Algorithms for Model Checking (2IW55)

Lecture 12
The Recursive Algorithm for Parity games
Background material:
“Recursive Solving of Parity Games Requires Exponential Time", Oliver Friedmann
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Parity games (recap)

Identify graph, priorities, owners, plays, and strategies in the following parity game.
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Minimizing parity games
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Transformations on parity games

Self-loop elimination (vs Local resolution)

v

Priority compaction

» Priority propagation

\4

Bisimulation minimisation
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Bisimulation

Definition (Bisimilarity of vertices)
Let G = (V,E,p,(Vo, Vo)) be a parity game. Let R be a symmetric relation. R is a
bisimulation relation if v R v/ implies

rveVos v eV
> p(v) =p(v')
» v — w implies 3w’ such that v/ — w’ and w R v’

Vertices v and v’ are bisimilar (v = v’) iff there exists a bisimulation relation R such that
vR V.
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Bisimulation

Definition (Bisimilarity of vertices)
Let G = (V,E,p,(Vo, Vo)) be a parity game. Let R be a symmetric relation. R is a
bisimulation relation if v R v/ implies

rveVos v eV
> p(v) =p(v')
» v — w implies 3w’ such that v/ — w’ and w R v’

Vertices v and v’ are bisimilar (v = v’) iff there exists a bisimulation relation R such that
vR V.

Theorem
v =V’ implies that v and v’ are won by the same player
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Bisimilarity (example)

Minimal bisimilar parity game

Original
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Solving parity games
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Let G = (V,E,p,(Vo, Vo)) be a parity game.
> There is a unique partition (Wo, Wh) of V such that:

¢ & has winning strategy oo from W, and
¢ [0 has winning strategy o from W

Goal of parity game algorithms

Compute partitioning (Weo, W) with strategies oo and g of V, such that go is winning
for player & from Wo and gg is winning for player O from Wgo.
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Let G = (V, E, p,(Vo, Vo)) be a parity game.
We use the following notation:
» SisO,0is ©
» G\ U is parity game G restricted to the vertices outside U. Formally
G\U= (V' E, p, (V5 V) with
V=V U,

« E'=ENn(V\U)?

e p'(v) =p(v) forve V\U,
© V4 =Vo\ U, and

o Vé:VD\U
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Recursive algorithm (intuition)

> Divide and conquer

> Base: empty game
> Step: assemble winning sets/strategies from

* winning sets/strategies of subgames
* attractor strategy for one of players reaching set of nodes with minimal priority in the
game
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Attractor sets

The attractor set for O and set U C V is the set of vertices such that O can force any
play to reach U.

Definition
Let U C V. We define the attractor sets inductively as follows:

Attry(G,U)  =U

AttrT(G, U) = Attr§(G, U)
U{ve Vo |3V e Vi(v,V) e EAV € Attrf (G, U)}
Uve Vg W eV:(v,V)eE = V' € Attr§ (G, U)}

Attro(G,U) = Uyen Attris(G, U)
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Example of attractor sets

Example

Consider parity game G:

Compute:
> Attro(G,{Z})
> Attro(G, {W})
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Example of attractor sets

Example

Consider parity game G:

Compute:
> Attro(G,{Z}) ={Z, X', W}
> Attro(G, {W}) = {W, Y}
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Observations

Let U C V. Let A= Attro(G, U).
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Observations

Let U C V. Let A= Attro(G, U).

» < cannot escape from V \ A.
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Observations

Let U C V. Let A= Attro(G, U).

» < cannot escape from V \ A.

V]
Vo Ky » [J cannot escape from A.
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Observations

Let U C V. Let A = Attro(G, V).
Assume:
\% 4 @ > Xg is winning set for O on G \ A;
XD > B:AttrD(G,XD);
> Yo is winning set for & on G\ B;
> Yg is winning set for J on G \ B.
Y
B O
\4
X0 Yo
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Observations

A
v (v)
X0
B G
V]
X0 Yo
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Let U C V. Let A= Attro(G, U).
Assume:

> Xg is winning set for O on G \ A;

» B= AttrD(G,XD);

> Yo is winning set for & on G\ B;

> Yg is winning set for J on G \ B.
Then:

> Player © can never leave B;

> Player O can never leave V' \ B;

> A winning strategy for player O in G\ (V \ B) from
Vo N B is also a winning strategy for player [J in G
from Vo N B.
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Recursive algorithm (McNaughton '93, Zielonka '98)

Recursively solve a parity game: Recursive(G). Returns partitioning (W, W) such that
& wins from Wo, and [0 wins from Wp.

