IO-Efficient Point Location and Map Overlay in Low-Density Subdivisions

Shripad Thite sthite@win.tue.nl

Department of Computer Science
Technische Universiteit Eindhoven
The Netherlands

Joint work with
Mark de Berg, Herman Haverkort, and Laura Toma

19-Feb-2007 @ Århus Universitet
Point location

- Map = polygonal subdivision of the plane

- Given a point in the plane, identified by its coordinates, find the region of the map that contains the point
Map overlay

- Combine various attributes of data from different maps or map layers to compute the interaction of these attributes.

- Given two polygonal subdivisions of the plane, red and blue, compute all intersections between a red edge and a blue edge.
Geographic Information System (GIS)

- A GIS is a spatial database with algorithms for managing, analyzing, and displaying geographic information.

- Applications with tremendous environmental, social, and economic impact—infrastructure planning, social engineering, facility location, agriculture.

- Require algorithms for fundamental problems well-studied in Computational Geometry—adjacency, containment, proximity . . .

 . . . with a twist—geographic data is huge!
Geometric algorithms for GIS

- Conventional analysis of algorithms accounts for worst-case behavior, often for inputs that do not occur in practice.
- Complex algorithms are too hard to implement and make little impact on applications.
- Simplifying assumptions about the computational model are not valid or hold only approximately.

Goal: Design theoretically efficient practical algorithms accompanied by an analysis of the algorithm complexity on a refined model of computation for realistic inputs.
Massive data

- Practical inputs have gigabytes and terabytes of data
- We need algorithms whose performance scales well for increasingly large input data sets encountered in practice
- Traditional algorithms suffer from poor memory usage
- Poor cache behavior causes thrashing where excessive time is spent transferring data in and out of memory cache
External-memory algorithms

- The cost of data transfer significantly influences the real cost of an algorithm, often dominating CPU operations.

- External-memory algorithms seek to minimize data transfer, by utilizing *locality of reference*.

Goal: Develop external-memory algorithms and data structures for geometric problems, where it is often harder to exploit locality.
External-memory model

- Model of computation where memory is organized in two levels—internal and external memory [Aggarwal & Vitter]

- CPU operations can take place only on data in internal memory, which is limited in size to M words

- External memory is large enough for input, working space, and output

IO-Efficient Point Location and Map Overlay / Shripad Thite
External-memory model

- Both internal and external memory organized in blocks of B words each
- One input/output operation (one IO) transfers one block of B words between internal and external memory
- The IO-cost of an algorithm is the number of IO-operations it performs
- IO-complexity accurately models cost of data transfer between disk and main memory, as a function of memory architecture parameters B and M
External-memory algorithms

- Designed to minimize Input/Output (IO) operations between slow but large external memory and fast but small internal memory.

- Each IO operation reads or writes B words stored in a block; internal memory of size M holds M/B blocks.

- Two-level memory model introduced by Aggarwal and Vitter has become a popular design and analysis tool.

- Lots of IO-efficient algorithms developed and proved useful in practice.
Remember ...

- **Map** = polygonal subdivision of the plane

- **Point location**: Given a point in the plane, identified by its coordinates, find the region of the map that contains the point

- **Map overlay**: Given two polygonal subdivisions of the plane, red and blue, compute all intersections between a red edge and a blue edge
Previous work

- **External-Memory Algorithms for Processing Line Segments in Geographic Information Systems**
 - Arge, Vengroff, and Vitter; ESA’95
 - overlay two maps in $O(sort(n) + t/B)$ optimal IOs where $t =$ number of intersections
 - batched point location in $O((n + k)/B \log_{M/B} (n/B))$ IOs, where $k =$ number of query points
 - using $\Theta(n \log_{M/B} (n/B))$ blocks of storage

- We improve on space usage as well as query time, for low-density maps, *at the expense of $O(sort(n))$ pre-processing*; our algorithms are simpler to implement
Challenges

- Creating a *linear* size index supporting queries in logarithmic time

 usual hierarchical decompositions support $O(\log n)$ query time but using $O(n \log n)$ space

- Support efficient batched queries on the index

 to answer k queries presented in a batch more efficiently than k individual queries

- Can we overlay two maps in $O(\text{scan}(n))$ IOs?

