lemma, the next cheapest available location can be assigned only to one of the children of the root, and so on. The following algorithm implements this greedy strategy.

By the *weight* of a node \(v \) in the tree, we mean the sum of the probabilities of all nodes in the subtree rooted at \(v \), i.e., \(w(T_v) \). The value \(w(T_v) \) can be computed for every subtree \(T_v \) in linear time and stored at \(v \). We maintain the set of candidates for the next cheapest location in a heap ordered by their weights. Among all candidates, the optimum choice is to assign the cheapest location to the heaviest vertex. We extract this vertex, say \(u \), from the top of the heap, store it in the next available memory location, and insert the two children of \(u \) into the heap. Initially, the heap contains just the root of the entire tree, and the algorithm continues until the heap is empty.

This algorithm performs \(n \) insertions and \(n \) deletions on a heap containing at most \(n \) elements. Therefore, its running time on the uniform-cost RAM model is \(O(n \log n) \). \(\square \)

3.3.2 Constructing an optimum tree when the memory assignment is fixed

Consider the following restriction of problem 2 where the memory assignment function \(\phi \) is given.

Problem 4. Suppose each of the keys \(x_i \), for \(1 \leq i \leq n \), is assigned a priori a fixed location \(\phi(x_i) \) in memory. Compute the structure of a binary search tree of minimum cost where every node \(v_i \) of the tree corresponding to key \(x_i \) is stored in memory location \(\phi(x_i) \).
Lemma 3.3.3. Given a fixed assignment of keys to memory locations, i.e., a function \(\phi \) from the set of keys (equivalently, the set of nodes of any BST \(T \)) to the set of memory locations, the BST \(T^* \) of minimum cost can be constructed by a dynamic programming algorithm. The running time of this algorithm is \(O(n^3) \) on the RAM.

Proof: The principle of optimality clearly applies here so that a BST is optimum if and only if each subtree is optimum. The standard dynamic programming algorithm proceeds as follows:

Let \(\text{cost}(T_{i,j}^*) \) denote the cost of an optimum BST over the keys \(x_i, x_{i+1}, \ldots, x_j \) and the corresponding probabilities \(p_i, p_{i+1}, \ldots, p_j \) and \(q_{i-1}, q_i, \ldots, q_j \), given the fixed memory assignment \(\phi \). By the principle of optimality,

\[
\text{cost}(T_{i,j}^*) = w_{i,j} \cdot \mu(\phi(x_k)) + \min_{t \leq k \leq j} \left(\text{cost}(T_{i,k-1}^*) + \text{cost}(T_{k+1,j}^*) \right)
\]

\[
\text{cost}(T_{i+1,j}^*) = w_{i+1,j} = q_j.
\]

Recall that \(w_{i,j} \) is the probability that the root of this subtree is accessed, and \(\mu(\phi(x_k)) \) is the cost of a single access to the memory location \(\phi(x_k) \) where \(x_k \) is stored.

Notice that this expression is equivalent to equation (2.1) except for the multiplicative factor \(\mu(\phi(x_k)) \). Therefore, \textsc{algorithm} K1 from section 2.1.1.1 can be used to construct the optimum binary search tree efficiently, given an assignment of keys to memory locations.

\[\square\]

In general, it does not seem possible to use a monotonicity principle to reduce the running time to \(O(n^2) \), as in \textsc{algorithm} K2 of section 2.1.1.1.

3.3.3 Naive algorithm

A naive algorithm for problem 2 is to try every possible mapping of keys to memory locations. Lemma 3.3.3 guarantees that we can then use dynamic programming to construct an optimum binary search tree for that memory assignment. We select the minimum-cost tree over all possible memory assignment functions.

There are

\[
\binom{n}{m_1, m_2, \ldots, m_h}
\]

32
such mappings from \(n \) keys to \(n \) memory locations with \(m_1 \) of the first type, \(m_2 \) of the second type, and so on. The multinomial coefficient is maximized when \(m_1 = m_2 = \cdots = m_{h-1} = \left\lfloor n/h \right\rfloor \). The dynamic programming algorithm takes \(O(n^3) \) time to compute the optimum BST for each fixed memory assignment. Hence, the running time of the naive algorithm is

\[
O \left(\frac{n!}{\left(\frac{n}{h} \right)^h n^3} \right) = O \left(\frac{\sqrt{2\pi n}(n/e)^n}{\left(\sqrt{2\pi(n/h)}(n/h)/e \right)^{(n/h)^h}} \cdot n^3 \right)
\]

using Stirling's approximation

\[
= O \left(\frac{\sqrt{2\pi n}}{\left(\sqrt{2\pi(n/h)} \right)^h} \cdot h^n \cdot n^3 \right)
\]

\[
= O \left(\frac{h^{h/2}}{(2\pi n)^{(h-1)/2}} \cdot h^n \cdot n^3 \right)
\]

\[
= O \left(\frac{h^{n+h/2} \cdot n^{3-(h-1)/2}}{(2\pi)^{(h-1)/2}} \right)
\]

\[
= O(h^n \cdot n^3).
\]

Unfortunately, the above algorithm is inefficient and therefore infeasible even for small values of \(n \) because its running time is exponential in \(n \). We develop much more efficient algorithms in the following sections.

3.3.4 A dynamic programming algorithm: ALGORITHM PARTS

A better algorithm uses dynamic programming to construct optimum subtrees bottom-up, like ALGORITHM K1 from section 2.1.1.1. Our new algorithm, ALGORITHM PARTS, constructs an optimum subtree \(T_{i,j}^* \) for each \(i, j \), such that \(1 \leq i \leq j \leq n \) and for every memory configuration \(\langle n_1, n_2, \ldots, n_h \rangle \) consisting of the \(j-i+1 \) memory locations available at this stage in the computation. For each possible choice \(x_k \) for the root of the subtree \(T_{i,j} \), there are at most \(j - i + 2 \leq n + 1 \) different ways to partition the number of available locations in each of \(h-1 \) levels of the memory hierarchy between the left and right subtrees of \(x_k \). (Since the number of memory locations assigned to any subtree equals the number of nodes in the subtree, we have the freedom to choose only the number of locations from any \(h-1 \) levels because the number of locations from the remaining level is then determined.)

33
We modify Algorithm K1 from section 2.1.1.1 as follows. Algorithm K1 builds larger and larger optimum subtrees $T_{i,j}^*$ for all i, j such that $1 \leq i \leq j \leq n$. For every choice of i and j, the algorithm iterates through the $j - i + 1$ choices for the root of the subtree from among $\{x_i, x_{i+1}, \ldots, x_j\}$. The left subtree of $T_{i,j}^*$ with x_k at the root is a BST, say $T^{(L)}$, over the keys x_i through x_{k-1}, and the right subtree is a BST, say $T^{(R)}$, over the keys x_{k+1} through x_j.

The subtree $T_{i,j}$ has $j-i+1$ nodes. Suppose the number of memory locations available for the subtree $T_{i,j}$ from each of the memory levels is n_l for $1 \leq l \leq h$, where $\sum_{l=1}^{h} n_l = j-i+1$. There are

$$\binom{(j-i+1)+h-1}{h-1} = \binom{j-i+h}{h-1}$$

$$= O\left(\frac{(n+h)^{h-1}}{(h-1)!}\right)$$

$$= O\left(\frac{2^{h-1}}{(h-1)!} n^{h-1}\right)$$

since $h \leq n$

different ways to partition $j-i+1$ objects into h parts without restriction, and therefore, at most as many different memory configurations with $j-i+1$ memory locations. (There are likely to be far fewer different memory configurations because there are at most n_1 memory locations from the first level, at most n_2 from the second, and so on, in any configuration.)

Let λ be the smallest integer such that $n_\lambda > 0$; in other words, the cheapest available memory location is from memory level λ.

For every choice of i, j, and k, there are at most $\min\{k-i+1, n_\lambda\} \leq n$ different choices for the number of memory locations from level λ to be assigned to the left subtree, $T^{(L)}$. This is because the left subtree with $k-i$ nodes can be assigned any number from zero to $\max\{k-i, n_\lambda - 1\}$ locations from the first available memory level, M_λ. (Only at most $n_\lambda - 1$ locations from M_λ are available after the root x_k is stored in the cheapest available location.) The remaining locations from M_λ available to the entire subtree are assigned to the right subtree, $T^{(R)}$. Likewise, there are at most $\min\{k-i+1, n_{\lambda+1} + 1\} \leq n+1$ different choices for the number of ways to partition the available memory locations from the next memory level $M_{\lambda+1}$ between the left and right subtrees, and so on. In general, the number of memory locations from the memory level l assigned to the left subtree, $n_l^{(L)}$,
ALGORITHM PARTS:
(Initialization)
for i := 0 to n
 Let \(C_0 \) be the empty memory configuration \(\langle 0, 0, \ldots, 0 \rangle \)
 \(C[i + 1, i, C_0] \leftarrow q_i; \)
 \(R[i + 1, i, C_0] \leftarrow \text{NIL}; \)
for d := 0 to n - 1
 (Construct optimum subtrees with \(d + 1 \) nodes.)
 for each memory configuration \(C \) of size \(d + 1 \)
 for i := 1 to n - d
 j \leftarrow i + d
 \(C[i, j, C] \leftarrow \infty \)
 \(R[i, j, C] \leftarrow \text{NIL} \)
 for k := i to j
 (Number of nodes in the left and right subtrees.)
 l \leftarrow k - i
 (number of nodes in the left subtree)
 r \leftarrow j - k
 (number of nodes in the right subtree)
 Call procedure Partition-Memory (figure 3.2) to compute
 the optimum way to partition the available memory locations.

