Algorithms for Model Checking (2IMF35) Lecture 1 The temporal logics CTL*, CTL and LTL: syntax and semantics

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 6.073

Outline

2/25

Motivation

Kripke Structures

Temporal Logics CTL* CTL and LTL

Exercise

Model checking is an automated verification method. It can be used to check that a requirement holds for a model of a system.

- A (software or hardware) system is usually modelled in a particular specification language
- The requirements are specified as properties in some temporal logic
- As an intermediate step, a state space is generated from the specification. This is a graph, representing all possible behaviours
- A model checking algorithm decides whether the property holds for the model: the property can be verified or refuted. Sometimes, witnesses or counter examples can be provided

In practice, model checking proves to be an effective method to detect many *bugs* in early design phases

Motivation

Example

- What: control system for the Compact Muon Sollenoid detector at the LHC (CERN)
- Bugs: various kinds of livelocks

- What: Medical/health device communication standard IEEE 11073
- Bugs: devices can interpret data in different units of measurements

- What: Implantable Pulse Generators (pacemaker)
- Bugs: deadlock

Complexity of model checking arises from:

- State space explosion: the state space is usually much larger than the specification
- Expressive logics have complex model checking algorithms

Ways to deal with the state space explosion:

- equivalence reduction: remove states with identical potentials from a state space
- > on-the-fly: integrate the generation and verification phases, to prune the state space
- symbolic model checking: represent sets of states by clever data structures
- > partial-order reduction: ignore some executions, because they are covered by others
- abstraction: remove details by working on approximations

6/25

Motivation

Kripke Structures

Temporal Logics CTL* CTL and LTL

Exercise

The behaviour of a system is modelled by a graph consisting of:

- nodes, representing states of the system (e.g. the value of a program counter, variables, registers, stack/heap contents, etc.)
- edges, representing state transitions of the system (e.g. events, input/output actions, internal computations)

Information can be put in states or on transitions (or both).

- Kripke Structures (KS): information on states, called atomic propositions
- Labelled Transition Systems (LTS): information on edges, called action labels

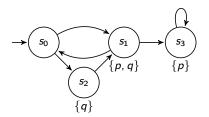
Today: only Kripke Structures

Let *AP* be a set of atomic propositions. A Kripke Structure over *AP* is a structure $M = \langle S, S_0, R, L \rangle$, where

- S is a finite set of states
- $S_0 \subseteq S$ is a non-empty set of initial states
- R ⊆ S × S is a total binary relation on S, representing the set of transitions. totality: for all s ∈ S, there exists t ∈ S, such that (s, t) ∈ R.
- $L: S \to 2^{AP}$, labels each state with the set of atomic propositions that hold in that state

Conventions:

- Sometimes S_0 is irrelevant and dropped; sometimes it is a single state, in which case it is written as s_0
- Instead of $(s, t) \in R$, we write sRt



This is a Kripke Structure over AP, $M = \langle S, S_0, R, L \rangle$ as follows:

•
$$S = \{s_0, s_1, s_2, s_3\}$$

•
$$S_0 = \{s_0\}$$

$$R = \{(s_0, s_1), (s_1, s_0), (s_1, s_3), (s_3, s_3), (s_0, s_2), (s_2, s_1)\}$$

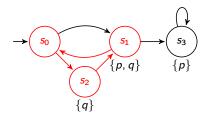
•
$$L(s_0) = \emptyset$$
, $L(s_1) = \{p, q\}$
 $L(s_2) = \{q\}$, $L(s_3) = \{p\}$

Note: without the self-loop (s_3, s_3) , R would not be total and we would not have a Kripke structure

M =

9/25

Kripke Structures

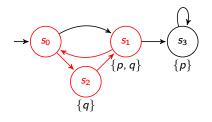


Terminology

Given a fixed Kripke Structure $M = \langle S, R, L \rangle$.

- A path π is an infinite sequence of states $s_0 \ s_1 \dots$ such that for all $i \in \mathbb{N}$: $s_i \in S$ and $s_i R s_{i+1}$
- Given a path $\pi = s_0 s_1 s_2 \ldots$
 - π(i) denotes the *i*-th state (counting from 0): s_i
 - πⁱ denotes the suffix of π starting at i: s_i s_{i+1} ...
- path(s) denotes the set of paths starting at s: {π | π(0) = s}

Kripke Structures



Terminology

Given a fixed Kripke Structure $M = \langle S, R, L \rangle$.

