
Department of Mathematics and Computer Science

Algorithms for Model Checking (2IW55)
Lecture 12

The Recursive Algorithm for Parity games
Background material:

“Recursive Solving of Parity Games Requires Exponential Time”, Oliver Friedmann

December 31, 2010

2/21

Department of Mathematics and Computer Science

Parity games (recap)

Identify graph, priorities, owners, plays, and strategies in the following parity game.

1

2 2

1 1

3/21

Department of Mathematics and Computer Science

Outline

Minimizing parity games

Solving parity games

4/21

Department of Mathematics and Computer Science

Transformations on parity games

I Self-loop elimination (vs Local resolution)
I Priority compaction
I Priority propagation
I Bisimulation minimisation

5/21

Department of Mathematics and Computer Science

Bisimulation

Definition (Bisimilarity of vertices)
Let G = (V ,E , p, (V3,V�)) be a parity game. Let R be a symmetric relation. R is a
bisimulation relation if v R v ′ implies
I v ∈ V3 ⇔ v ′ ∈ V3

I p(v) = p(v ′)
I v → w implies ∃w ′ such that v ′ → w ′ and w R w ′

Vertices v and v ′ are bisimilar (v ≡ v ′) iff there exists a bisimulation relation R such that
v R v ′.

Theorem
v ≡ v ′ implies that v and v ′ are won by the same player

5/21

Department of Mathematics and Computer Science

Bisimulation

Definition (Bisimilarity of vertices)
Let G = (V ,E , p, (V3,V�)) be a parity game. Let R be a symmetric relation. R is a
bisimulation relation if v R v ′ implies
I v ∈ V3 ⇔ v ′ ∈ V3

I p(v) = p(v ′)
I v → w implies ∃w ′ such that v ′ → w ′ and w R w ′

Vertices v and v ′ are bisimilar (v ≡ v ′) iff there exists a bisimulation relation R such that
v R v ′.

Theorem
v ≡ v ′ implies that v and v ′ are won by the same player

6/21

Department of Mathematics and Computer Science

Bisimilarity (example)

Original

1

2 2

1 1

Minimal bisimilar parity game

1

2

1

7/21

Department of Mathematics and Computer Science

Outline

Minimizing parity games

Solving parity games

8/21

Department of Mathematics and Computer Science

Goal

Let G = (V ,E , p, (V3,V�)) be a parity game.
I There is a unique partition (W3,W�) of V such that:

• 3 has winning strategy %3 from W3, and
• � has winning strategy %� from W�.

Goal of parity game algorithms
Compute partitioning (W3,W�) with strategies %3 and %� of V , such that %3 is winning
for player 3 from W3 and %� is winning for player � from W�.

9/21

Department of Mathematics and Computer Science

Notation

Let G = (V ,E , p, (V3,V�)) be a parity game.
We use the following notation:
I 3 is �, � is 3
I G \ U is parity game G restricted to the vertices outside U. Formally

G \ U = (V ′,E ′, p′, (V ′3,V ′�)), with
• V ′ = V \ U,
• E ′ = E ∩ (V \ U)2,
• p′(v) = p(v) for v ∈ V \ U,
• V ′3 = V3 \ U, and
• V ′� = V� \ U

10/21

Department of Mathematics and Computer Science

Recursive algorithm (intuition)

I Divide and conquer
I Base: empty game
I Step: assemble winning sets/strategies from

• winning sets/strategies of subgames
• attractor strategy for one of players reaching set of nodes with minimal priority in the

game

11/21

Department of Mathematics and Computer Science

Attractor sets

The attractor set for © and set U ⊆ V is the set of vertices such that © can force any
play to reach U.

Definition
Let U ⊆ V . We define the attractor sets inductively as follows:

Attr0
©(G ,U) = U

Attrk+1
© (G ,U) = Attrk

©(G ,U)

∪{v ∈ V© | ∃v ′ ∈ V : (v , v ′) ∈ E ∧ v ′ ∈ Attrk
©(G ,U)}

∪{v ∈ V© | ∀v
′ ∈ V : (v , v ′) ∈ E =⇒ v ′ ∈ Attrk

©(G ,U)}

Attr©(G ,U) =
⋃

k∈N Attr
k
©(G ,U)

12/21

Department of Mathematics and Computer Science

Example of attractor sets

Example

Consider parity game G :

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Compute:
I Attr3(G , {Z})
I Attr�(G , {W })

12/21

Department of Mathematics and Computer Science

Example of attractor sets

Example

Consider parity game G :

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

Compute:
I Attr3(G , {Z}) = {Z ,X ′,W }
I Attr�(G , {W }) = {W ,Y }

13/21

Department of Mathematics and Computer Science

Observations

V
A

U

V♦

V�

Let U ⊆ V . Let A = Attr3(G ,U).

I 3 cannot escape from V \ A.
I � cannot escape from A.

13/21

Department of Mathematics and Computer Science

Observations

V
A

U

V♦

V�

Let U ⊆ V . Let A = Attr3(G ,U).
I 3 cannot escape from V \ A.

I � cannot escape from A.

13/21

Department of Mathematics and Computer Science

Observations

V
A

U

V♦

V�

Let U ⊆ V . Let A = Attr3(G ,U).
I 3 cannot escape from V \ A.
I � cannot escape from A.

14/21

Department of Mathematics and Computer Science

Observations

V
A

U
X�

V

X�

B
Y�

Y3

Let U ⊆ V . Let A = Attr3(G ,U).
Assume:
I X� is winning set for � on G \ A;
I B = Attr�(G ,X�);
I Y3 is winning set for 3 on G \ B;
I Y� is winning set for � on G \ B.