Figure 3.1 algorithm Parts

ranges from 0 to at most \(n_1 \). Correspondingly, the number of memory locations from the
level \(l \) assigned to the right subtree \(n_{1}^{(R)} \) is \(n_1 - n_1^{(L)} \).

We modify algorithm K1 by inserting \(h - \lambda \leq h - 1 \) more nested loops that iterate
through every such way to partition the available memory locations from \(\mathcal{M}_\lambda \) through
\(\mathcal{M}_{n-1} \) between the left and right subtrees of \(T_{i,j} \) for a fixed choice of \(x_k \) as the root.

Just like algorithm K1, algorithm Parts of figure 3.1 constructs arrays \(R \) and \(C \),
each indexed by the pair \(i, j \), such that \(1 \leq i \leq j \leq n \), and the memory configuration
\(C \) specifying the numbers of memory locations from each of the \(h \) levels available to the
subtree \(T_{i,j} \). Let \(C = \langle n_1, n_2, \ldots, n_h \rangle \). The array entry \(R[i, j, C] \) stores the pair \(\langle k, C^L \rangle \),
where \(k \) is the index of the root of the optimum subtree \(T_{i,j}^* \) for memory configuration
\(C \), and \(C^L \) is the optimum memory configuration for the left subtree. In other words, \(C^L \)
Procedure Partition-Memory:

Let $C \equiv \langle n_1, n_2, \ldots, n_h \rangle$.

Let λ be the smallest integer such that $n_\lambda > 0$.

For $n_{\lambda}^{(L)} := 0$ to n_{λ}

For $n_{\lambda+1}^{(L)} := 0$ to $n_{\lambda+1}$

... For $n_{h-1}^{(L)} := 0$ to n_{h-1}

$n_{h}^{(L)} \leftarrow l - \sum_{i=1}^{h-1} n_i^{(L)}$

$n_{\lambda}^{(R)} \leftarrow n_{\lambda} - n_{\lambda}^{(L)}$

$n_{\lambda+1}^{(R)} \leftarrow n_{\lambda+1} - n_{\lambda+1}^{(L)}$

...$n_{h-1}^{(R)} \leftarrow n_{h-1} - n_{h-1}^{(L)}$

$n_{h}^{(R)} \leftarrow r - \sum_{i=1}^{h-1} n_i^{(R)}$

Use one cheap location for the root, i.e.,

$n_{\lambda}^{(L)} \leftarrow n_{\lambda}^{(L)} - 1$

$n_{\lambda}^{(R)} \leftarrow n_{\lambda}^{(R)} - 1$

Let $C^L = \langle 0, \ldots, 0, n_{\lambda}^{(L)}, n_{\lambda+1}^{(L)}, \ldots, n_h^{(L)} \rangle$.

Let $C^R = \langle 0, \ldots, 0, (n_{\lambda} - 1) - n_{\lambda}^{(L)}, n_{\lambda+1} - n_{\lambda+1}^{(L)}, \ldots, n_h - n_h^{(L)} \rangle$.

Let T' be the tree with x_k at the root, and the left and right children are given by $R[i, k - 1, C^L]$ and $R[k + 1, j, C^R]$ respectively. i.e., T' is the tree

(\textit{Let c' be the cost of T'.)}

\textit{(The root of T' is stored in a location of cost c_λ.)}

$C' \leftarrow c_\lambda \cdot w_{i,j} + C[i, k - 1, C^L] + C[k + 1, j, C^R]$

\textbf{Example:}

If $C' < C[i, j, C]$

$R[i, j, C] \leftarrow \langle k, C^L \rangle$

$C[i, j, C] \leftarrow C'$

Figure 3.2 Procedure Partition-Memory
specifies for each \(l \) the number of memory locations \(n^{(L)}_l \) out of the total \(n_l \) locations from level \(l \) available to the subtree \(T_{i,j} \) that are assigned to the left subtree. The memory configuration \(C^R \) of the right subtree is automatically determined: the number of memory locations \(n^{(R)}_l \) from level \(l \) that are assigned to the right subtree is \(n_l - n^{(L)}_l \), except that one location from the cheapest memory level available is consumed by the root.

The structure of the optimum BST and the optimum memory assignment function is stored implicitly in the array \(R \). Let \(T[i,j,C] \) denote the implicit representation of the optimum BST over the subset of keys from \(x_i \) through \(x_j \) for memory configuration \(C \). If \(R[1,n,C] = \langle k,C' \rangle \), then the root of the entire tree is \(x_k \) and it is stored in the cheapest available memory location of cost \(c_k \). The left subtree is over the subset of keys \(x_1 \) through \(x_{k-1} \), and the memory configuration for the left subtree is \(C' = \langle 0, \ldots, 0, n'_1, n'_{\lambda+1}, \ldots, n'_h \rangle \). The right subtree is over the subset of keys \(x_{k+1} \) through \(x_n \), and the memory configuration for the right subtree is \(\langle 0, \ldots, 0, (n_\lambda - 1) - n'_1, n'_{\lambda+1} - n'_1, \ldots, n_n - n'_h \rangle \).

In **Algorithm Parts**, there are \(3 + (h-1) = h+2 \) nested loops each of which iterates at most \(n \) times, in addition to the loop that iterates over all possible memory configurations of size \(d+1 \) for \(0 \leq d \leq n-1 \). Hence, the running time of the algorithm is

\[
O \left(\frac{2^{h-1}}{(h-1)!} n^{h-1} \cdot n^{h+2} \right) = O \left(\frac{2^{h-1}}{(h-1)!} \cdot n^{2h+1} \right). \tag{3.4}
\]

3.3.5 Another dynamic programming algorithm: Algorithm Trunks

In this subsection, we develop another algorithm that iteratively constructs optimum subtrees \(T_{i,j} \) over larger and larger subsets of keys. Fix an \(i \) and \(j \) with \(1 \leq i \leq j \leq n \) and \(j-i = d \), and a memory configuration \(C_{s+1} = \langle n_1, n_2, \ldots, n_{h-1}, n_h \rangle \) consisting of \(s+1 \) memory locations from the first \(h-1 \) levels of the memory hierarchy and none from the last level, i.e., \(n_1 + n_2 + \cdots + n_{h-1} = s+1 \) and \(n_h = 0 \). At iteration \(s+1 \), we require an optimum subtree, over the subset of keys from \(x_i \) through \(x_j \), with \(s \) of its nodes assigned to memory locations from the first \(h-1 \) levels of the memory hierarchy and the remaining \((j-i+1) - s \) nodes stored in the most expensive locations. Call the subtree induced by the nodes stored in the first \(h-1 \) memory levels the **trunk** (short for “truncated”) of the tree. (Lemma 3.3.1 guarantees that the trunk will also be a tree, and the root of the entire tree is also the root of the trunk. So, in fact, a trunk with \(s+1 \) nodes of a tree

37
is obtained by pruning the tree down to \(s + 1 \) nodes by recursively deleting leaves.) We require the optimum subtree \(T_{s, h} \) with \(\sum_{r=1}^{h-1} m_r = n - m_h \) nodes in the trunk, all of which are assigned to the \(n - m_h \) locations in the cheapest \(h - 1 \) memory levels. Recall that \(m_1 \) is the number of memory locations in memory level \(1 \) for \(1 \leq l \leq h \).

Algorithm Trunks in figure 3.3 constructs a table indexed by \(i, j, \) and \(c_{s+1} \). There are \(\binom{n}{j} \) different choices of \(i \) and \(j \) such that \(1 \leq i \leq j \leq n \). Also, there are

\[
\binom{s + 1 + (h - 1) - 1}{h - 2} = \binom{s + h - 1}{h - 2}
\]

different ways to partition \(s + 1 \) objects into \(h - 1 \) parts without restriction, and therefore, at most as many different memory configurations with \(s + 1 \) memory locations from the first \(h - 1 \) memory levels. (As mentioned earlier, there are likely to be far fewer different memory configurations because there are restrictions on the number of memory locations from each level in any configuration.)

For every value of \(k \) from \(i \) to \(j \) and every \(t \) from \(0 \) to \(s \), we construct a subtree with \(x_k \) at the root and \(t \) nodes in the trunk of the left subtree (the left trunk) and \(s - t \) nodes in the trunk of the right subtree (the right trunk).

