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Abstract

Solving multivariate polynomial systems over finite fields is a problem of fundamen-
tal importance in algebraic cryptanalysis and multivariate cryptography. Existing
Grobner-basis solvers such as Fy/F5 and XL (eXtended Linearization) have been
well studied and proved to be powerful against modern cryptosystems such as HFE.

However, these solvers are useful only for systems with algebraic defects or ex-
cessively overdetermined systems. For generic systems, their run time can be quite
substantial, not to mention the immense memory pressure. Moreover, study of ex-
haustive search algorithms'seems to6 be a missing link in this field. These have
aroused our curiosity and resulted in this work.

In this thesis, we propose and invge%igate an exhatistive-search algorithm and
several variants of it interided .to solve g"éFI:TéJPiC polynomial systems over [Fy, the field
consisting of two elements.~The alg'orithrg is easy to parvallelize and works especially
well for low-degree systems, the reéms;)ns for which shall be clear after we analyze the
complexity-theoretical performance,”memory ¢onsumption, and impact of several
adjustable parameters later in this thesis.

On the practical side, we have implemented our algorithm, along with several
efficiency-enhancing optimizations, for quadratic, cubic, and quartic systems on pre-
vailing GPUs and CPUs using the CUDA framework and SSE2 intrinsics, respec-
tively. Even though the implementation may leave certain room for improvement
(for they are not implemented in assembly code), they have outperformed all ex-
isting implementations of Grobner-basis solvers to which we have access, a clear
demonstration of the practicability of our algorithm.

Today, we can solve 48 quadratic equations in 48 binary variables with just an
NVIDIA GeForce GTX 295 graphics card in 21 minutes. It would be 36 minutes for
cubic equations and 126 minutes for quartics. In contrast, the implementation of Fy

in MAGMA-2.15-5, often cited as the best Grobner-basis solver available today, would



run out of memory on a system with 25 Fy-variables in as many cubic equations.
While it succeeds in solving 20 cubic equations in 20 Fy-variables, it takes about 2.5
hours to finish. Either system can be solved by the proposed enumerative solver in

less than a second.

Keywords: algebraic cryptanalysis, multivariate cryptography, multivariate poly-
nomials, solving systems of equations, exhaustive search, parallelization, CUDA,

Graphic Processing Units (GPUs).
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Chapter 1

Introduction

1.1 Motivation

Solving a system of m nonlinear equations in'n variables over [F, is an important
problem in cryptography and many other fields [2]. " Because the problem is NP-
complete, it has been used to.design as‘;-'i;ﬁmetric cryptogtaphic primitives that col-
lectively are known as nmltivariate Cryp:'t_ography. During the past few decades,
this relatively young branchyof cryptography has flourished, resulting in public-key
cryptosystems such as HFE; SFEASH; and QUARTZ [15,23,24], as well as stream
ciphers such as QUAD [7].

Another important direct application of system solving is algebraic cryptanalysis,
a class of attacks against ciphers by converting the problem of breaking a cipher into
an equivalent problem of solving a polynomial system. The importance of algebraic
cryptanalysis resides in it generality: it has been used to attack a reduced-round
DES [3] and block ciphers such as Keeloq [14]. It has also lead to a faster collision
attack on 58 rounds of SHA-1 [27].

The problem, not surprisingly, has been long studied, and the most renowned
solvers might be F4/F5 [18,19]. These solvers, being the most advanced among
Grobner-basis solvers, broke the first HFE challenge [20]. Another notable solver
is the XL algorithm [16] and its variants, which are simpler than F4/F5 but are

expected to work well asymptotically due to the manipulation of sparse matrices
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instead [1].

For “generic” quadratic systems, experts believe that Grobner-basis methods will
go up to degree Dy and then require the solution of a system of linear equations with
T = ( DO"_I) variables, which will take at least poly(n) - T? bit-operations [5,28]. For
example, if we assume we can operate a Wiedemann solver on a 7' x T' submatrix
of an extended Macaulay matrix of the original system, then the polynomial is
3n(n —1)/2. When m = n = 200, Dy is 25, making the value of T exceeds 2'%%
while a basic version of our algorithm takes only m2"*! bit operations. Even taking
into consideration guessing before solving [9,29], we can still easily conclude that it
would be impossible for Grobner-basis methods to outperform exhaustive search in
the practically interesting rangeiof m.= n <.200.

Knowing that existing solvets, though well studied, are not suitable for generic
systems, naturally we would-like to know the capabilities-of exhaustive search solvers,
a desolate area in the field. s it possible to find more efficient exhaustive search
algorithms? What is the best time c.('J__rlr;.l;ﬂexity, though expected to be at least
exponential, they can achieve? Cail \an eéhaustive search"selver be comparative to,
or even outperform the best 'amon:g the existin;g solyers? All these are questions to
which we eager to know the answers:

As exhaustive search algorithms are usually highly parallelizable, the trend in
parallel computing also motivates our work. Considering that CPU’s clock rate
is limited by critical issues like heat dissipation, the latest pursuits after faster
computers have been taking a different route in semiconductor industry. In recent
years, a series of multi-core processors like dual-cores and quad-cores have been
released and soon become the mainstream. Moreover, thanks to the well-known
series of Streaming SIMD Extensions (SSE), CPUs are capable of processing even
more data simultaneously.

In addition to CPUs, GPUs are an extreme of hardware dedicated for parallel
computing. With several hundreds of “cores,” GPUs can achieve extremely high

thread-level parallelism (TLP), resulting in potent computational power that often
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outperforms that of CPUs by a factor of ten or more. Emergence of programming
frameworks, such as NVIDIA’s CUDA, that allow people to harness such compu-
tation power has gained GPUs more and more popularity as an implementation
platform in past few years.

In this thesis, we will show how we build a fast exhaustive search algorithm
intended for solving generic nonlinear multivariate systems from a theoretical per-
spective. We will also show how we design and implement a parallel program capable
of exploiting the computation power of modern GPUs and CPUs from an implemen-

tation perspective.

1.2 Problem Statement

The problem we deal with_ can be formally defined.as follows.

Problem Solve fO(x) = f1(x) :'fj_-“:.-l: " Y(x) = 0, where each f® is a

polynomial of degree d in x = (xo,..-'a ., Tneq). WAl coefficients and variables are

in IFQ.

When d = 2, this problem is usually"abbreviated as M Q (multivariate quadratic),

which is proved to be NP-complete.

1.3 Contributions

Our contribution is twofold. On the theoretical side, we present an exhaustive
search algorithm which is both asymptotically and practically faster than existing
techniques. If we ignore the (usually negligible) cost for initialization, finding all
zeroes of a single degree-d polynomial in n variables requires O(d-2") bit operations.
We can extend it and find the common zeroes of arbitrary number of degree-d
polynomials in O((d? 4 2d + 2) - 2") bit operations.