- A path π is an infinite sequence of states $s_0 \ s_1 \dots$ such that for all $i \in \mathbb{N}$: $s_i \in S$ and $s_i R s_{i+1}$
- Given a path $\pi = s_0 s_1 s_2 \ldots$
 - π(i) denotes the *i*-th state (counting from 0): s_i
 - πⁱ denotes the suffix of π starting at i: s_i s_{i+1} ...
- ▶ path(s) denotes the set of paths starting at s: {π | π(0) = s}

In the Kripke Structure above:

 $(s_0 \ s_2 \ s_1)^{\omega} \in \mathsf{path}(s_0), \quad ((s_0 \ s_2 \ s_1)^{\omega})(3) = s_0, \quad ((s_0 \ s_2 \ s_1)^{\omega})^3 = (s_0 \ s_2 \ s_1)^{\omega}$

11/25

Motivation

Kripke Structures

Temporal Logics CTL* CTL and LTL

Exercise

CTL* is the Full Computation Tree Logic

- CTL* formulae express properties over states or paths
- CTL* has the following temporal operators, which are used to express properties of paths: neXt, Future, Globally, Until, Releases The operators have the following intuitive meaning:
 - X f: f holds in the next state in this path
 - F f: f holds somewhere in this path
 - G f: f holds everywhere on this path
 - $[f \cup g]$: g holds somewhere on this path, and f holds in all preceding states
 - [f R g]: g holds as long as f did not hold before

Example

F G p versus G F p: almost always versus infinitely often

12/25

Temporal Logics: CTL*

CTL* consists of:

- Atomic propositions (AP)
- ▶ Boolean connectives: \neg (not), \lor (or), \land (and)
- Temporal operators (on paths, see previous slide)
- Path quantifiers (on states, see below)

Path quantifiers are capable of expressing properties on a system's branching structure:

for All paths versus there Exists a path

Path quantifiers have the following intuitive meaning:

- A f: f holds for all paths from this state
- E f: f holds for at least one path from this state

CTL* state formulae (\mathcal{S}) and path formulae (\mathcal{P}) are defined simultaneously by induction:

Summarising:

- ► State formulae (S) are:
 - constants true and false and atomic propositions (basis)
 - Boolean combinations of state formulae
 - quantified path formulae
- ▶ Path formulae (*P*) are:
 - state formulae (basis)
 - Boolean combinations of path formulae
 - temporal combinations of path formulae

14/2

The semantics of CTL* state formulae and path formulae is defined relative to a fixed Kripke Structure $M = \langle S, S_0, R, L \rangle$ over *AP*:

For state formulae:

 $\begin{array}{ll} s \models \text{true} \\ s \not\models \text{false} \\ s \models p & \text{iff} \quad p \in L(s) \\ s \models \neg f & \text{iff} \quad s \not\models f \\ s \models f \land g & \text{iff} \quad s \models f \text{ and } s \models g \\ s \models f \lor g & \text{iff} \quad s \models f \text{ or } s \models g \\ s \models E f & \text{iff} \quad \text{for some } \pi \in \text{path}(s), \pi \models f \\ s \models A f & \text{iff} \quad \text{for all } \pi \in \text{path}(s), \pi \models f \end{array}$

The semantics of CTL* state formulae and path formulae is defined relative to a fixed Kripke Structure $M = \langle S, S_0, R, L \rangle$ over AP:

For path formulae:

 $\begin{aligned} \pi &\models f & \text{iff} \quad \pi(0) \models f & (\text{if } f \text{ is a state formula}) \\ \pi &\models \neg f & \text{iff} \quad \pi \not\models f \\ \pi &\models f \land g & \text{iff} \quad \pi \models f \text{ and } \pi \models g \\ \pi &\models f \lor g & \text{iff} \quad \pi \models f \text{ or } \pi \models g \\ \pi &\models X f & \text{iff} \quad \pi^1 \models f \\ \pi &\models F f & \text{iff} \quad \text{for some } i \ge 0, \pi^i \models f \\ \pi &\models G f & \text{iff} \quad \text{for all } i \ge 0, \pi^i \models f \\ \pi &\models [f \cup g] & \text{iff} \quad \exists i \ge 0, \pi^i \models g \land \forall j < i. \pi^j \models f \\ \pi &\models [f R g] & \text{iff} \quad \forall j \ge 0. ((\forall i < j. \pi^i \not\models f) \Rightarrow \pi^j \models g) \end{aligned}$

Temporal Logics: CTL*

A property f is satisfied by a Kripke Structure $M = \langle S, S_0, R, L \rangle$, denoted $M \models f$, iff $\forall s \in S_0$. $M, s \models f$.