By Lemma 3.3.1, the root of the subtree \(x_k \) is always stored in the cheapest available memory location. There are at most \(\binom{s}{t} \) ways to select \(t \) out of the remaining \(s \) memory locations to assign to the left trunk. (In fact, since the \(s \) memory locations are not necessarily all distinct, there are likely to be far fewer ways to do this.) As \(t \) iterates from \(0 \) through \(s \), the total number of ways to partition the available \(s \) memory locations and assign them to the left and right trunks is at most

\[
\sum_{t=0}^{s} \binom{s}{t} = 2^s.
\]

When all the nodes of the subtree are stored in memory locations in level \(h \) (the base case when \(s = 0 \)), an optimum subtree \(T_{s, h} \) is one constructed by **Algorithm K2** from section 2.1.1.1. Therefore, in an initial phase, we execute **Algorithm K2** to construct, in \(O(n^2) \) time, all optimum subtrees \(T_{s, h} \) that fit entirely within one memory level, in particular, the last and most expensive memory level.
Algorithm Trunks:

Initially, the optimum subtree T^*_{ij} is unknown for all i, j, except when the subtree fits entirely in memory level M_k, in which case the optimum subtree is the one computed by Algorithm K2 during the initialization phase.

for $d := 0$ to $n - 1$
 for $i := 1$ to $n - d$
 $j := i + d$
 (*Construct an optimum BST over the subset of keys from x_i through x_j.*)
 for $k := i$ to j
 (*Choose x_k to be the root of this subtree.*)
 for $s := 1$ to $n - m_n - 1$
 (*Construct a BST with s nodes in its trunk.*)
 For every memory configuration C_s of size s
 for $t := 0$ to s
 (*The left trunk has t nodes.*)
 For every choice of t out of the s memory locations
 in C_s to assign to the left subtree.
 Let T' be the BST over the subset of keys from x_i through x_j
 with x_k at the root,
 t nodes in the trunk of the left subtree, and
 $s - t$ nodes in the trunk of the right subtree.
 The left subtree of T' is the previously computed optimum subtree over the keys x_i through x_{k-1}
 with t nodes in its trunk, and the right subtree of T'
 is the previously computed optimum subtree over the keys x_{k+1} through x_j with $s - t$ nodes in its trunk.
 If the cost of T' is less than that of the minimum-cost subtree found so far, then record T' as the new optimum subtree.

Figure 3.3 Algorithm Trunks

39
The total running time of the dynamic programming algorithm is, therefore,

\[O \left(n^2 + \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} \sum_{k=1}^{i+d} \sum_{s=0}^{n-m_h-1} \left(\frac{s + h - 1}{h - 2} \right) \cdot 2^s \right). \]

Let

\[f(n) = \sum_{s=0}^{n-m_h-1} \left(\frac{s + h - 1}{h - 2} \right) \cdot 2^s. \]

By definition,

\[f(n) \leq \sum_{s=0}^{n-m_h-1} \frac{(s + h - 1)^{h-2}}{(h - 2)!} \cdot 2^s = \frac{1}{(h - 2)!} \sum_{s=0}^{n-m_h-1} (s + h - 1)^{h-2} \cdot 2^s. \]

Thus, \(f(n) \) is bounded above by the sum of a geometric series whose ratio is at most \(2 \cdot (n - m_h - 1 + h - 1) \). Hence, we have

\[
\begin{align*}
 f(n) &\leq \frac{1}{(h - 2)!} \cdot \frac{2^{n-m_h} (n - m_h + h - 2)^{n-m_h - 1}}{2(n - m_h + h - 2) - 1} \\
 &= O \left(\frac{2^{n-m_h} \cdot (n - m_h + h)^{n-m_h}}{(h - 2)!} \right).
\end{align*}
\]

Therefore, the running time of the algorithm is

\[
\begin{align*}
 O &\left(\sum_{d=0}^{n-1} \sum_{i=1}^{n-d} \sum_{k=1}^{i+d} \sum_{s=0}^{n-m_h-1} \frac{2^{n-m_h} \cdot (n - m_h + h)^{n-m_h}}{(h - 2)!} \right) \\
 &= O \left(\frac{2^{n-m_h} \cdot (n - m_h + h)^{n-m_h} \cdot \sum_{d=0}^{n-1} \sum_{i=1}^{n-d} (d + 1)}{(h - 2)!} \right) \\
 &= O \left(\frac{2^{n-m_h} \cdot (n - m_h + h)^{n-m_h} \cdot n^3}{(h - 2)!} \right). \tag{3.5}
\end{align*}
\]

Algorithm Trunks is efficient when \(n - m_h \) and \(h \) are both small. For instance, consider a memory organization in which the memory cost function grows as the tower function defined by:

\[
\begin{align*}
 \text{tower}(0) &= 1 \\
 \text{tower}(i + 1) &= \text{tower}^2(i) = 2^{2^{\text{tower}(i)}} (i + 1 \text{ times}) \quad \text{for all } i \geq 1.
\end{align*}
\]

If \(\mu(a) = \text{tower}(a) \) is the memory cost function, then \(\sum_{r=1}^{h-1} m_r = n - m_h < \lg \left(\sum_{r=1}^{h} m_r \right) = \lg n \), and \(h = \log^* n \). For all practical purposes, \(\log^* n \) is a small constant; therefore, the running time bound of equation 3.5 is almost a polynomial in \(n \).
3.3.6 A top-down algorithm: Algorithm Split

Suppose there are \(n \) distinct memory costs, or \(n \) levels in the memory hierarchy with one location in each level. A top-down recursive algorithm to construct an optimum BST has to decide at each step in the recursion how to partition the available memory locations between the left and right subtrees. Note that the number of memory locations assigned to the left subtree determines the number of keys in the left subtree, and therefore identifies the root. So, for example, if \(k \) of the available \(n \) memory locations are assigned to the left subtree, then there are \(k \) keys in the left subtree, and hence, the root of the tree is \(x_{k+1} \).

At the top level, the root is assigned the cheapest memory location. Each of the remaining \(n-1 \) memory locations can be assigned to either the left or the right subtree, so that \(k \) of the \(n-1 \) locations are assigned to the left subtree and \(n-1-k \) locations to the right subtree for every \(k \) such that \(0 \leq k \leq n-1 \). Thus, there are \(2^{n-1} \) different ways to partition the available \(n-1 \) memory locations between the two subtrees of the root. The algorithm proceeds recursively to compute the left and right subtrees.

The asymptotic running time of the above algorithm is given by the recurrence

\[
T(n) = 2^{n-1} + \max_{0 \leq k \leq n-1} \{ T(k) + T(n-1-k) \}.
\]

Now, \(T(n) \) is at least \(2^{n-1} \), which is a convex function, and \(T(n) \) is a monotonically increasing function of \(n \). Therefore, a simple inductive argument shows that \(T(n) \) itself is convex, so that it achieves the maximum value at either \(k = 0 \) or \(k = n-1 \). At \(k = 0 \), \(T(n) = 2^{n-1} + T(0) + T(n-1) \) which is the same value as at \(k = n-1 \). Therefore,

\[
T(n) \leq 2^{n-1} + T(0) + T(n-1)
= \sum_{i=0}^{n-1} 2^i
= 2^n - 1
= O(2^n).
\]
3.4 Optimum BSTs on the HMM2 model

In this section, we consider the problem of constructing and storing an optimum BST on the HMM2 model. Recall that the HMM2 model consists of m1 locations in memory level M1, each of cost c1, and m2 locations in memory level M2, each of cost c2, with c1 < c2.

3.4.1 A dynamic programming algorithm

In this section, we develop a hybrid dynamic programming algorithm to construct an optimum BST. Recall that Algorithm K2 of section 2.1.1 constructs an optimum BST for the uniform-cost RAM model in O(n^2) time. It is an easy observation that the structure of an optimum subtree that fits entirely in one memory level is the same as that of the optimum subtree on the uniform-cost RAM model. Therefore, in an initial phase of our hybrid algorithm, we construct optimum subtrees with at most max(m1, m2) nodes that fit in the largest memory level. In phase II, we construct larger subtrees.

Recall from equation (2.1) that on the uniform-cost RAM model the cost c(i, j) of an optimum BST over the subset of keys from x_i through x_j is given by the recurrence

\[c(i + 1, i) = w_{i+1,i} = q_i \]
\[c(i, j) = w_{i,j} + \min_{i \leq k \leq j} (c(i, k - 1) + c(k + 1, j)) \quad \text{when } i \leq j \]

On the HMM2 model, the cost of an optimum BST T_{i,j}^{*} over the same subset of keys is

\[c(i + 1, i, n_1, n_2) = q_i \]
\[c(i, j, n_1, n_2) = \mu(\phi(x_k)) \cdot w_{i,j} \]
\[+ \min_{0 \leq n_{1}^{(L)} < n_{1}} \left(c(i, k - 1, n_1^{(L)}, n_2^{(L)}) + c(k + 1, j, n_1^{(R)}, n_2^{(R)}) \right) \]

(3.7)

where

- the root x_k is stored in memory location \(\phi(x_k) \) of cost \(\mu(\phi(x_k)) \);
- out of the \(n_1 \) cheap locations available to the subtree, \(n_1^{(L)} \) are given to the left subtree and \(n_1^{(R)} \) are given to the right subtree;
the \(n_2 \) expensive locations available are assigned as \(n_2^{(L)} \) to the left subtree and \(n_2^{(R)} \) to the right subtree;

- if \(n_1 > 0 \), then \(x_k \) is stored in a location of cost \(c_1 \), and \(n_1^{(L)} + n_1^{(R)} = n_1 - 1 \) and \(n_2^{(L)} + n_2^{(R)} = n_2 \);

- otherwise, \(n_1 = 0 \) and \(n_2 = j - i + 1 \), so \(x_k \) is stored in a location of cost \(c_2 \), and the entire subtree is stored in the second memory level; the optimum subtree \(T_{i,j}^* \) is the same as the optimum one on the RAM model constructed during phase I.