Our algorithm also possesses many other advantages. For one, it can be eas-

ily parallelized with negligible cost, which means it is quite suitable for hardware
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platforms dedicated for parallel computing such as GPUs. Also, the time complex-
ity grows linearly as the degree d increases. All these are strong advantages over
Grobner-basis methods.

On the practical side, we have implemented our algorithms on x86 CPUs and
on NVIDIA GPUs. While our CPU implementation is fairly optimized using SIMD
instructions, our GPU implementation running on one single NVIDIA GeForce GTX
295 graphics card runs up to nine times faster than the CPU implementation using all
the cores of an Intel quad-code Core i7, one of the fastest CPUs currently available.

Today, we can solve 48+ quadratic equations in 48 binary variables using just an
NVIDIA GeForce GTX 295 graphics card in 21 minutes, a device currently available
for about 500 USD. It would be 36 minutes for cubic equations and two hours for
quartics. The 64-bit Dragon signature challenge [22] can thus be broken with 10
such cards in 3 months, usingia budget of 5000°USD: Even taking into account
Moore’s law, this is still quite an achieyement:

In contrast, the implementation of P":ﬂ MAGMA-2.15-5, often cited as the best
Grobner-basis solver available toda;y; requl'ires more than 64 GB of memory to solve
25 cubic equations in as many IFQ—:Variables. When it ‘does not run out of memory,
it requires 2.5 hours to solve 20 cubic¢ equations_in 20 variables on one Opteron
core running at 2.2 GHz, half an hour for 45 quadratic equations with 30 variables,
or 7 minutes for 60 quadratic equations with 30 variables. Each of the above are
solved in less than a second using negligible memory via our implementation of the

exhaustive search algorithm on the same CPU.



Chapter 2

Gray Code Enumeration and

Partial Evaluation

2.1 Notational Conventions

Our goal is to solve a polynomial system-?'i (f©, .. 4 f0" D) of the form described
Tp,7p, - x4, of fU) (weuseiGY) for the constant term), where 0 < 8 < By < - -+ <
Br < m since any z where & 2 1"can be redueed to @; in F. When the superscript

is omitted, it stands for a vector of coefficients, i.e., C, = (CSP), o Cim_l)).

2.2 Gray Code

A k-bit Gray code is a special ordering of the binary numbers ranging from 0 to
2% — 1 such that the Hamming distance between any two successive numbers is
exactly 1. Such a code is not unique, and the one we use is known as the binary-
reflected Gray code (BRGC). Table 2.1 shows a list of 5-bit codewords along with
their corresponding indices, where the b; columns will be explained in the following

definition.

Definition 1. Let i be an nonnegative integer written in binary expansion (usually

an index of Gray code), then by (i) is defined as the index of the k-th least significant
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nonzero bit in i. If the Hamming weight of i is less than k, by (i) is defined as -1.

We use g; to denote the equivalent vector form of the codeword corresponding
to the index i. Note that go = 0 is always true for BRGC. Thus, g; can be defined

recursively by the following equation for every ¢ > 0:

gi+1 = i t €py(i+1), (2.1)

where e; is a binary vector consisting of all zeros except in the j-th position.
Another way to define the codewords is to convert directly from an index to
its corresponding codeword. Let ¢ = g;, then each bit of ¢ can be derived from ¢

according to the following equation:

Cr — ik Xor ik+1, (2.2)

Y —

where the subscripts stand for bit indices.

Table 2.1: 5-bit ‘Gray Code Wit}'ﬁ_ Index jand Enumeration Actions

index code b1 bo b3 by |ractions(quadratic) actions(quartic)
00000 00000 -1 -1 -1 1

00001 | 00001 0o -1 -1 S&t +=100 *= 0o
00010 | 00011 -1 -1 -1 += 01 += 3
00011 | 00010 1 -1 -1 += (do-*+= Cp,1) += (09 += d0,1)
00100 | 00110 -1 -1 -1 += 0o += o
00101 00111 2 -1 -1 += (§g += (3&2) += (§g += 5&2)
00110 00101 2 -1 -1 += (61 += C1.92) += (01 += 5L2)

00111 | 00100
01000 | 01100
01001 | 01101
01010 | 01111
01011 | 01110
01100 | 01010
01101 | 01011
01110 | 01001
01111 | 01000
10000 | 11000
10001 | 11001
10010 | 11011
10011 | 11010
10100 | 11110
10101 | 11111
10110 | 11101

2 -1
-1 -1
-1 -1
-1 -1
3 -1
-1 -1
3 -1
3 -1
2 3
-1 -1
-1 -1
-1 -1
-1
-1 -1
4 -1
4 -1

+= (60 += Co,1)
+= 03

+= (§p += Cop,3)
+= (01 += C1,3)
+= (do += Co,1)
+= (62 += Cg3)
+= (09 += Cp,2)
+= (61 += Cy,2)
+= (09 += Co,1)
4

+= (59 += Cp.4)
+= (01 += C14)
+= (60 += Co,1)
+= (02 += C24)
+= (60 += Co,2)
+= (61 += C12)

+= (0o += (60,1 += d0,1,2))

+= (6o += d0,3)

+= (01 += 01,3)

+= (09 += (do,1 *+= 60,1,3))

+= (02 += 02,3)

+= (09 += (0,2 += 60,2,3))

+= (61 += (01,2 += 61,2,3))

+= (69 += (do,1 += (bo,1,2 += Co0,1,2,3)))

PO WR WWOWBRNNOBER B DR, ODNDWEWW R e
N

= (0 += bo.0)
+= (01 += 61,4)
+= (69 += (0,1 += 60,1,4))
+= (92 += 02.4)
+= (69 += (do,2 += 60,2,4))

»

+= (01 += (61,2 += 01,2,4))

O ONORFROWORONORFRLOPOFFLONORFROWORrONO R
S D 0 S S O S D S O O O O & O
+
]

SIS SIS S IS TS RIS TS TS S RS OIS TR TS TS S ST IESCIIS RS TS TS TS RS RIS TN s T IS TS OIS %)
+
]
j=2)
=

10111 | 11100 2 4 += (6o += Co,1) += (0o += (60,1 *+= (0,12 += Co,1,2,4)))
11000 | 10100 -1 -1 += (d3 += Cg,4) += (83 += 83.4)

11001 | 10101 4 -1 += (69 += Co,3) += (60 += (80,3 += 00,3,4))

11010 | 10111 4 -1 += (61 += C1,3) += (61 += (01,3 += 61,3,4))

11011 | 10110 3 4 += (§p += Co,1) += (do += (00,1 *+= (d0,1,3 += Co,1,3,4)))
11100 | 10010 4 -1 += (62 += Ca3) += (02 += (92,3 += 02,34))

11101 | 10011 3 4 += (09 += Cop,2) += (dg += (00,2 *+= (d0,2,3 += Co,2,3,4)))
11110 | 10001 3 4 += (61 += C12) += (01 += (01,2 += (01,2,3 += C1,2,34)))
11111 | 10000 2 3 += (59 += Co.1) += (09 += (dp,1 += (00,12 += Cp,1,2,3)))

[RaYd)
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2.3 Naive Evaluation

Let v; be the equivalent vector form of an integer . The most naive way to search
exhaustively is to evaluate f(v;) for i = 0,...,2" — 1. Determining whether v; is
a valid solution can be easily done by checking whether f(v;) = 0 or not. The
pseudocode of this scheme is presented in Fig. 2.1.