1: if Vg = 0 then

2: We 1]

3: W|:| < @

4. return (Wo, W0)
5. end if
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Recursive algorithm (McNaughton '93, Zielonka '98)

Recursively solve a parity game: Recursive(G). Returns partitioning (W, W) such that
& wins from Wo, and [0 wins from Wp.

if Vg = 0 then
Wo 0 12: if X5 = 0 then
Wo 0 13 Wo «+ AUXo
return (Wo, W) 14 Ws <0

end if

m <+ min{p(v) | v € V}

(* Paper: max *)
O ifmi
2O if mis 'even
O otherwise
8 U+ {veV]|p(v)=m}

9: A« Attro(G, U)
10: (Xo, Xa) < Recursive(G \ A)

S
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Recursive algorithm (McNaughton '93, Zielonka '98)

Recursively solve a parity game: Recursive(G). Returns partitioning (Ws, W5) such that

& wins from Wo, and [0 wins from Wp.

if Ve = @ then

We 1]

W|:| <— @

return (Wo, Wo)
end if
m <+ min{p(v) | v € V}

(* Paper: max *)

n O O otherwise

8 U« {veV]|p(v)=m}

9: A« Attro(G, U)

10: (Xo, Xa) < Recursive(G \ A)

S

& if mis even
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ifX6:Q)then
W5 « AU X6

. else

B« Attr=(G, X5)
(Yo, Ya) < Recursive(G \ B)
WO — YO

end if

: return (Wo, W0)
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Apply the recursive algorithm to the following parity game G

6: m+« 3

7O+ 0O

8: Ue{vev\p(v)_3}_{WZZ}
9: A« Attry(G,U) = {W, Z,2'}

10: (Xo, X)) < Recursive(G \ V) = (0, 0)
11: if Xo = 0 then

12: W« AuXg=A={w,z2'}
13: Wo « 0

14: else
4 wWoo1s
7 19: end if
20

treturn (Wo, W) = (0,{W,Z,2'})

Department of Mathematics and Computer Science

Technische Universiteit
e Eindhoven
University of Technology




Apply the recursive algorithm to the following parity game G

6: m«+ 2

, 7: O« ©

@y 8 U« {veV|pyv) =2} ={Y.Y}
9: A+ Attro(G,U) = {Y, Y’}
10: (Xo, X)) « Recursive(G\ {Y,Y'}) = (0,{Z,Z2',W})
11: if X = 0 then

Y 12: D

14: else

15: B« Attrp(G. Xp) ={Y.Y’.Z2,Z, W}

16: (Yo, YO) + Recursive(G \ V) = (0, 0)
z 0 0 0 w 17: We <—DY<> =0
7 18 W<« BuYg=B={Y, Y, ZZ W}
19: end if
20: return (Wo, W) = (0,{Y,Y’, 2,2, W})
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Example (Recursive(G))

Consider parity game G:
6: m+« 1

7 O+ 0O

8: Ue{vev\p(v)_l}_{XX}

9: A« Attr(G, U) = {X, X'}

10: (Xo, X)) « Recursive(G \ {X,X'}) = (0,{Y,Y’,Z,Z2',W})
11: if Xo = 0 then

12: W« AuXoe ={X, X"V, Y 227 w}

13: We «— 0

14: else

19: endl |f
20: return (Wo, W) = (0.{X, X", Y, Y 2,2, W})

So, player [J wins from all vertices!
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Let G = (V,E, p, (Vo, V) be a parity game. n=|V|], e = |E|,d = |{p(v) | v € V}|.

Worst-case running time complexity

Lowerbound on worst-case:
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Let G = (V,E, p,(Vo, Vo) be a parity game; n= |V|,e = |E|,d = |[{p(v) | v € V}|.

> Algorithm with best known upper bound: Big step algorithm due to Schewe, with
complexity
o(d - n®?)
» Big step combines recursive algorithm with small progress measures;

> Small progress measures will be discussed first lecture in January
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Consider the following parity game:

» Compute the winning sets Wo,, W5 for players & and [ in this parity game using the
recursive algorithm.

> Translate this parity game to BES and solve the BES using Gauss elimination.
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