The first phase of the algorithm, \textsc{procedure TL-phase-I}, constructs arrays \(C \) and \(R \), where \(C[i,j] \) is the cost of an optimum BST (on the uniform-cost model) over the subset of keys from \(x_i \) through \(x_j \); \(R[i,j] \) is the index of the root of such an optimum BST.

The second phase, \textsc{procedure TL-phase-II}, constructs arrays \(c \) and \(r \), such that \(c[i,j,n_1,n_2] \) is the cost of an optimum BST over the subset of keys from \(x_i \) through \(x_j \) with \(n_1 \) and \(n_2 \) available memory locations of cost \(c_1 \) and \(c_2 \) respectively, and \(n_1 + n_2 = j - i + 1 \); \(r[i,j,n_1,n_2] \) is the index of the root of such an optimum BST.

The structure of the tree can be retrieved in \(O(n) \) time from the array \(r \) at the end of the execution of \textsc{algorithm TwoLevel}.

3.4.1.1 \textsc{algorithm TwoLevel}

\textsc{algorithm TwoLevel} first calls \textsc{procedure TL-phase-I}. Recall that \textsc{procedure TL-phase-I} constructs all subtrees \(T_{i,j} \) that contain few enough nodes to fit entirely in any one level in the memory hierarchy, specifically the largest level. Entries in table \(R[i,j] \) are filled by \textsc{procedure TL-phase-I}.

\textsc{procedure TL-phase-II} computes optimum subtrees where \(n_1 \) and \(n_2 \) are greater than zero. Therefore, prior to invoking \textsc{algorithm TL-phase-II}, \textsc{algorithm TwoLevel} initializes the entries in table \(r[i,j,n_1,n_2] \) when \(n_1 = 0 \) and when \(n_2 = 0 \) from the entries in table \(R[i,j] \).
ALGORITHM TWO LEVEL:
Call procedure TL-PHASE-I (figure 3.5)
If either \(m_1 = 0 \) or \(m_2 = 0 \), then we are done.
Otherwise,
Initialization, for all \(i, j \) such that \(1 \leq i \leq j \leq n \):
\[
\begin{align*}
 r[i, j, 0, j - i + 1] &\leftarrow R[i, j] \\
 r[i, j, j - i + 1, 0] &\leftarrow R[i, j] \\
 c[i, j, 0, j - i + 1] &\leftarrow c_2 \cdot C[i, j] \\
 c[i, j, j - i + 1, 0] &\leftarrow c_1 \cdot C[i, j]
\end{align*}
\]
Call procedure TL-PHASE-II (figure 3.6)

Figure 3.4 ALGORITHM TWO LEVEL

3.4.1.2 Procedure TL-PHASE-I

PROCEDURE TL-PHASE-I is identical to ALGORITHM K2 from section 2.1.1.1 except that the outermost loop involving \(d \) iterates only \(\max\{m_1, m_2\} \) times in PROCEDURE TL-PHASE-I. PROCEDURE TL-PHASE-I computes optimum subtrees in a bottom-up fashion. It fills entries in the tables \(C[i, j] \) and \(R[i, j] \) by diagonals, i.e., in the order of increasing \(d = j - i \). The size of the largest subtree that fits entirely in one memory level is \(\max\{m_1, m_2\} \), corresponding to \(d = \max\{m_1, m_2\} - 1 \).

For every \(i, j \) with \(j - i = d \), TL-PHASE-I computes the cost of a subtree \(T' \) with \(x_k \) at the root for all \(k \), such that \(R[i, j - 1] \leq k \leq R[i + 1, j] \). Note that \((j - 1) - i = j - (i + 1) = d - 1 \); therefore, entries \(R[i, j - 1] \) and \(R[i + 1, j] \) are already available during this iteration of the outermost loop. The optimum choice for the root of this subtree is the value of \(k \) for which the cost of the subtree is minimized.

3.4.1.3 Procedure TL-PHASE-II

PROCEDURE TL-PHASE-II is an implementation of ALGORITHM PARTS in section 3.3.4 for the special case when \(h = 2 \). PROCEDURE TL-PHASE-II also constructs increasingly larger optimum subtrees in an iterative fashion. The additional complexity in this algorithm arises from the fact that for each possible choice of root \(x_k \) of the subtree \(T_{i, j} \), there
PROCEDURE TL-PHASE-I:

(Initialization phase.)

for $i := 0$ to n

$C[i + 1, i] \leftarrow w_{i+1,i} = q_i$

$R[i + 1, i] \leftarrow \text{NIL}$

for $d := 0$ to $\max\{m_1, m_2\} - 1$

for $i := 1$ to $n - d$

$j \leftarrow i + d$

(Number of nodes in this subtree: $j - i + 1 = d + 1$)

$C[i, j] \leftarrow \infty$

$R[i, j] \leftarrow \text{NIL}$

for $k := R[i, j - 1]$ to $R[i + 1, j]$

\[(*) \]

T' is the tree

\[\begin{array}{c}
T[i, k - 1] \\
T[k + 1, j]
\end{array} \]

$C' \leftarrow w_{i,j} + C[i, k - 1] + C[k + 1, j]$

if $C' < C[i, j]$

$R[i, j] \leftarrow k$

$C[i, j] \leftarrow C'$

Figure 3.5 PROCEDURE TL-PHASE-I
are also a number of different ways to partition the available cheap locations between the left and right subtrees of x_k.

There are m_1 cheap locations and m_2 expensive locations available to store the subtree $T_{i,j}$. If $m_1 \geq 1$, then the root x_k is stored in a cheap location. The remaining cheap locations are partitioned into two, with $n_1^{(L)}$ locations assigned to the left subtree and $n_1^{(R)}$ locations assigned to the right subtree. $n_2^{(L)}$ and $n_2^{(R)}$ denote the number of expensive locations available to the left and right subtrees respectively. Since the algorithm constructs optimum subtrees in increasing order of $j - i$, the two table entries $r[i, k - 1, n_1^{(L)}, n_2^{(L)}]$ and $r[k + 1, j, n_1^{(R)}, n_2^{(R)}]$ are already available during the iteration when $j - i = d$ because $(k - 1) - i < d$ and $j - (k + 1) < d$.

3.4.1.4 Correctness of Algorithm TwoLevel

Algorithm TwoLevel calls procedure TL-phase-I and procedure TL-phase-II, which implement dynamic programming to build larger and larger subtrees of minimum cost. The principle of optimality clearly applies to the problem of constructing an optimum tree—every subtree of an optimal tree must also be optimal given the same number of memory locations of each kind. Therefore, Algorithm TwoLevel correctly computes an optimum BST over the entire set of keys.

3.4.1.5 Running time of Algorithm TwoLevel

The running time of Algorithm TwoLevel is proportional to the number of times overall that the lines marked with a star (*) in TL-phase-I and TL-phase-II are executed.

Let $m = \min\{m_1, m_2\}$ be the size of the smaller of the two memory levels. The number of times that the line in algorithm TL-phase-I marked with a star (*) is executed is

$$
\sum_{d=0}^{n-m} \sum_{i=0}^{n-d} (R[i + 1, j] - R[i, j - 1] + 1) = \sum_{d=0}^{n-m} (R[n - d + 1, n + 1] - R[1, d - 1] + n - d) \\
\leq \sum_{d=0}^{n-m} 2n \\
= 2n(n - m + 1) \\
= O(n(n - m)).
$$
Figure 3.6 PROCEDURE TL-PHASE-II
The number of times that the line \((*)\) in procedure TL-PHASE-II is executed is at most
\[
\sum_{d=m}^{n-1} \sum_{n_1=0}^{\min(m_1,d+1)} \sum_{t=1}^{n-d} \sum_{k=t}^{d} m.
\]
A simple calculation shows that the two summations involving \(d\) and \(i\) iterate \(O(n - m)\) times each, the summation over \(n_1\) iterates \(O(n)\) times, and the innermost summation has \(O(n)\) terms, so that the number of times that the starred line is executed is \(O(mn^2(n - m)^2)\).

Therefore, the total running time of algorithm TwoLevel is
\[
T(n, m) = O(n(n - m) + mn^2(n - m)^2) = O(mn^2(n - m)^2).
\] (3.8)
In general, \(T(n, m) = O(n^3)\), but \(T(n, m) = o(n^3)\) if \(m = o(n)\), and \(T(n, m) = O(n^4)\) if \(m = O(1)\), i.e., the smaller level in memory has only a constant number of memory locations. This case would arise in architectures in which the faster memory, such as the primary cache, is limited in size due to practical considerations such as monetary cost and the cost of cache coherence protocols.

3.4.2 Constructing a nearly optimum BST

In this section, we consider the problem of constructing a BST on the HMM\(_2\) model that is close to optimum.