An advantage of this scheme is that it takes little extra memory than storing
the coefficients. Since the coefficients can be stored in read-only memory, we may
define the required amount of storage in bits (per equation) to perform this scheme

by: ;
r0 n
e 23
1=0

(r0) is short fors“read-only.”

where the superscript
In contrast, each evaluation‘of f(v;) can be expensive in time complexity. If the

multivariate Horner’s rule is used tofevaluaté the function value at each vector, the
“‘u’-'

number of bit operations required (per gguétion) would be:

Bévaz_Hoi»n.er(n, d)=2 zd: (7;) (2.4)

=1

An alternative, theoretically optimal way would be summing up all Cg, 3,’s
with (v;)s, = -+ = (vi)s, = 1. Apparently, the bit operations (per equation)
required for this scheme depend on the Hamming weight of v;, which we denote as

h:
B sunlhnd) = 3 (h) .5)

i=0
If v; follows a uniform distribution in Fj, then the expected bit operations (per

equation) required would be:

d
n )
BEvaLSuth;g(”y d) = Z (2)22 (26)

=0
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Thus, total bit operations (per equation) required in naive evaluation would be:

Bra(n, d) = i (?) 9n=i (2.7)

=0

In summary, when d is a fixed constant, each evaluation of f(v;) should take
O(mn?) on average. The whole enumeration would thus require O(mn?2") bit op-
erations.

Figure 2.1: Pseudocode of Naive Evaluation

NaiveEval(f, n, d)

1: Sol +— &

2: for i from 0.to 2" — 1 do
3 f(vy)

4 if 79 = 0 then

5: Sol «-Sol U {v;}
6 end if

7:send for

8

: returnsSol

Y —

e
R

i

2.4 Basic Gray Code Enumeration

The following definition and propesition are important to the our discussion.

Definition 2. Let v, w be vectors over Fy (or equivalently integers written in binary
expansion) and f be a vector of multivariate polynomials over Fy. Let S = {j |
f contains x;}, then v and w are said to be i-close (or simply close) w.r.t. f ifi is
the only element in S such that v; # w;. This definition can be extended to refer to

a sequence of vectors where any two successive vectors are close.
For instance, 101 and 110 are 1-close w.r.t. z1xo + 1.

Proposition 1. Let f be a vector of multivariate polynomials over Fy. Let v and

w be i-close w.r.t. f. Then f(v)— f(w) = 8851- (v) = gji (w).

Proof. f can be converted into the form f = g—ixi + h. Since v and w are i-close

w.r.t. f, we have:

Xiv
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Now we can make use of this proposition to construct a better exhaustive search
algorithm, which we shall refer to as the basic Gray code enumeration (BGCE)
algorithm. As the name implies, the candidate vectors are tested in the order of
Gray code instead of a counter. That. is, instead of evaluating f(v;), we compute
f(g:) for i =0,...,2" — 1. Sinee any fwo suceessive codewords (g;_1,g;) are by (i)-
close w.r.t. f by Eq. 2.1, the diffexénce between(f(g;), f(g:_1)) is actually %(gi)
by Proposition 1. This implies that-we,can evaluate the niext f(g;) by updating the
last one with their difference. In this Wé'g;-_tbhe bit operations (per equation) required

to perform this schemes would be: 1

' | | d=1
. n—1 ,
BBGCE(n; d) = 2”BEwlfgum>Avg(n Ral 1, d= 1) = E ( i )271_2. (28)

1=0

In other words, when d is a fixed constant, the cost of each attempt can be
reduced to O(mn?!), and the whole enumeration would require O(mn?-12") bit
operations.

The pseudocode of this scheme is shown in Fig. 2.2(a). Note that 5, < 0 if
and only if i« = 0, which means this is the first time of computing f(g;) (there is
no f(g;_1) for computing a difference). In this case, the image we need is actually
f(go) = f(0) = C. Thus, 9§ is initialized to C in line 2, and line 6 will not be

executed in the first attempt.

XV



Figure 2.2: Pseudocode of Gray Code Enumeration

BGCE(f, n, d) GGCE(f, n, d)
1: Sol + @ 1: Sol + @
2.6+ C 2: for each coefficient Cg,, . g, of f
. y n — k
3: for i from 0 to 2" —1do 30 Op ﬁ(g%ﬁJr--dr%’k)
4 By bali) 4: end if o
2 if ?1 250 thg;l 5: for ¢ from 0 to 2" — 1 do
: % T Bzs, (&:) 6: ¢+ min(HammingWeight (), d)
7: fend if T By, Ba b1 a(i)
8: if 0 =0 then 8: for j from o down to 1 do
9: SOZ.<— SolU{g } 9: 08y,...8;—1 < 0py,...8_1 081,53
10:  end if 10:  end for
11: end for 11:  if 6§ =0 then
12: return Sol 12: Sol + Sol U { g; }
(a) Basic Gray Code Enumeration 13:  end if
14: end for
15: return Sol

(b) Generalized Gray Code Enumeration

2.5 Generalized Gray-Code Enumeration

Algorithm and Correctness. In the last/section, wehave shown that evaluations
of a system for a sequencesof vectors Carl.:_%e-accelerated if the vectors in the sequence
are “close” in certain way:--In this section,:i we will show that the same technique can
be used recursively, resulting:in.the generalized Gray: code enumeration (GGCE)
algorithm with a complexity much lower than BGCE.

The pseudocode of GGCE is shown in Fig: 2:2(b). At the beginning of the code
(line 2 to line 4), a set of variables dg, . 3, ’s are initialized. As we shall explain later,
at the end of an attempt accessing ds, . 3,, its value would always be ﬁ(gi).
Thus, same as in BGCE as shown in Fig. 2.2(a), ¢ is meant to store f(g;). Each of

these variables will be referred to as a “differential” henceforth.

Each attempt (line 6 to line 13) of GGCE can be divided into three steps.
1. (Line 6-7) Indexing: Find indices of « least significant nonzero bits in i.

2. (Line 8-10) Accumulating: Use a sequence of differentials determined by the

indices and perform an in-place prefix-sum operation.

3. (Line 11-13) Testing: Examine the image ¢, which is identical to line 8-10 in
Fig. 2.2(a).