 Existing solutions too complicated and/or not IO-optimal
Quadtree
Z-curve

- Space-filling curve visits points in order of their Z-index (a.k.a. Morton block index)

bit-interleaved order
Quadtree meets Z-curve

- Z-curve visits every quadtree cell in a contiguous interval
- The leaves of a quadtree define a subdivision of the Z-curve
- Two quadtree cells are either disjoint or nested
- Z-intervals of two quadtree cells are either disjoint or nested
Example
I. Fat Triangulations
Fat triangulation

- A δ-fat triangulation is one whose minimum angle is at least $\delta > 0$

- Our input is a triangulation with fatness δ

- We assume $B = \Omega(1/\delta)$ and $M = \Omega(1/\delta^3)$
Linear quadtree

- Our data structure is a *linear* quadtree:
 - a linear quadtree stores only leaves (no pointers)
 - internal nodes are represented implicitly and can be computed as required

- We store quadtree leaves in Z-order
Linear quadtree

- Recursively partition the bounding box into four quadrants

![Diagram of quadtree partitioning]

- Novel stopping condition:

 \[\text{Stop splitting a quadtree cell when all edges intersecting the cell are incident on a common vertex}\]

- **Lemma**: Quadtree contains \(O(n/\delta^2)\) cells, each cell intersected by at most \(2\pi/\delta\) triangles; total number of triangle-cell intersections is \(O(n/\delta^2)\).
Building local quadtrees

- Top-down recursive algorithm to build quadtree not IO-efficient

 quadtree may have depth $\Theta(n)$, hence IO-cost is $O(n^2/B)$

- Instead, for each vertex v, build a local quadtree for the triangles incident on v

- Since vertex degree is at most $2\pi/\delta$, a local quadtree can be built entirely in internal memory
Lemma: The union of all local quadtrees is identical to the global quadtree

We need to show that every cell in the global quadtree appears in some local quadtree

Proof: Every triangle T intersects a cell C of the global quadtree if and only if C belongs to the local quadtree of at least one of the vertices of T.
Example
Example
Building an index

- Each triangle stored with every quadtree cell that it intersects

- The *Z-index* of a cell is its order along the space-filling Z-curve

- Whenever triangle T intersects cell C, the pair (T, C) is stored with associated key equal to the Z-index of C
Indexing triangles

- Sort the $O(n/\delta^2)$ cell-triangle pairs in Z-order of cells

 $$= O(sort(n/\delta^2))$$ IOs

- Build a cache-oblivious B-tree on the set of cell-triangle pairs sorted by key (Z-index of cell)

- B-tree has size $O(n/\delta^2)$ and depth $O(\log_B(n/\delta^2))$
How to locate a single point

- Search the B-tree from root to leaf with Z-index of p for quadtree cell containing point p

$$= O(\log_B(n/\delta^2)) \text{ IOs}$$

- Check p against all triangles intersecting the cell (at most $2\pi/\delta$) in internal memory; all these triangles have the same key and are stored together
How to locate a batch of k points

- Sort the k query points by Z-index

 \[= O(sort(k)) \text{ IOs} \]

- Merge the sorted query points and the sorted leaf cells by scanning in parallel

 \[= O(scan(n/\delta^2 + k)) \text{ IOs} \]
How to overlay two triangulations

- Quadtree leaves subdivide the Z-curve into disjoint intervals

- Since quadtree leaves are sorted in Z-order, the intervals are in sorted order

- Merge the two sorted sets of intervals, corresponding to the quadtrees of the two triangulations

\[= O(\text{scan}(n/\delta^2)) \text{ IOs} \]
How to support updates

- Each of the following operations affects $O(1/\delta^4)$ entries in the B-tree:
 - insert/delete a vertex
 - flip an edge

- Each update affects a local quadtree; perform corresponding changes to the global quadtree

$$= O\left(\frac{1}{\delta^4} \log_B(n/\delta^2)\right) \text{ IOs per update}$$
Summary: fat triangulations

- We build a linear quadtree, from local quadtrees of small neighborhoods, using a novel stopping condition.

- The quadtree leaves are stored in a cache-oblivious B-tree, indexed by their order along the Z-order space-filling curve.

- The B-tree has linear size and logarithmic depth, thus supporting efficient queries and updates.

- Two such quadtrees can be overlaid by scanning; the two indexes are merged in the process.
II. Low-Density Maps
Low-density maps

- The \textit{density} of a set S of objects is the smallest number λ such that every disk D intersects at most λ objects of S whose diameter is at least the diameter of D.

- The density of a planar map is the density of its \textit{edge set}.