3.4.2.1 An approximation algorithm

The following top-down recursive algorithm, algorithm APPROX-BST of figures 3.7 and 3.8, is due to Mehlhorn [Meh84]. Its analysis is adapted from the same source. The intuition behind algorithm APPROX-BST is to choose the root \(x_k\) of the subtree \(T_{i,j}\) so that the weights \(w_{i,k-1}\) and \(w_{k+1,j}\) of the left and right subtrees are as close to equal as possible. In other words, we choose the key \(x_k\) to be the root such that \(|w_{i,k-1} - w_{k+1,j}|\) is as small as possible. Then, we recursively construct the left and right subtrees.

Once the tree \(\tilde{T}\) has been constructed by the above heuristic, we optimally assign the nodes of \(\tilde{T}\) to memory locations using Lemma 3.3.2 in \(O(n \log n)\) additional time.
Algorithm APPROX-BST implements the above heuristic. The parameter \(l \) represents the depth of the recursion; initially \(l = 0 \), and \(l \) is incremented by one whenever the algorithm recursively calls itself. The parameters \(\text{low}_l \) and \(\text{high}_l \) represent the lower and upper bounds on the range of the probability distribution spanned by the keys \(x_i \) through \(x_j \). Initially, \(\text{low}_l = 0 \) and \(\text{high}_l = 1 \) because the keys \(x_1 \) through \(x_n \) span the entire range \([0, 1]\). Whenever the root \(x_k \) is chosen, according to the above heuristic, to lie in the middle of this range, i.e., \(\text{med}_l = (\text{low}_l + \text{high}_l)/2 \), the span of the keys in the left subtree is bounded by \([\text{low}_l, \text{med}_l]\) and the span of the keys in the right subtree is bounded by \([\text{med}_l, \text{high}_l]\). These are the ranges passed as parameters to the two recursive calls of the algorithm.

Define

\[
\begin{align*}
 s_0 &= \frac{q_0}{2} \\
 s_i &= s_{i-1} + \frac{q_{i-1}}{2} + p_i + \frac{q_i}{2} \quad \text{for } 1 \leq i \leq n
\end{align*}
\]

By definition,

\[
\begin{align*}
 s_i &= \frac{q_0}{2} + \sum_{k=1}^{i} p_k + \sum_{k=1}^{i-1} q_k + \frac{q_i}{2} \\
 &= w_{1,i} - \frac{q_0}{2} - \frac{q_i}{2} \quad \text{(3.10)}
\end{align*}
\]

Therefore,

\[
\begin{align*}
 s_i - s_{i-1} &= w_{1,i} - w_{1,i-1} + \frac{q_{i-1}}{2} - \frac{q_j}{2} \\
 &= w_{i,j} + \frac{q_{i-1}}{2} - \frac{q_j}{2} \quad \text{by definition 1.1} \quad \text{(3.11)}
\end{align*}
\]

In Lemma 3.4.3 below, we show that at each level in the recursion, the input parameters to APPROX-BST() satisfy \(\text{low}_l \leq s_{i-1} \leq s_i \leq \text{high}_l \).

3.4.2.2 Analysis of the running time

We prove that the running time of algorithm APPROX-BST is \(O(n) \). Clearly, the space complexity is also linear.
Algorithm Approx-BST

Approx-BST$(i, j, l, \text{low}_l, \text{high}_l)$:

$\text{med}_l \leftarrow (\text{low}_l + \text{high}_l)/2$;

Case 1: (the base case)

if $i = j$

Return the tree with three nodes consisting of x_i at the root
and the external nodes z_{i-1} and z_i as the left and right subtrees respectively:

```
  x_i
 /   \
|     |
|     |
z_{i-1}     z_i
```

Otherwise, if $i \neq j$, then find k satisfying all the following three conditions:

(i) $l \leq k \leq j$

(ii) either $k = i$, or $k > i$ and $s_{k-1} \leq \text{med}_l$

(iii) either $k = j$, or $k < j$ and $s_k \geq \text{med}_l$

(Lemma 3.4.1 guarantees that such a k always exists.)

(Continued in figure 3.8)
Case 2a:
if $k = i$
Return the tree with x_i at the root, the external node z_{i-1} as the left subtree, and the recursively constructed subtree $T_{i+1,j}$ as the right subtree:

\[
\begin{array}{c}
\text{\textbf{APPROX-BST}(i + 1, j, l + 1, \text{med}_l, \text{high}_l)}
\end{array}
\]

Case 2b:
if $k = j$
Return the tree with x_j at the root, the external node z_j as the right subtree, and the recursively constructed subtree $T_{i,j-1}$ as the left subtree:

\[
\begin{array}{c}
\text{\textbf{APPROX-BST}(i, j - 1, l + 1, \text{low}_l, \text{med}_l)}
\end{array}
\]

Case 2c:
if $i < k < j$
Return the tree with x_k at the root, and recursively construct the left and right subtrees, $T_{i,k-1}$ and $T_{k+1,j}$ respectively:
- call \textbf{APPROX-BST}(i, k - 1, l + 1, low$_l$, med$_l$) recursively to construct the left subtree.
- call \textbf{APPROX-BST}(k + 1, j, l + 1, med$_l$, high$_l$) recursively to construct the right subtree.
The running time \(t(n) \) of algorithm \textsc{Approx-Bst} can be expressed by the recurrence

\[
 t(n) = s(n) + \max_{1 \leq k \leq n} [t(k - 1) + t(n - k)]
\]

(3.12)

where \(s(n) \) is the time to compute the index \(k \) satisfying conditions (i), (ii), and (iii) given in the algorithm, and \(t(k - 1) \) and \(t(n - k) \) are the times for the two recursive calls.

We can implement the search for \(k \) as a binary search. Initially, choose \(r = [(i + j)/2] \). If \(s_r \geq \text{med}_i \), then \(k \leq r \), otherwise \(k \geq r \), and we proceed recursively. Since this binary search takes \(O(\log(j - i)) = O(\log n) \) time, the overall running time of algorithm \textsc{Approx-Bst} is

\[
 t(n) = O(\log n) + \max_{1 \leq k \leq n} [t(k - 1) + t(n - k)]
\]

\[
 \leq O(\log n) + t(0) + t(n - 1)
\]

\[
 = O(n \log n).
\]

However, if we use exponential search and then binary search to determine the value of \(k \), then the overall running time can be reduced to \(O(n) \) as follows. Intuitively, an exponential search followed by a binary search finds the correct value of \(k \) in \(O(\log(k - i)) \) time instead of \(O(\log(j - i)) \) time.

Initially, choose \(r = [(i + j)/2] \). Now, if \(s_r \geq \text{med}_i \) we know \(k \leq r \), otherwise \(k > r \).

Consider the case when \(k \in \{i, i + 1, i + 2, \ldots, r = [(i + j)/2] \} \). An exponential search for \(k \) in this interval proceeds by trying all values of \(k \) from \(i, i + 2^0, i + 2^1, i + 2^2 \), and so on up to \(i + 2^{|\log(r - i)|} \) \(\geq r \). Let \(g \) be the smallest integer such that \(s_{i + 2^g} \geq \text{med}_i \), i.e., \(i + 2^{g-1} < k \leq i + 2^g \), or \(2^g \geq k - i > 2^{g-1} \). Hence, \(\log(k - i) > g - 1 \), so that the number of comparisons made by this exponential search is \(g < 1 + \log(k - i) \). Now, we determine the exact value of \(k \) by a binary search on the interval \(i + 2^{g - 1} + 1 \) through \(i + 2^g \), which takes \(\log(2^g - 2^{g - 1}) + 1 < g + 1 < \log(k - i) + 2 \) comparisons.

Likewise, when \(k \in \{r + 1, r + 2, \ldots, j \} \), a search for \(k \) in this interval using exponential and then binary search takes \(\log(j - k) + 2 \) comparisons.

Therefore, the time \(s(n) \) taken to determine the value of \(k \) is at most \(d(2 + \log(\min\{k - i, j - k\})) \), where \(d \) is a constant.

Hence, the running time of algorithm \textsc{Approx-Bst} is proportional to

\[
 t(n) = \max_{1 \leq k \leq n} (t(k - 1) + t(n - k) + d(2 + \log(\min\{k, n - k\}) + f))
\]
where f is a constant. By the symmetry of the expression $t(k - 1) + t(n - k)$, we have

$$t(n) \leq \max_{1 \leq k \leq \lfloor n/2 \rfloor} (t(k - 1) + t(n - k) + d(2 + \lg k) + f). \quad (3.13)$$

We prove that $t(n) \leq (3d + f)n - d \lg(n + 1)$ by induction on n. This is clearly true for $n = 0$. Applying the induction hypothesis in the recurrence in equation (3.13), we have

$$t(n) \leq \max_{1 \leq k \leq \lfloor n/2 \rfloor} (3d + f)(k - 1) - d \lg k + (3d + f)(n - k)$$
$$- d \lg(n - k + 1) + d(2 + \lg k) + f)$$
$$= (3d + f)(n - 1) + \max_{1 \leq k \leq \lfloor n/2 \rfloor} (-d \lg(n - k + 1) + 2d + f)$$
$$= (3d + f)n + \max_{1 \leq k \leq \lfloor n/2 \rfloor} (-d \lg(n - k + 1) - d).$$

The expression $-d(1 + \lg(n - k + 1))$ is always negative and its value is maximum in the range $1 \leq k \leq (n + 1)/2$ at $k = (n + 1)/2$. Therefore,

$$t(n) \leq (3d + f)n - d(1 + \lg((n + 1)/2))$$
$$= (3d + f)n - d \lg(n + 1).$$

Hence, the running time of algorithm APPROX-BST is $O(t(n)) = O(n)$.