Xvi



The accumulating is where we use the technique in the last section recursively
to compute f(g;). Actions taken in this step (with o > 3) can be illustrated by the

following expression:

o+ = (551+ = (5517ﬁ2+ = (551752753—’_ = )))

The action 0+ = ds, is consistent with line 6 of Fig. 2.2(a), since the value of dg,
should be <9?c_£1<gi)' However, g, is not naively evaluated. Instead, it is updated
by adding ds, g, to it. In the same way, we update 9, ds,, 93, 3,,. .., etc, until some

termination condition is satisfied. We will come back to this condition later in this

section.

Definition 3. Given a sequence [ of-indices running from 0 to 2" — 1, the sub-
sequence 1, j, i (0 < ji=< go < -+ < jp < m) consists of {i € I | (i) =

Jis .- be(t) = Ji}- \ L

L.

. -

Lemma 1. For all i € I;, j, . jw bjk+1(i')|;2 0 uf and only if © is not the first index

in the sequence.

Proof. Apparently, the first element in [; o ds' 29 s+ 27k for it is the smallest

11j27~"7
index satisfying the condition of the sequence. Since this is the only element with
Hamming weight k£, we may conclude that other elements must have Hamming

weight greater than k. O

Lemma 2. [}, ;, . (k <d) consists of the indices of all attempts in which &;, . ;,

18 accessed.

Proof. According to line 6 to line 10 of the pseudocode, d;, . ; is accessed if and

Only if bl(l) = jl; . ,bk(’t) :]k ]

Lemma 3. Let f be a multivariate polynomial system over Fy. For any (i,i') suc-

ok f

o y
cessive in I;, j, ., 8 and gy are byyq1(i')-close w.r.t. B, 0w,

Proof. It can be inferred from Definition 3 that ¢/ = i 4+ 2/+*1. According to Eq. 2.2,

the bits with indices greater than j; of g; and g; should differ in exactly the bit with
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index by, 1(7'), and those with indices less than j; of g; and g; should be identical.
Thus, g; and g must be by (i')-close w.r.t. any system that does not involve z;, .

]

Proposition 2. Let 1 < j < d. If ds,..p,'s can be correctly computed (equal to

& f

W(gi) by the end of any attempt accessing them), so can dg,, . 5. ,’s.

Proof. According to the pseudocode, dg,,.. g, , is updated by adding dg, . s to it
in those attempts with index ¢ € Ig, . 5, , and b;(i) > 0. According to lemma 1,
lemma 2 and lemma 3, from the second attempt accessing 5517",,53._1 it is updated

99 ¢

W(gi), which is exactly the core concept in

by a correct difference dg, .. 5, =
BGCE. Thus, the only remaining problem is that dg, . 5., should be correctly com-
puted in the first attempt accessing it."According to the pseudocode and lemma 1,

0p,,...5;_, 18 not modified in_thefirst attempt aceessing it." Thus, line 3 has shown

that 5517__@._1 contains the correct valué¢ by the end of'the first attempt accessing it.
&
1} 1

Note that the differentials 5/31,,_..7[361 are"initia.ulized to W = Cp,...3,- Since

these differentials remain the same valieSsafter itialization (they would not be
modified by line 9) as they ought to bey they always contain the correct values.
Thus, by using this fact as the base case and Proposition 2 as the inductive step, it
can be concluded that § can be correctly computed, establishing the correctness of
GGCE.

Now we may explain the termination condition that we have mentioned earlier.

Note the first iteration of line 9:

0By,...Bar < Op,

-----

From a recursive perspective, this is already the deepest level of recursion, and
08,8, 1s not updated using the same technique. There are two possible situations
for this. The first one is when a = d, which means dg,, g, is a constant and should

not be updated. The other one is when the candidate vector g; is the first one in the
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o0 f

5. 5. Lherefore there is no previous image to compute a
w5, 06,

sequence close w.r.t.
difference, in which case the image is pre-evaluated in the initialization phase.
To help the reader further understand how the GGCE algorithm works, we show

an example with a small d. In the example, the list of accumulating actions in each

attempt for d = 2 and d = 4 are presented in the last two columns of Table 2.1.

Memory Issues. The differentials take almost all memory needed in GGCE.
Thus, according to line 2 to line 4 of Fig. 2.2(b), memory needed for GGCE should
be commensurate with memory needed to store all the coefficients.

One may argue that we need additional memory to store the target system (the

ok f

Ton, 05, does not involve any

coefficients) to perform initialization. However, since
of Cg,,.p,’'s where k' < kiexcept Cp, ,; the initialization process can be made
“in-place” by initializing d usingthe space of G, initializing g, 's using the spaces of
Cg,’s, and so on. In this way; the initialization jcan be done with only the memory
space of coefficients of the target systen::;_l.:’“ﬂ

To be precise, the d3, ~5,’s (Cﬁi’_-_.ﬁd?é; can be stored in read-only memory, while

other differentials should be stored!in read-wtitememory. Thus, number of bits

required (per equation) to perform GGCE is:defined. as:

d—1
ro rw n
Mgstnnd) = (). Moot =X (7). 29
=0

where the superscript ") is apparently short for “read-write.”

We note that in this sense, GGCE is providing a form of space-time trade-
off, a renowned technique in exhaustive-search type of cryptanalysis. However, the
efficiency of GGCE in trading memory for execution time is extraordinary. By using
roughly the same amount of read-write memory, GGCE can achieve a speed-up that

is several orders of magnitudes faster than the naive enumeration.

Indexing. The pseudocode for indexing merely describes “what it actually does,”

not “how it works.” Thus in this paragraph, we would like to show a way to construct
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the indexing.

The main idea is to maintain a stack S containing all indices of nonzero bits in 1.
For example, if ¢ = (10101)y, then .S should contain three elements 0, 2, and 4 (from
top to bottom). When a new attempt starts, i would increase by 1. When this
happens, we can update S easily using a procedure Update presented in Fig. 2.3.
Note that the cost for Update is directly proportional to number of the bits flipped
as ¢ increases. Thus, an amortized analysis can show that the function can be done
in constant time.

Figure 2.3: Pseudocode of Update

Update(.S)
Jj .0
: while‘top(S)=g do
pop(’S)
o e
end while
push(S,j)

oWl e %o N

. -

[ |
1
n

Computing o« would be easy since the Hamming weight of ¢ always equals to
number of elements in the stack. After thatithe imdexing is done, asforall 1 < j <
B; must be the j — th element in the“stack. Thus, the whole indexing can actually

be done in constant time.