- Our input is a map with density λ.

- We assume $B = \Omega(\lambda)$.

A δ-fat triangulation has density $\lambda = O(1/\delta)$.
Compressed quadtree

- An *annulus* is the set-theoretic difference of two ordinary nested cells.

- An annulus can be represented by two nested Z-intervals.

IO-Efficient Point Location and Map Overlay / Shripad Thite
Compressed linear quadtree

We introduce *compressed* linear quadtrees:

- a compressed quadtree has many fewer nodes than an ordinary quadtree
- a compressed quadtree has more complicated cells (annuli); our storage scheme handles such cells
Quadtree of guarding points

- Build a compressed quadtree of guarding points of edges

 Guarding points of an edge = vertices of the axis-aligned bounding square

- Stopping condition:

 Stop splitting a quadtree cell when it contains only one guarding point

- Lemma [de Berg et al.]: A square containing g guarding points intersects at most $g + 4\lambda$ edges
Example
How to build a quadtree of points

- Sort guarding points in Z-order
- For each consecutive pair of points, output their local quadtree: their canonical bounding square and its four children
- Sort all cells and remove duplicates

Result: Compressed quadtree of guarding points in $O(sort(n))$ IOs, where leaf cells are sorted in Z-order
Example
Computing cell-edge intersections

- We distribute the edges of the subdivision among the quadtree leaf cells

 For each edge e, we compute the quadtree cells that it intersects in a batched filtering

 use cache-oblivious distribution sweeping?

- A quadtree leaf cell not intersected by any edge is repeatedly merged with a predecessor or successor cell in Z-order
Small-size quadtree

Lemma: Compressed quadtree of guarding points contains $O(n)$ leaf cells, each leaf intersected by at most $O(\lambda)$ faces; total number of face-cell intersections is $O(n\lambda)$.

Build a B-tree on the set of cell-edge pairs sorted by key (Z-index of cell)

B-tree has $O(n)$ leaves and depth $O(\log_B n)$
How to locate a single point

- Search the B-tree from root to leaf with Z-index of p for quadtree cell containing point p

 \[= O(\log_B n) \text{ IOs}\]

- Check p against all $O(\lambda)$ faces intersecting the cell, in internal memory; all these faces have the same key and are stored together
How to locate a batch of k points

- Sort the k query points by Z-index

 $= O(sort(k))$ IOs

- Merge the sorted query points and the sorted leaf cells by scanning in parallel

 $= O(scan(n + k))$ IOs
How to overlay two maps

- Quadtree leaves subdivide the Z-curve into disjoint intervals

- Since quadtree leaves are sorted in Z-order, the intervals are in sorted order

- Merge the two sorted sets of intervals, corresponding to the quadtrees of the two maps

\[= O(\text{scan}(n)) \text{ I/Os} \]
Summary: low-density maps

- We introduce *compressed* linear quadtrees

- We build a compressed linear quadtree of the set of $O(n)$ *guarding points* for the edges of the subdivision

- We store the quadtree leaves (only) in sorted order along the Z-order space-filling curve

- We build a 1D index, a B-tree of linear size, on the quadtree leaves supporting efficient queries

- Making construction and update algorithms cache-oblivious remains an open problem
Implementation

- The Z-order of a point is its bit-interleaved order

$$Z(x_0x_1\ldots x_b, y_0y_1\ldots y_b) = \underbrace{x_0y_0x_1y_1\ldots x_by_b}_{2b\text{-bit integer}}$$

- The canonical bounding box of two points is computed from the longest common prefix of the bitstring representing their coordinates

- Several optimizations described in our paper
Summary

- We preprocess a fat triangulation or low-density subdivision in $O(sort(n))$ IOs so we can:
 - answer k batched point location queries in $O(scan(n) + sort(k))$ IOs
 - overlay two maps in $O(scan(n))$ IOs

- We give simple, practical, implementable, fast, scalable algorithms!

- Our algorithms for triangulations are cache-oblivious
To read more ...

I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions
Mark de Berg, Herman Haverkort, ST, Laura Toma

http://www.win.tue.nl/~sthite/pubs/

Condensed version to appear at EuroCG 2007

Thanks to Sariel Har-Peled for valuable discussions
Future work

- Implementation (in TPIE?)
- IO-efficient range searching in low-density subdivisions
- IO-efficient overlay of general subdivisions, not assuming fatness or low density
Tak!