Of course, if we choose to construct an optimal memory assignment for \tilde{T}, then the total running time is $O(n + n \log n) = O(n \log n)$.

3.4.2.3 Quality of approximation

Let \tilde{T} denote the binary search tree constructed by algorithm APPROX-BST. In the rest of this section, we prove an upper bound on how much the cost of \tilde{T} is worse than the cost of an optimum BST. The following analysis applies whether we choose to construct an optimal memory assignment or to use the heuristic of algorithm APPROX-BST.

We now derive an upper bound on the cost of the tree, \tilde{T}, constructed by algorithm APPROX-BST.

Let $\delta(x_i)$ denote the depth of the internal node x_i, $1 \leq i \leq n$, and let $\delta(z_j)$ denote the depth of the external node z_j, $0 \leq j \leq n$ in \tilde{T} (Recall that the depth of a node is the number of nodes on the path from the root to that node; the depth of the root is 1.)
Lemma 3.4.1. If the parameters \(i, j, \) low, and high to APPROX-BST() satisfy

\[\text{low}_i \leq s_{i-1} \leq s_j \leq \text{high}_i, \]

then a \(k \) satisfying conditions (i), (ii), and (iii) stated in the algorithm always exists.

Proof: If \(s_i \geq \text{med}_i \), then choosing \(k = i \) satisfies conditions (i), (ii), and (iii). Likewise, if \(s_{j-1} \leq \text{med}_i \), then \(k = j \) satisfies all the conditions. Otherwise, if \(s_i < \text{med}_i < s_{j-1} \), then since \(s_i \leq s_{i+1} \leq \cdots \leq s_{j-1} \leq s_j \), consider the first \(k \), with \(k > i \), such that \(s_{k-1} \leq \text{med}_i \) and \(s_k \geq \text{med}_i \). Then \(k < j \) and \(s_k \geq \text{med}_i \), and this value of \(k \) satisfies all three conditions. \(\square \)

Lemma 3.4.2. The parameters of a call to APPROX-BST satisfy

\[\text{high}_l = \text{low}_l + 2^{-l}. \]

Proof: The proof is by induction on \(l \). The initial call to APPROX-BST with \(l = 0 \) has \(\text{low}_0 = 0 \) and \(\text{high}_0 = 1 \). Whenever the algorithm recursively constructs the left subtree \(T_{i,k-1} \) in cases 2b and 2c, we have \(\text{low}_{l+1} = \text{low}_l \) and \(\text{high}_{l+1} = \text{med}_l = (\text{low}_l + \text{high}_l)/2 = (2\text{low}_l + 2^{-l})/2 = \text{low}_l + 2^{-l-1} = \text{low}_{l+1} + 2^{-(l+1)} \). On the other hand, whenever the algorithm recursively constructs the right subtree \(T_{k+1,j} \), in cases 2a and 2c, we have \(\text{high}_{l+1} = \text{high}_l \) and \(\text{low}_{l+1} = \text{med}_l = \text{high}_{l+1} - 2^{-(l+1)} \). \(\square \)

Lemma 3.4.3. The parameters of a call APPROX-BST\((i,j,l,\text{low},\text{high})\) satisfy

\[\text{low}_l \leq s_{l-1} \leq s_j \leq \text{high}_l. \]

Proof: The initial call is APPROX-BST\((1, n, 1, 0, 1)\). Therefore, \(s_{l-1} = a_0 \geq 0 \) and \(s_j = s_n = 1 - q_0/2 - q_n/2 \leq 1 \). Thus, the parameters to the initial call to APPROX-BST() satisfy the given condition.

The rest of the proof follows by induction on \(l \). In case 2a, the algorithm chooses \(k = i \) because \(s_i \geq \text{med}_i \), and recursively constructs the right subtree over the subset of keys from \(x_{i+1} \) through \(x_j \). Therefore, we have \(\text{low}_{l+1} = \text{med}_l \leq s_i \leq s_j \leq \text{high}_l = \text{high}_{l+1} \).

In case 2b, the algorithm chooses \(k = j \) because \(s_{j-1} \leq \text{med}_i \), and then recursively constructs the left subtree over the subset of keys from \(x_i \) through \(x_{j-1} \). Therefore, we have \(\text{low}_{l+1} = \text{low}_l \leq s_{l-1} \leq s_{j-1} \leq \text{med}_l = \text{high}_{l+1} \).
In case 2c, Algorithm APPROX-BST chooses k such that $s_{k-1} \leq \text{med}_l \leq s_k$ and $i < k < j$. Therefore, during the recursive call to construct the left subtree over the subset of keys from x_i through x_{k-1}, we have $\text{low}_{l+1} = \text{low}_l \leq s_{l-1} \leq s_{k-1} \leq \text{med}_l = \text{high}_{l+1}$. During the recursive call to construct the right subtree over the subset of keys from x_{k+1} through x_j, we have $\text{low}_{l+1} = \text{med}_l \leq s_k \leq s_j \leq \text{high}_l = \text{high}_{l+1}$. □

Lemma 3.4.4. During a call to APPROX-BST with parameter l, if an internal node x_k is created, then $\delta(x_k) = l + 1$, and if an external node z_k is created, then $\delta(z_k) = l + 2$.

Proof: The proof is by a simple induction on l. The root, at depth 1, is created when $l = 0$. The recursive calls to construct the left and right subtrees are made with the parameter l incremented by 1. The depth of the external node created in cases 2a and 2b is one more than the depth of its parent, and therefore equal to $l + 2$. □

Lemma 3.4.5. For every internal node x_k such that $1 \leq k \leq n$,

$$p_k \leq 2^{-\delta(x_k)+1}$$

and for every external node z_k such that $0 \leq k \leq n$,

$$q_k \leq 2^{-\delta(z_k)+2}.$$

Proof: Let the internal node x_k be created during a call to APPROX-BST$(i, j, \text{low}_l, \text{high}_l)$. Then,

$$s_j - s_{i-1} \leq \text{high}_l - \text{low}_l$$

by Lemma 3.4.3

$$= 2^{-l}$$

by Lemma 3.4.2

$$s_j - s_{i-1} = w_{1,j} - \frac{q_j}{2} - w_{1,i-1} + \frac{q_{i-1}}{2}$$

by definition of s_{i-1} and s_j

$$\geq p_k$$

because $i \leq k \leq j$.

Therefore, by Lemmas 3.4.3 and 3.4.2, for the internal node x_k ($i \leq k \leq j$) with probability p_k, we have $p_k \leq s_j - s_{i-1} \leq 2^{-l} = 2^{-\delta(x_k)+1}$ by Lemma 3.4.4.
Likewise, for the external node z_k ($i - 1 \leq k \leq j$) with corresponding probability of access q_k, we have

$$s_j - s_{i-1} = \sum_{r=i}^{j} p_r + \sum_{r=i-1}^{j-1} q_r + \frac{q_j}{2} - \frac{q_{i-1}}{2} \quad \text{by definition 3.10}$$

$$= \sum_{r=i}^{j} p_r + \frac{q_{i-1}}{2} + \sum_{r=i}^{j-1} q_r + \frac{q_j}{2}$$

Therefore, since $i - 1 \leq k \leq j$, we have

$$q_k \leq 2(s_j - s_{i-1})$$

$$\leq 2(\text{high}_i - \text{low}_i) \quad \text{by Lemma 3.4.3}$$

$$= 2^{-t+1} \quad \text{by Lemma 3.4.2}$$

$$= 2^{-\delta(z_k)+2} \quad \text{by Lemma 3.4.4.}$$

\[\square\]

Lemma 3.4.6. For every internal node x_k such that $1 \leq k \leq n$,

$$\delta(x_k) \leq \left\lfloor \log \left(\frac{1}{p_k} \right) \right\rfloor + 1$$

and for every external node z_k such that $0 \leq k \leq n$,

$$\delta(z_k) \leq \left\lfloor \log \left(\frac{1}{q_k} \right) \right\rfloor + 2.$$

Proof: Lemma 3.4.5 shows that $p_k \leq 2^{-\delta(x_k)+1}$. Taking logarithms of both sides to the base 2, we have $\log p_k \leq -\delta(x_k) + 1$; therefore, $\delta(x_k) \leq -\log p_k + 1 = \log(1/p_k) + 1$. Since the depth of x_k is an integer, we conclude that $\delta(x_k) \leq \lfloor \log(1/p_k) \rfloor + 1$. Likewise, for external node z_k, $\delta(z_k) \leq \lfloor \log(1/q_k) \rfloor + 2$. \[\square\]