Time Complexity. Before determining the complexity of the whole enumeration,
we should first argue that number of bit operations (per equation) for initialization

can be bounded by:

Bocen mma(n, ) - Z()BEmd—:z()z(j) (2.10)

=0 =0 7=0

Now consider the in-place initialization scheme we have previously mentioned.
Note that initializations for dg,  s,’s do not take any bit operation since they should

be initialized to Cg, . ,’s. Any of other differentials, say dg, 5, (where 1 < k <
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d — 1), should be initialized to

oF f o f
—axﬂk<g251+-~+2ﬂk) =

((eﬂl + eﬁlfl) +oeeet (eﬁl + e/51*1))

drg, - Oxg, - - Oxp,

k
= axﬁja'%‘faxﬁk(eﬁl—l +-+eg1)
according to Eq. 2.2. Now, it is clear that initialization of dg, s, can be done by
evaluating a system of degree d — k for a vector with £ nonzero entries. Thus, we
may conclude that bit operations (per equation) for initialization can be expressed
by Eq. 2.10.
In one iteration of accumulating, a.=amin(HammingWeight(7), d) m-bit vector

additions (XORs) would be-executed.. Thus, total bit operations (per equation)

needed in GGCE can be expressed by:

BGGCE(n,d) BGGCE Iw_(n,d = Z ( ) mln 1 d) (211)

P
I..

A

1} 1
Since the summation ¢an be bounded by d 12" (which should be tight when d
is small), the time complexit.y of GACE«®an be boundéd by O(mBgaop_mi(n, d) +
md2"™). When d is a constant, in which case Bogap. rnit(n, d) would be polynomial

in n, the complexity of GGCE would be O(m2").

2.6 Partial Evaluation

In the last few sections, we introduced various exhaustive-search solvers intended
for solving a single system. However, as mentioned in section 1, parallel computing
is a more efficient way of taking advantage of Moore’s law. This leads to the need of
parallelization. In other words, we need to divide our problem into pieces, so that
resulting subproblems can be solved concurrently.

An intuitive idea is partial evaluation. That is, we shall divide the target system

into multiple subsystems by substituting all possible values for s variables. In this
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way, there would be 2% subsystems, each with n — s variables, and the number and
size of subsystems can be controlled simply by changing s. Moreover, we have found
that partial evaluation can be made efficient by using GGCE as a subroutine.

Recall that we use c, for coefficients of subsystems and C, for those of the
original system. Now consider a specific coefficient, say c, of one of the subsystems.
The coefficient is an image of a polynomial system h defined over the substituted
variables. In fact, if we collect the same coefficient in all subsystems, the resulting set
actually forms the range of h, which can be computed by GGCE (without testing)
since it generates all images of a system. Thus, partial evaluation can be done by
computing with GGCE all ¢’s, cy’s, ¢1’s, ..., etc, until all Z?:o ("1_5) coefficients of
each subsystem are known.

We use an example to show_this.eoncept.more-clearly. Let us consider a case
with n = 4, d = 2, and s =2, where the variables to be substituted are zo and 3.

Now, the original system can be written in the following expression:

L.

. -

%
| |
Co71.1'01’1+(nggl’z+C073$3+C0).’L’0+<Cl’2$-'2-+cl,3$3+cl)£B1+(C2731’2$3+CQ$2+C3$3+C) .

It can be inferred from the expression that.the ¢’s form the range of Cqsxoxs +
Cyzy + Csa3 + C, the ¢;’s form the range of Cy 575 + Cy 325 + Cy, ..., and so on.

Note that the degree-d terms of all subsystems actually come from the original
system. In other words, c4,, o, = Ca,,. o, for any subsystem. Thus, we do not

need to evaluate c,, . o,’s by GGCE. Instead, we may simply copy from the original

-----

system those coefficients when we need them.

Time complexity. According to our arguments and example, it is clear that
coefficients (in subsystems) of a degree-k monomial can be generated by running
GGCE on a degree-(d — k) system defined over the s substituted variables. Thus,

the bit operations required (per equation) for partial evaluation can be expressed

by:
d—1

BPartial(”v da 3) - (
k=0

n—s

L )BGGCE(S7d_ k‘) (212)

xxil



Memory Issues. Since in partial evaluation, the generation of ¢’s is done by
running GGCE on a degree-d system with s variables, at most Mgg)CE(s,d) +
MgggE(s, d) bits per equation is required to complete the whole process. While
this memory cost is usually affordable, memory problems brought by partial evalu-

ation are usually due to the subsystems it generates. To be exact, the subsystems

d—1
n—s n—=s
28
( d )* Z( i )

d

should take

bits per equation, where ( ) bits are for c,, . a,’s. Thus, when s is sufficiently

d
large, the subsystems can take a huge amount of memory. However, sometimes we
do not need all the subsystems at the same time, in which case there are at least
two ways to mitigate the memory problem.

The first solution is to perform a multi-level partial evaluation, which is suitable
when only 2% of all 2% subsystems fieed to be dealt with-at the same time. A two-
level partial evaluation gees like this. E-;E-E we divide the target system into 2°~%
“intermediary” systems. ‘Then, we!pick dlligl_e of them at atime and divide it into 2
“final” systems which are mg¢ant tp'be processed together. In this way, as long as
the intermediary systems do not-take much memory, we only need the memory for
the 2% final systems.

The second solution is to run all instances of GGCE (in partial evaluation) at
the same time, which might be useful when the 2° subsystems are dealt with one by
one. Note that attempts with the same index of all instances actually generate all
coefficients of the same subsystem. Thus, by running all instances synchronously,
we may generate the subsystems one by one. In fact, there is a one-to-one mapping
between the terms in the original system and the terms in all coefficient-generating
systems (h’s); specifically, there is a one-to-one mapping between the highest-degree
terms in coefficient-generating systems and the degree-d terms in the original system.
Thus, by the discussions about memory issues in GGCE, we may conclude that this
scheme uses the same amount of read-only and read-write memory with running

GGCE directly on the original system.
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Chapter 3

Variants and Analysis

3.1 Early-abort Strategy

3.1.1 In Naive Evaluation

While the naive evaluation has been pr(ji_zl(_e_d t0 be outperformed by several solvers,
it can actually be improved by taking“a,jdvantage of an_early-abort strategy. All
we need to do is to treat the.equations as a sequence of candidate filters, and each
candidate vector in [} would be‘examined by'the filters one by one until it is filtered
out. Let V(© = F7, the initial space of candidate vectors. Formally speaking, for
each f we can compute f@(V®) and arrive at Vi+Y = {v € VO | f0(v) = 0}.
Since on average each candidate vector is filtered out with probability 0.5, we only
need to examine two filters on average. Consequently, the average number of bit
operations required would be:

d
=0

2 Broa(n,d) = Z (7) gn—i+l, (3.1)

3.1.2 In GGCE

The way we treat equations as filters is apparently not suitable for GGCE, for it
needs to enumerate all 5. However, can GGCE be modified so that it computes

only f@(V®)? One method that has come across our mind goes like this. To

XX1V



compute f@(V®) £ is first partially evaluated with some well-chosen s, Then,
for each v € V@ f0(v) can be evaluated by substituting n — s bits of v into the
corresponding subsystem.