Equivalence between two CTL* properties is defined as follows:

$$f \equiv g \text{ iff } \forall M \forall s . (M, s \models f \Leftrightarrow M, s \models g)$$

Likewise for paths

According to the semantics, we can derive several dualities:

> ¬G f ≡ F (¬f)
> ¬[f R g] ≡ [(¬f) U (¬g)]
> ¬¬f ≡ f
> ¬X f ≡ X (¬f)
> ¬X f ≡ X (¬f)
> ¬A f ≡ E (¬f)

So all CTL* properties can be expressed using only: \neg , true, \lor , X , [U], E

Two simpler sublogics of CTL* are defined:

- LTL: linear time logic
 - checks temporal operators along single paths
 - pro: -counter examples are easy: "lasso" -nice automata-theoretic algorithm
 - typical tool: SPIN
- CTL: computation tree logic
 - branching time logic
 - · temporal operators should be preceded by path quantifiers
 - pro: -efficient model checking algorithm -amenable to symbolic techniques
 - typical tool: nuSMV

The expressive power of LTL and CTL is incomparable.

18/25

LTL state formulae (S) and path formulae (P):

Summarising:

- The only state formulae are:
 - all-quantified path formulae (hence, the A is sometimes omitted)
- Path formulae are:
 - constants true and false and atomic propositions
 - Boolean combinations of path formulae
 - temporal combinations of path formulae

Example

LTL expressions: A F G p, A (\neg (G F p) \lor F q); syntactically not in LTL: A F A G p, A G E F p Question: A F G $p \stackrel{?}{=} A F A G p$ 19/24

CTL state formulae (S) and path formulae (P):

Summarising:

- State formulae are:
 - · constants true and false and atomic propositions
 - Boolean combinations of state formulae
 - quantified path formulae
- The only path formulae are:
 - temporal combinations of state formulae

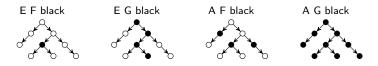
Example

CTL expressions: A G E F p, E $[p \cup (E \times q)]$; not in CTL: A F G p, A X X p, E $[p \cup (X q)]$ Question: A X X $p \stackrel{?}{=} A X A X p$

20/25

Alternative view: CTL has only state formulae, with the following ten temporal combinators:

- A X and E X : for all/some next state
- A F and E F : inevitably and potentially
- A G and E G : invariantly and potentially always
- A [U] and E [U]: for all/some paths, until
- A [R] and E [R]: for all/some paths, releases



For CTL, only the following operators are needed:

- ▶ Boolean connectives: ¬, ∨ and constants true and AP
- Temporal combinations: E X , E G , E [U]

Standard transformations (derived from CTL*):

1. E F $f \equiv E$ [true U f]4. A F $f \equiv \neg E G (\neg f)$ 2. A X $f \equiv \neg E X (\neg f)$ 5. A $[f R g] \equiv \neg E [(\neg f) U (\neg g)]$ 3. A G $f \equiv \neg E F (\neg f)$ 6. E $[f R g] \equiv \neg A [(\neg f) U (\neg g)]$

To remove A [U], note that:

- $[f \mathsf{R} g] \equiv [g \mathsf{U} (f \land g)] \lor \mathsf{G} g$
- ► A $[f \cup g] \equiv \neg E [(\neg f) R (\neg g)]$ (rule 6)
- $\blacktriangleright \mathsf{E}(f \lor g) \equiv \mathsf{E} f \lor \mathsf{E} g$

from this, we obtain A [f U g] $\equiv \neg E$ [($\neg g$) U ($\neg (f \lor g)$)] $\land \neg E$ G ($\neg g$)

22/25

Example (CTL versus LTL)

Is there an equivalent CTL formula for the LTL formula A F $(p \land X p)$?

► A F $(p \land X p) \not\equiv A$ F $(p \land A X p)$: $M_1 \models A$ F $(p \land X p)$ but $M_1 \not\models A$ F $(p \land A X p)$

► A F $(p \land X p) \neq A$ F $(p \land E X p)$: $M_2 \not\models A$ F $(p \land X p)$ but $M_2 \models A$ F $(p \land E X p)$

- Actually: A F (p \lapha X p) is not expressible in CTL (does not follow from these observations)
- Open problem: which LTL formulae admit equivalent CTL formulae.
- The reverse problem (which CTL formulae are equivalent to an LTL formula) is solved [Clarke and Draghicescu]

Motivation

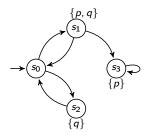
Kripke Structures

Temporal Logics CTL* CTL and LTL

Exercise

TU/e Technische Universiteit Eindhoven University of Technology

Exercise



CTL* formulae: p, E [$q \ R \ p$], E F G p, A G F p, A G E F p, A G F ($p \land X \ q$), A G ($\neg q \lor F \ p$), A ((G $p) \lor (F \ q)$)

- For each formula, indicate whether it is (syntactically) in LTL and/or CTL
- > Determine for each formula in which states of the above Kripke Structure it holds