Now we derive an upper bound on $\text{cost}(\tilde{T})$. Let H denote the entropy of the probability distribution $q_0, p_1, q_1, \ldots, p_n, q_n$ [CT91], i.e.,

$$H = \sum_{i=1}^{n} p_i \log \frac{1}{p_i} + \sum_{j=0}^{n} q_j \log \frac{1}{q_j}.$$ \hspace{1cm} (3.14)
If all the internal nodes of \(\tilde{T} \) were stored in the expensive locations, then the cost of \(\tilde{T} \) would be at most
\[
\sum_{i=1}^{n} c_2 p_i \delta(x_i) + \sum_{j=0}^{n} c_2 q_j (\delta(z_j) - 1)
\]
\[
\leq c_2 \left(\sum_{i=1}^{n} p_i \left(\lg \frac{1}{p_i} + 1 \right) + \sum_{j=0}^{n} q_j \left(\lg \frac{1}{q_j} + 1 \right) \right)
\]
by Lemma 3.4.6
\[
= c_2 \left(\left(\sum_{i=1}^{n} p_i \lg \frac{1}{p_i} + \sum_{j=0}^{n} q_j \lg \frac{1}{q_j} \right) + \left(\sum_{i=1}^{n} p_i + \sum_{j=0}^{n} q_j \right) \right)
\]
\[
= c_2 (H + 1)
\]
by definition 3.14 and because \(\sum_{i=1}^{n} p_i + \sum_{j=0}^{n} q_j = 1. \) \hfill (3.15)

3.4.2.4 Lower bounds

The following lower bounds are known for the cost of an optimum binary search tree \(T^* \) on the standard uniform-cost RAM model.

Theorem 3.4.7 (Mehlhorn [Meh75]).
\[
\text{cost}(T^*) \geq \frac{H}{\lg 3}
\]

Theorem 3.4.8 (De Prisco, De Santis [dPdS96]).
\[
\text{cost}(T^*) \geq H - 1 - \left(\sum_{i=1}^{n} p_i \right) \left(\lg \lg (n + 1) - 1 \right).
\]

Theorem 3.4.9 (De Prisco, De Santis [dPdS96]).
\[
\text{cost}(T^*) \geq H + H \lg H - (H + 1) \lg (H + 1).
\]

The lower bounds of Theorems 3.4.7 and 3.4.9 are expressed only in terms of \(H \), the entropy of the probability distribution. The smaller the entropy, the tighter the bound of Theorem 3.4.7. Theorem 3.4.9 improves on Mehlhorn’s lower bound for \(H \gtrsim 15 \). Theorem 3.4.8 assumes knowledge of \(n \), and proves a lower bound better than that of Theorem 3.4.7 for large enough values of \(H \).
3.4.2.5 Approximation bound

Corollary 3.4.10. The algorithm APPROX-BST constructs the tree \tilde{T} such that

$$\text{cost}(\tilde{T}) - \text{cost}(T^*) \leq (c_2 - c_1)H + c_1((H + 1)\lg(H + 1) - H\lg H) + c_2.\]

Proof: Theorem 3.4.9 immediately implies a lower bound of $c_1(H + H\lg H - (H + 1)\lg(H + 1))$ on the cost of T^*. The result then follows from equation (3.15). □

For large enough values of H, $H + 1 \approx H$ so that $\lg(H + 1) \approx \lg H$; hence, $(H + 1)\lg(H + 1) - H\lg H \approx \lg H$. Thus, we have

$$\text{cost}(\tilde{T}) - \text{cost}(T^*) \lesssim (c_2 - c_1)H + c_1(\lg H). \quad (3.16)$$

When $c_1 = c_2 = 1$ as in the uniform-cost RAM model, equation (3.16) is the same as the approximation bound obtained by Mehlhorn [Meh84].

58
CHAPTER 4

Conclusions and Open Problems

4.1 Conclusions

The table of figure 4.1 summarizes our results for the problem of constructing an optimum binary search tree over a set of \(n \) keys and the corresponding probabilities of access, on the general HMM model with an arbitrary number of levels in the memory hierarchy and on the two-level HMM\(_2\) model. Recall that \(h \) is the number of memory levels, and \(m_l \) is the number of memory locations in level \(l \) for \(1 \leq l \leq h \).

We see from table 4.1 that algorithm \textsc{Parts} is efficient when \(h \) is a small constant. The running time of algorithm \textsc{Parts} is independent of the sizes of the different memory levels. On the other hand, the running time of algorithm \textsc{Trunks} is polynomial in \(n \) precisely when \(n - m_h = \sum_{l=1}^{h-1} m_l \) is a constant, even if \(h \) is large. Therefore, for instance, algorithm \textsc{Parts} would be appropriate for a three-level memory hierarchy, where the binary search tree has to be stored in cache, main memory, and on disk. Algorithm \textsc{Trunks} would be more efficient when the memory hierarchy consists of many levels and the last memory level is extremely large. This is because algorithm \textsc{Trunks} uses the speed-up technique due to Knuth [Knuth71, Knuth73] and Yao [Yao82] to take advantage of the fact that large subtrees of the BST will in fact be stored entirely in the last memory level.

When \(h \) is large and \(n - m_h \) is not a constant, the relatively simple top-down algorithm, algorithm \textsc{Split}, is the most efficient. In particular, when \(h = \Omega(n / \log n) \), it is faster than algorithm \textsc{Parts}.

59
<table>
<thead>
<tr>
<th>Model</th>
<th>Algorithm</th>
<th>Section</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>ALGORITHM PARTS</td>
<td>3.3.4</td>
<td>$O\left(\frac{2^{n-1}}{(n-1)!} \cdot n^{2h+1}\right)$</td>
</tr>
<tr>
<td>HMM</td>
<td>ALGORITHM TRUNKS</td>
<td>3.3.5</td>
<td>$O(2^{n-m_h} \cdot (n - m_h + h)^{n-m_h} \cdot n^3/(h - 2)!)$</td>
</tr>
<tr>
<td>HMM</td>
<td>ALGORITHM SPLIT</td>
<td>3.3.6</td>
<td>$O(2^n)$</td>
</tr>
<tr>
<td>HMM$_2$</td>
<td>ALGORITHM TWOLEVEL</td>
<td>3.4.1</td>
<td>$O(mn^2(n - m)^2)$</td>
</tr>
</tbody>
</table>

Figure 4.1 Summary of results

For the HMM$_2$ model, we have the hybrid algorithm, ALGORITHM TWOLEVEL, with running time $O(n(n - m) + mn^2(n - m)^2)$, where $m = \min\{m_1, m_2\}$ is the size of the smaller of the two memory levels ($m \leq n/2$). Procedure TL-PHASE-II of ALGORITHM TWOLEVEL is an implementation of ALGORITHM PARTS for a special case. The running time of ALGORITHM TWOLEVEL is $O(n^5)$ in the worst case, the same as the worst-case running time of ALGORITHM PARTS for $h = 2$. However, if $m = o(n)$, then ALGORITHM TWOLEVEL outperforms ALGORITHM PARTS; in particular, if $m = \Theta(1)$, then the running time of ALGORITHM TWOLEVEL is $O(n^4)$.

None of our algorithms depend on the actual costs of accessing a memory location in different levels. We state as an open problem below whether it is possible to take advantage of knowledge of the relative costs of memory accesses to design a more efficient algorithm for constructing optimum BSTs.

For the problem of approximating an optimum BST on the HMM$_2$ model, we have a linear-time algorithm, ALGORITHM APPROX-BST of section 3.4.2, that constructs the tree \tilde{T} such that

$$\text{cost}(\tilde{T}) - \text{cost}(T^*) \leq (c_2 - c_1)H + c_1((H + 1)\lg(H + 1) - H\lg H) + c_2$$

where $\text{cost}(T^*)$ is the cost of an optimum BST.
4.2 Open problems

4.2.1 Efficient heuristics

We noted above that our algorithms do not assume any relationship between the costs c_l of accessing a memory location in level l, $1 \leq l \leq h$. It should be possible to design an algorithm, more efficient than any of the algorithms in this thesis, that takes advantage of knowledge of the memory costs to construct an optimum binary search tree. The memory cost function $\mu(a) = \Theta(\log a)$ would be especially interesting in this context.

4.2.2 NP-hardness

Conjecture 1. The problem of constructing a BST of minimum cost on the HMM with $h = \Omega(n)$ levels in the memory hierarchy is NP-hard.

The dynamic programming algorithm, **Algorithm Parts**, of section 3.3.4 runs in time $O(n^{h+2})$, which is efficient only if $h = \Theta(1)$. We conjecture that when $h = \Omega(n)$, the extra complexity of the number of different ways to store the keys in memory, in addition to computing the structure of an optimum BST, makes the problem hard.

4.2.3 An algorithm efficient on the HMM

Although we are interested in the problem of constructing a BST and storing it in memory such that the cost on the HMM is minimized, we analyze the running times of our algorithms on the RAM model. It would be interesting to analyze the pattern of memory accesses made by the algorithms to compute an optimum BST, and optimize the running time of each of the algorithms when run on the HMM model.

4.2.4 BSTs optimum on both the RAM and the HMM

When is the structure of the optimum BST the same on the HMM as on the RAM model? In other words, is it possible to characterize when the minimum-cost tree is the one that is optimum when the memory configuration is uniform?
Figure 4.2 An optimum BST on the unit-cost RAM model.