Since the costs for partial evaluation and naive evaluation are known, the number

of bit operations required for computing f@(V®) can be expressed by:
BPa'rtial(n7 da S(Z)) + 2(71_1) : BEval,Sum,Avg(n - S(i)7 d)7

where 2"~ stands for the expected number of [V (?|. According to this expression,
the cost of computing f@(V®) is fully dependent of 5. Therefore, minimizing the
total number of bit operations required/can be simply done by finding the best s
for each ¢ independently. Unfortunately, after trying mathematical techniques such
as the first derivative test, we found it hard to express the best s in a closed general
form. Thus, we use an empirical approa_mch instead, in, which we search for the best
s® in the interval [0,n] for each i. '].;ll';_'_g-s.ame procedure can be repeated several
times for different settings,of (m, n, d) toli[:gain enough generality. According to our
experiment result, the sequence [s(é),s(l),l...;s(m_l)] is usually in the pattern of
n,n,m—ky,n—Fk —1,... kg, 0,50 0} wherek;, l;;g are some small positive integer.
This implies that [n,n,n—1,n—2,..0;1;0;..7, 0] might be generally a good choice.
Thus, we can approximate the total number of bit operations required with:

Z?;ol [Bpartiat(n, d, D) + 2" - Bryar_sum_avg(n — 5@, d)]

= Bpartiat(,d, 59 + 2" Bpya_sum_avg(n — 80, d) +

2?:11 [Bpartiat(n, d, ) 4+ 27 Bpyar_sum_avg(n — s, d)]

=d- 20+ 2 () (A=) 2 ()2

<d- 2+ 30 20 () (=) H 2 T (2

=d- 2"+ 2 20 () - (d—g) + 2 T ()27

=d- 2"+ 2[5 (d— 1) 52 ()27 + 20 277 0, (527

=d- 2"+ 2" [0 (d—j) -2+ 30 272

<d -2+ 2030 (d—j)-2+2]

= (d* 4+ 2d + 2)2".
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We note that this upper bound may not be precise since the cost of initialization
in GGCEs (in partial evaluation) is ignored from the line starting with “=.” How-
ever, when 32 <m =n < 64 and 2 < d < 4, we find that this latter cost is indeed
negligible in theory. Also remember that we assume |V | = 2"~ which might not
be accurate for some cases.

In some sense, this scheme is a mix of GGCE (or partial evaluation) and naive
evaluation. By choosing s, we may determine the weights of the two methods in
the computation of f@ (V). That is, when s is close to n, the scheme highly
resembles GGCE. On the other hand, when s® is close to 0, the scheme is more
like the naive evaluation. Actually, this viewpoint is consistent with our experiment
result: GGCE is more suitablefor computation of-f® (V) when [V®| is close to
2™ (or equivalently, when 4 is small), and viee versa:

The importance of this scheme resides in its flexibility:, This scheme not only con-
tains the solvers described in Section 2:3,.2.5./and 3.1.1, but also allows time-memory

i

trade-off. Furthermore, it can. be easil&'f_'_;dhpted aceording to the implementation
hardware platform. . :

Note that using different 's® fo:r each equatilon might not be suitable for general
hardware platform such as GPUs and-CPUs, for they lack the capability of efficient

handling of bit vectors of a wide variety of widths. For special devices such as

FPGAs, however, the scheme might work well.

3.2 Gaussian Elimination

In the previous subsection, we have shown that running GGCE on 1 < m equations
can be useful. In this section, we will show that the well-known Gaussian elimination
can make our solver even faster.

Note that in GGCE, there are some constant data, namely the Cg, _g,’s (or

ds,...8,'8). According to Fig. 2.2(b), actions involving them are always in the form

081, part = Copy,...8a-
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The key point is that if Cg, 3, = 0, all such actions can be simply omitted.

Now suppose GGCE is used to solve the first u equations f(© to f®#=1. The tar-
get system can be treated as a matrix, where each row corresponds to one equation,
and each column corresponds to one term containing the same monomial. Appar-
ently, the solution space is invariant under elementary row operations. Thus, we
may eliminate some Cgl) 5d’s for all 0 <7 < p—1. In fact, we can always eliminate
m — p such coefficients. In Section 4.1, we will discuss the probability of accessing
each differential, and apparently we should eliminate the most frequently used m — u

C/(Bil)’_“’ﬁd’s for all 0 < ¢ <y — 1 to achieve the greatest saving.

- '\,-'I_a
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Chapter 4

Implementations

4.1 On NVIDIA GPUs, with CUDA

4.1.1 Overview

Our implementations allow parallel use','__l_o_f multiple GPU devices. Thus, at the
beginning, the input system should be pf;rfcially evaluated into intermediary systems,
whose number equals to the number of devices Then the same number of processes
would be invoked such that each of them solves one of the intermediary systems by
launching a kernel on one device.

Each of these processes would solve the first 32 equations with GGCE (enumer-
ation phase), which would take place on the device. The solutions found by GGCE
would be checked against the remaining equations using naive evaluation (check
phase) on CPU. We pick the number 32 to match the register width on GPUs. In
this way, each 32-bit differential can be store in a register, and accumulating can be
done by performing bitwise XOR on them.

Before the enumeration phase starts, some preperation must be done first. Since
a GPU kernel usually requires enough threads to hide instruction latency, the first
32 equations of each intermediary system has to be partially evaluated into a large
number of small systems, each to be solve by one GPU thread with GGCE. Then,

the non-common parts (Cg, .. g,'s where k < d) of the small systems would be sent to
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global memory, while the common parts (Cg, . g,’s) are stored in constant memory.

After that, the enumeration phase can take the coefficients as input and run the
instances of GGCE concurrently. The details and important issues in this phase will
be introduced in the following subsections. By the end of this phase, the solution
found by each thread would be stored in global memory, so they can be moved back
to CPU for further processing.

The check phase is straightforward compared to the previous phase. Since only
few (compared to 2") solutions are expected to entering this phase, there are no
fancy techniques involved. The only notable issue in this phase is that it actually

handles some “mending” work, which will also be discussed in Section 4.1.5.

4.1.2 Register Usage

Because of the scarcity of fast/memery on GPU, register, usage is usually a critical
issue for CUDA programmers. The pfd_'ﬁlsc;m, unfortunately, seems inevitable since
the number of differentials grows rapidl;.-slas. d increases.  Actually, the problem can
be even worse since NVIDIAs'avec! com[;-iler tends to, allocate more registers than
necessary. In fact, in our imp.lemen’.cation for quadratic systems, everything fits in the
registers after initialization. On the contrary, thisis not the case in implementations
for cubics and quartics.

In our implementation for quartics, each thread needs to maintain 9, ; for 0 <
1 < j <k < K, where K is the number of variables in the small systems. For
K =10, 9, ;s take 120 registers if we just store all of them in registers, making
the number of active warps in each MP no more than 4, not to mention others
differentials. One may argue that this problem can be solved by restricting the
number K. However, this implies that an extremely deep partial evaluation has to
be carried out, which can be both time and memory consuming.

Our strategy for register usage follows the principle of caching—storing the most
frequently used things in registers. To be precise, each differential d,; is accessed

with probability 2=**1D in each attempt. In other words, there exists a strong
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bias in the probabilities of accessing each differential. So we can pick a suitable
number v and store all the d,; with k£ < v in registers and other differentials, global
memory. The number of variables and actual number of registers allocated in our

GPU implementations are shown in Table 4.1.

Table 4.1: Number of Registers Allocated in GPU Implementations

d=3(y=9) d=4(y=7)
diffs | other | actual || diffs | other | actual
46 11 64 64 15 80

4.1.3 Unrolling

While accumulating takes only ‘fewsXORs (of differentials), indexing causes con-
siderable overhead in each attempte Howeverpawe. find that the ubiquitous trick—
unrolling—can be quite helpful to alleviate the overhead.

Let us take a look at Fig. 4.1, Which'@eirlpliﬁes our unrolling scheme for a GGCE
solving quartics with unroll factor 8. Tﬁ-q iﬁdices listed are all in the same unrolled
block. It is shown that some entries, stich as by (- : x 011), are constant. Other
entries, although not fixed, éan bé determined onge. all b;(x - - - x 000)’s are known.
Thus, the indexing is no longer needed in every attempt. Instead, it only needs to
be invoked in attempts with index being an integral multiple of 8. This example
also illustrates the cases for quadratics and cubics.

The reason for this is not really complex. Consider any unrolled block with
2" indices, where the first index is . Any of other indices in this unrolled block
can be defined as i = i + k, where k < 2". Thus, the indices of the least sig-
nificant HammingWeight(k) nonzero bits in i’ must be constant and can be de-
termined before runtime. If we need any more indices b;(i") for i’ (which means
HammingWeight(k) < d), it can always be computed by b;(i") = b;_; (i), where
h = HammingWeight (k) and j > h.
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Figure 4.1: An Example Unrolled Block with 8 Indices

index b4 b3 b2
%000 | By | B3 | B2
%001 | B3 | B2 | Bh
%010 | B3 | B2 | B
S O0LL [ By | B | 1
%100 | B3 | B2 | B
k118 21

ol | ol o | o| | S

K| R | X | R | ¥ | X X]|*

4.1.4 Testing with Conditional Move

In Fig. 2.2(b), the testing simply adds the candidate vector into a set if its image
is zero. However, this is infeasible in GPU implementations, for device memory
is limited. Even if we assume_the meinory is large enough to store all candidate
vectors, this can induce other problems such as synchronization between threads.

Actually, the testing in our GPU implementation is delicately designed to fit the

hardware platform. "-#’*

In the process of implementation, Wg.discovered ansundocumented feature of
CUDA for G2xx series GPUst nvee r.elia,bly generates conditional (predicated) move
instructions, which are dispatched with exceptional adeptness. According to our
experiment results, we believed that eonditional moves can be dispatched by SFUs
(Special Function Units), so the they can be executed simultaneously with other
instructions (such as XORs) handled by SPs (Streaming Processors).

In order to exploit the feature, the testing in GPU implementations is somewhat
different with the pseudocode. Each thread maintains two registers, count and sol,
to keep track of the solution count and the last solution found during runtime. Note
that count does not actually record solution count accurately. Instead, it contains
only three states: 0, 1, and 2+ (greater or equal to 2 solutions). While the two
registers can be easily initialized, they should be correctly maintained after each
unrolled block, which can be achieved by maintaining the same but local data for

each unrolled block.

For each unrolled block, we use a tiny queue ) with capacity of merely two

XXX1



elements to maintain the local data. Whenever a solution is found, the corresponding
test vector (actually a part of it) is enqueued. In this way, we can tell whether the
solution count is 0, 1, or 2+ by checking whether there are 0, 1, or 2 elements in )
at the end of each unrolled block. Moreover, the last solution (if any) must lies in
the back of Q.

In order to show the power of this technique, some actual CUDA codes are
presented in Table 4.2(b). After applying decuda to our program, we found that the
repetitive four-line code segments correspond to at least four instructions including
two XORs and two conditional moves. However, according to our experiment result,
the four instructions average less than three SP cycles, which means executions of

XORs and conditional moves are much overlapped.

Figure 4.2: CUDA and Cubin{Code Fragments of Degree-2 GPU Implementation

xor.b32 $r19, $ri19, c0[0x000c] // deyT=d_yz diff0 °= deg2_block[ 3 1; // d_y"=d_yz

xor.b32 $p1|$r20, $r17, $r20 res "= diffo0; // res~=d_y
mov.b32 $r3, $ri " if( res == 0 ) y = z; // cmov
mov.b32 $r1, s[$ofs1+0x0038] "_#’.- if( xes == 0 ) z = code233; // cmov
xor.b32 $r4, $rd, c0[0x0010] L diff1l "= deg2_block[ 4 ];

xor.b32 $p0|$r20, $r19, $r20 W/ teg~=d_i} res. "= diffi;

@$pl.eq mov.b32 $r3, $ri 2 if(hres == 0 ) y = z;

@$pl.eq mov.b32 $r1, s[$ofs1+0x003c] | if( res == 0 ) z = code234;

xor.b32 $r19, $r19, c0[0x0000] r I diff0 “= deg2_block[ 0 ];

xor.b32 $p1|$r20, $r4, $r20 - res = diffO0;

@$p0.eq mov.b32 $r3, $ri /7 cmov if( res == 0 ) y = z;

@$p0.eq mov.b32 $r1, s[$ofs1+0x0040] /7 cméV if( res == 0 ) z = code235;

(a) decuda Result from Cubin (b) CUDA Code for an Inner Loop Fragment

4.1.5 Re-enumeration

In the check phase, the solutions found in enumeration phase are examined. If a
thread has found more than one solution, some mending work must be done on CPU
or we may miss some actual solutions of the target system. A remedy for this is to
repeat the work (GGCE) done by the thread again, which we call “re-enumeration.”
In fact, the re-enumeration can be aborted once the candidate solution meet the last
solution returned by the thread. However, this is still a situation we would like to
avoid as much as possible. Thus, our solution is to reduce the probability that any

thread has found more than one solution by restricting the number of variables in
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the small systems. The smaller the solution space is, the little the probability would
be. In fact, when n = 48, we restrict the number of variables (in small systems) to

26 to make re-enumerations take negligible time.

4.2 On x86-64 CPUs, with SSE2 Intrinsics

4.2.1 Overview

At the beginning, the target system would be partially evaluated into several (this
number usually equals to that of available cores) intermediary systems, each to be
solved by one process. The processes would. be properly assigned to CPU cores such
that each core deals with (almost) equal amount of processes.