The following small example demonstrates that, in general, the structure of an optimum tree on the uniform-cost RAM model can be very different from the structure of an optimum tree on the HMM. To discover this example, we used a computer program to perform an exhaustive search.

Consider an instance of the problem of constructing an optimum BST on the HMM$_2$ model, with $n = 3$ keys. The number of times p_i that the i-th key x_i is accessed, for $1 \leq i \leq 3$, and the number of times q_j that the search argument lies between x_j and x_{j+1}, for $0 \leq j \leq 3$, are:

$$p_i = (98, 72, 95)$$
$$q_j = (49, 20, 22, 84)$$

The p_i's and q_j's are the frequencies of access. They are not normalized to add up to 1, but such a transformation could easily be made without changing the optimum solution.

In this instance of the HMM model, there is one memory location each whose cost is in $\{4, 12, 14, 44, 66, 76, 82\}$. The optimum BST on the RAM model is shown in figure 4.2. Its cost on the RAM model with each location of unit cost is 983, while the cost of the same tree on this instance of the HMM model is 16,752.

On the other hand, the BST over the same set of keys and frequencies that is optimum on this instance of the HMM model is shown in figure 4.3. Its cost on the unit-cost RAM
Figure 4.3 An optimum BST on the HMM model.

model is 990 and on the above instance of the HMM model is 16,730. In figure 4.3, the nodes of the tree are labeled with the frequency of the corresponding key, and the cost of the memory location where the node is stored in square brackets.

4.2.5 A monotonicity principle

The dynamic programming algorithms, Algorithm Parts of section 3.3.4 and Algorithm TwoLevel of section 3.4.1, iterate through the large number of possible ways of partitioning the available memory locations between left and right subtrees. It would be interesting to discover a monotonicity principle, similar to the concave quadrangle inequality, which would reduce the number of different options tried by the algorithms.

For the problem of constructing an optimum BST on the HMM₂ model with only two different memory costs, we were able to disprove the following conjectures by giving counter-examples:

Conjecture 2 (Disproved). If x_k is the root of an optimum subtree over the subset of keys x_l through x_j in which m cheap locations are assigned to the left subtree, then the root
of an optimum subtree over the same subset of keys in which \(m + 1 \) cheap locations are assigned to the left subtree must have index no smaller than \(k \).

Counter-example: Consider an instance of the problem of constructing an optimum BST on the HMM2 model, with \(n = 7 \) keys. In this instance, there are \(m_1 = 5 \) cheap memory locations such that a single access to a cheap location costs \(c_1 = 5 \), and \(m_2 = 10 \) expensive locations such that a single access to an expensive location has cost \(c_2 = 15 \). The number of times \(p_i \) that the \(i \)-th key \(x_i \) is accessed, for \(1 \leq i \leq 7 \), and the number of times \(q_j \) that the search argument lies between \(x_j \) and \(x_{j+1} \), for \(0 \leq j \leq 7 \), are:

\[
 p_i = (2, 2, 10, 4, 9, 5)
\]
\[
 q_j = (6, 6, 7, 4, 1, 1, 9, 6)
\]

The \(p_i \)'s and \(q_j \)'s are the frequencies of access; they could easily be normalized to add up to 1.

An exhaustive search shows that the optimum BST with \(n_1^{(L)} = 0 \) cheap locations assigned to the left subtree (and therefore, 4 cheap locations assigned to the right subtree), with total cost 1,890, has \(x_3 \) at the root. The optimum BST with \(n_1^{(L)} = 1 \) cheap locations assigned to the left subtree (and 3 cheap locations assigned to the right subtree), with total cost 1,770, has \(x_2 \) at the root. This example disproves conjecture 2.

Conjecture 3 (Disproved). *If \(x_k \) is the root of an optimum subtree over the subset of keys \(x_i \) through \(x_j \) in which \(m \) cheap locations are assigned to the left subtree, then in the optimum subtree over the same subset of keys but with \(x_{k+1} \) at the root, the left subtree must have assigned no fewer than \(m \) cheap locations.*

Counter-example: Consider an instance of the problem again with \(n = 7 \) keys. In this instance, there are \(m_1 = 5 \) cheap memory locations such that a single access to a cheap location costs \(c_1 = 9 \), and \(m_2 = 10 \) expensive locations such that a single access to an expensive location has cost \(c_2 = 27 \). The number of times \(p_i \) that the \(i \)-th key \(x_i \) is accessed, for \(1 \leq i \leq 7 \), and the number of times \(q_j \) that the search argument lies between \(x_j \) and \(x_{j+1} \), for \(0 \leq j \leq 7 \), are:

\[
 p_i = (7, 3, 9, 3, 3, 6, 3)
\]
\[
 q_j = (4, 9, 4, 5, 7, 5, 9)
\]
As a result of an exhaustive search, we see that the optimum BST with \(x_4 \) at the root, with total cost 3,969, has 3 cheap locations assigned to the left subtree, and 1 cheap location assigned to the right subtree. However, the optimum BST with \(x_5 \) at the root, with total cost 4,068, has only 2 cheap locations assigned to the left subtree, and 2 cheap locations assigned to the right subtree. This example disproves conjecture 3.

Conjecture 4 (Disproved). [Conjecture of unimodality] The cost of an optimum BST with a fixed root \(x_k \) is a unimodal function of the number of cheap locations assigned to the left subtree.

Conjecture 4 would imply that we could substantially improve the running time of **Algorithm Parts** of section 3.3.4. The \(h - 1 \) innermost loops of **Algorithm Parts** each perform a linear search for the optimum way to partition the available memory locations from each level between the left and right subtrees. If the conjecture were true, we could perform a discrete unimodal search instead and reduce the overall running time to \(O((\log n)^{h-1} \cdot n^3) \).

Counter-example: A counter-example to conjecture 4 is the binary search tree over \(n = 15 \) keys, where the frequencies of access are:

\[
p_l = \langle 2, 2, 9, 2, 1, 4, 10, 9, 9, 7, 5, 6, 9, 8, 10 \rangle
\]

\[
q_l = \langle 1, 8, 8, 1, 3, 4, 6, 6, 6, 3, 3, 10, 8, 3, 4, 3 \rangle
\]

The instance of the HMM model has \(m_1 = 7 \) cheap memory locations of cost \(c_1 = 7 \) and \(m_2 = 24 \) expensive locations of cost \(c_2 = 16 \). Through an exhaustive search, we determined that the cost of an optimum binary search tree with \(x_8 \) at the root exhibits the behavior shown in the graph of figure 4.4 as the number \(n_1^{(L)} \) of cheap locations assigned to the left subtree varies from 0 through 6. (As the root, \(x_8 \) is always assigned to a cheap location.)

The graph of figure 4.4 plots the costs of the optimum left and right subtrees of the root and their sum, as the number of cheap locations assigned to the left subtree increases, or equivalently, as the number of cheap locations assigned to the right subtree decreases. (Note that the total cost of the BST is only a constant more than the sum of the costs of the left and right subtrees since the root is fixed.) We see from the graph that the cost of
Figure 4.4 The cost of an optimum BST is not a unimodal function.

an optimum BST with \(n_1^{(L)} = 4 \) is greater than that for \(n_1^{(L)} = 3 \) and \(n_1^{(L)} = 5 \); thus, the cost is not a unimodal function of \(n_1^{(L)} \).

4.2.6 Dependence on the parameter \(h \)

Downey and Fellows [DF99] define a class of parameterized problems, called fixed-parameter tractable (FPT).

Definition 1 (Downey, Fellows [DF99]). A parameterized problem \(L \subseteq \Sigma^* \times \Sigma^* \) is fixed-parameter tractable if there is an algorithm that correctly decides for input \((x, y) \in \Sigma^* \times \Sigma^* \), whether \((x, y) \in L \) in time \(f(k)n^\alpha \), where \(n \) is the size of the main part of the input \(x \), \(|x| = n \), \(k \) is the integer parameter which is the length of \(y \), \(|y| = k \), \(\alpha \) is a constant independent of \(k \), and \(f \) is an arbitrary function.

The best algorithm we have for the general problem, i.e., for arbitrary \(h \), is ALGORITHM PARTS of section 3.3.4, which runs in time \(O(n^{h+2}) \). Consider the case where all \(h \) levels in the memory hierarchy have roughly the same number of locations, i.e., \(m_1 = m_2 = \ldots = m_{h-1} = \lfloor n/h \rfloor \) and \(m_h = \lceil n/h \rceil \). If the number of levels \(h \) is a parameter to the problem, it remains open whether this problem is (strongly uniformly) fixed-parameter tractable—is
there an algorithm to construct an optimum BST that runs in time $O(f(h)n^\alpha)$ where α is a constant independent of both h and n? For instance, is there an algorithm with running time $O(2^hn^\alpha)$? Recall that we have a top-down algorithm (algorithm SPLIT of section 3.3.6) that runs in time $O(2^n)$ for the case $h = n$. A positive answer to this question would imply that it is feasible to construct optimum BSTs over a large set of keys for a larger range of values of h, in particular, even when $h = O(\log n)$.
References