Each process would solve the first 16 equations of the intermediary system by
GGCE. Candidate solutionsfotind byGGCEwould be checked for the next 16 equa-
tions using naive evaluation with the eﬁﬁiabort strategy, which we call “filtering,”
and those passing the first 32 equatioris'{would be checked against the remaining

equations using naive evaluation (without early abort).

4.2.2 Batched Enumeration

In our GPU implementations, GGCE is implemented using a bit-slicing strategy,
such that 32-bit differentials are stored in 32-bit registers. However, for CPU im-
plementations, we would like to take advantage of the 128-bit XMM registers, while
differentials are only 16-bit. Thus, we run eight instances of GGCE at the same time.
Each differential is of the type __int128, where each 16-bit block of it correspond to
one of the eight instances. In this way, accumulating can be done by manipulating
(XORing) the 128-bit variables directly. Note that we need to partially evaluate the
first 16 equations to generate at least eight sets of 16 equations.

After accumulating, the testing should be able to tell if there is any 16-bit all-zero
block in . Actually this can be achieved by using a few lines of SSE2 intrinsics as

presented in Fig. 4.3. The intrinsic mm cmpeq_epil6 performs (16-bit) block-wise
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comparison between res (stands for §) and zero, an all-zero 128-bit variable. A
16-bit-block of Mask will then be set to 0XFFFF if equivalence is found in the cor-
responding blocks, and 0x0000 otherwise. After that, mm movemask epi8 converts
the 128-bit Mask into the 16-bit mask by extracting the most significant bits of the
8-bit blocks in Mask.

After executions of the two intrinsics, it is clear that mask would be nonzero if
and only if there is any 16-bit all-zero block in res. When this happens, a routine
check would be invoked to handle the following jobs. Note that this branch-away

scheme is completely different with that in GPU implementations.

Figure 4.3: Code Fragments of Testing in CPU Implementations

Mask = _mm_cmpeq.epil6(res, zero);
mask = -mmgmovemaSkeepi8(Mask) ;
if (mask) check(mask, idx, x°2);

4.2.3 Batched Filtering

Theoretically, we can evaluiate e (v) once the.candidate vector v has passed f0—1),
However, this involves only single-bit-opérations (XORs and ANDs), which is not
cost-effective in CPUs that support 128-bit wide operations. Thus, our solution
to this is to maintain a buffer that can store up to 128 candidate vectors for each
@ Once the buffer is full, we would rearrange 128 inputs of n bits such that they
appear as n __int128’s, then evaluate one polynomial for 128 results in parallel using
128-bit wide ANDs and XORs.

Note that we use multivariate Horner’s rule to achieve this batched filtering, for
the actions it takes are the same for any vector in F. Also note that the equations
for filtering are also partially evaluated to reduce the cost for evaluation. However,
substituting too many variables in partial evaluation can make it difficult to saturate

most buffers, so this should be carefully tuned to achieve the best performance.
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Chapter 5

Experiment Results

Table 5.1: Performance Results for n = 48

Minutes Testing platform F£cores #threads
d=2 | d=3| d=4/| GHz || Arch. | Name USD | available | launched
1217 2686 3191 || 2.2 K10 Phenom 9550 120 4 1
1157 1992 2685 |[2.3 K10+ | Opteron2376 184 4 1
142 240 336 111238 K10+ 15 Opteron2376x2 | 368 8 8
780 1364 1819 || 2.4 C2 Xeon X3220 210 4 1
671 1176 1560 2.83 C2+H 'C'g_reZ Q9550 225 4 1
179 294 390 2.83 C2+H Core2.Q9550 225 4 4
761 1279 1856 || 2.26 | Ci¥ Xeon E5520 385 4 1
139 213 327 2.26 | Cir Xeon E5520% 2 770 8 8
95 154 225 || 2.26 | Cir Xeon E5520x 2 770 8 16
a1 73 | 271 || 1.3, | G200 | GTX 280 n/a 240 n/a
21 36 126 || 1125 | G200 | GTX 295 500 480 n/a
Table 5.2: Efficiency Comparison: Cycles Per Candidate Tested on One Core
n =32 n = 40 n =48 Testing platform
d= d=3 | d= d= d=3 | d= d=2|d=3 | d=4 GHz Arch. Name USD
0.58 1.21 1.41 0.57 1.27 1.43 0.57 1.26 1.50 2.2 K10 Phenom9550 120
0.57 0.91 1.32 0.57 0.98 1.31 0.57 0.98 1.32 || 2.3 K104 | Opteron2376 | 184
0.40 0.65 0.95 0.40 0.70 0.94 0.40 0.70 0.93 || 24 C2 Xeon X3220 210
0.40 0.66 0.96 0.41 0.71 0.94 0.41 0.71 0.94 || 2.83 C2+ Core2 Q9550 | 225
0.41 0.66 1.00 0.38 0.65 0.91 0.37 0.62 0.89 2.26 Ci7 Xeon E5520 385
2.87 4.66 15.01 2.69 4.62 17.94 2.72 4.82 17.95 1.296 | G200 GTX280 n/a
2.93 4.90 | 14.76 2.70 4.62 15.54 2.69 4.57 | 15.97 1.242 | G200 GTX295 500

Architecture and Differences.
results with a variety of machines and graphics cards. It can be concluded from the
tables that cycles per attempt (candidate vector) is almost always a constant de-
pending on the testing platform. In other words, we can easily estimate the running
time given the architecture, frequency, number of cores, and n. Our implementations

are scalable w.r.t. n, which has been explained by the discussion in Section 4.1.2.
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In Table 5.1 and Table 5.2, we show our test




Figure 5.1: Cycles Per Candidate Tested for Polynomials of Degree 2, 3, and 4

20 T

18 - G2 x4

14 | L 4

cycles

degree

The marked cycle count ditference between Intel and-AMD cores is explained by
Intel dispatching three XMM (SSE2) logieal instructions to AMD’s two per cycle

and handling branch prediction and cachir_lg better.

Trends As Degree d Increases.. Fig. 5.1 shows the variance in cycle count taken
by some fix amount of candidate vectors (which is eight vectors per core for CPUs
and one vector per SP for GPUs) as d increases. For most of the architectures, the
cycle count increases almost linearly, which is consistent with theoretical complexity
of GGCE. However, there are two exceptions. The burst in cycle count when d = 4
on G200 is apparently due to fast memory (register) pressure, while the anomaly on

K10 is believed to be caused by insufficiency in cache size.

Gaussian Elimination. On GPUs, with m — u = 32 coefficients eliminated, we
have a speed up of 21% on quadratic cases, 18% for cubics, and 4% for quadratics.
On CPUs, with m — u = 48 coefficients eliminated, we have 16% on quadratic cases,
20% for cubics, and 9% for quadratics. Although there is still some room for im-

provement, we have shown that this technique can bring considerable improvement
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in speed.
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