Then:
I Player 3 can never leave B;
I Player � can never leave V \ B;
I A winning strategy for player � in G \ (V \ B) from

V� ∩ B is also a winning strategy for player � in G
from V� ∩ B.

14/21

Department of Mathematics and Computer Science

Observations

V
A

U
X�

V

X�

B
Y�

Y3

Let U ⊆ V . Let A = Attr3(G ,U).
Assume:
I X� is winning set for � on G \ A;
I B = Attr�(G ,X�);
I Y3 is winning set for 3 on G \ B;
I Y� is winning set for � on G \ B.

Then:
I Player 3 can never leave B;
I Player � can never leave V \ B;
I A winning strategy for player � in G \ (V \ B) from

V� ∩ B is also a winning strategy for player � in G
from V� ∩ B.

15/21

Department of Mathematics and Computer Science

Recursive algorithm (McNaughton ’93, Zielonka ’98)

Recursively solve a parity game: Recursive(G). Returns partitioning (W3,W�) such that
3 wins from W3, and � wins from W�.

1: if VG = ∅ then
2: W3 ← ∅
3: W� ← ∅
4: return (W3,W�)
5: end if

6: m← min{p(v) | v ∈ V }
(* Paper: max *)

7: ©←

{
3 if m is even
� otherwise

8: U ← {v ∈ V | p(v) = m}
9: A← Attr©(G ,U)

10: (X3,X�)← Recursive(G \ A)

12: if X© = ∅ then
13: W© ← A ∪ X©
14: W© ← ∅
15: else
16: B ← Attr©(G ,X©)
17: (Y3,Y�)← Recursive(G \ B)
18: W© ← Y©
19: W© ← B ∪ Y©
20: end if
21: return (W3,W�)

15/21

Department of Mathematics and Computer Science

Recursive algorithm (McNaughton ’93, Zielonka ’98)

Recursively solve a parity game: Recursive(G). Returns partitioning (W3,W�) such that
3 wins from W3, and � wins from W�.

1: if VG = ∅ then
2: W3 ← ∅
3: W� ← ∅
4: return (W3,W�)
5: end if
6: m← min{p(v) | v ∈ V }

(* Paper: max *)

7: ©←

{
3 if m is even
� otherwise

8: U ← {v ∈ V | p(v) = m}
9: A← Attr©(G ,U)

10: (X3,X�)← Recursive(G \ A)

12: if X© = ∅ then
13: W© ← A ∪ X©
14: W© ← ∅

15: else
16: B ← Attr©(G ,X©)
17: (Y3,Y�)← Recursive(G \ B)
18: W© ← Y©
19: W© ← B ∪ Y©
20: end if
21: return (W3,W�)

15/21

Department of Mathematics and Computer Science

Recursive algorithm (McNaughton ’93, Zielonka ’98)

Recursively solve a parity game: Recursive(G). Returns partitioning (W3,W�) such that
3 wins from W3, and � wins from W�.

1: if VG = ∅ then
2: W3 ← ∅
3: W� ← ∅
4: return (W3,W�)
5: end if
6: m← min{p(v) | v ∈ V }

(* Paper: max *)

7: ©←

{
3 if m is even
� otherwise

8: U ← {v ∈ V | p(v) = m}
9: A← Attr©(G ,U)

10: (X3,X�)← Recursive(G \ A)

12: if X© = ∅ then
13: W© ← A ∪ X©
14: W© ← ∅
15: else
16: B ← Attr©(G ,X©)
17: (Y3,Y�)← Recursive(G \ B)
18: W© ← Y©
19: W© ← B ∪ Y©
20: end if
21: return (W3,W�)

16/21

Department of Mathematics and Computer Science

Exercise

Apply the recursive algorithm to the following parity game G

3

Z
3Z ′ 3 W

6: m ← 3
7: ©← �
8: U ← {v ∈ V | p(v) = 3} = {W ,Z ,Z ′}
9: A← Attr�(G ,U) = {W ,Z ,Z ′}
10: (X3,X�)← Recursive(G \ V) = (∅, ∅)
11: if X3 = ∅ then
12: W� ← A ∪ X� = A = {W ,Z ,Z ′}
13: W3 ← ∅
14: else
15: . . .
19: end if
20: return (W3,W�) = (∅, {W ,Z ,Z ′})

17/21

Department of Mathematics and Computer Science

Exercise

Apply the recursive algorithm to the following parity game G

2 Y ′

2 Y

3

Z
3Z ′ 3 W

6: m ← 2
7: ©← 3
8: U ← {v ∈ V | p(v) = 2} = {Y ,Y ′}
9: A← Attr3(G ,U) = {Y ,Y ′}
10: (X3,X�)← Recursive(G \ {Y ,Y ′}) = (∅, {Z ,Z ′,W})
11: if X� = ∅ then
12: . . .
14: else
15: B ← Attr�(G ,X�) = {Y ,Y ′,Z ,Z ′,W}
16: (Y3,Y�)← Recursive(G \ V) = (∅, ∅)
17: W3 ← Y3 = ∅
18: W� ← B ∪ Y� = B = {Y ,Y ′,Z ,Z ′,W}
19: end if
20: return (W3,W�) = (∅, {Y ,Y ′,Z ,Z ′,W})

18/21

Department of Mathematics and Computer Science

Example (Recursive(G))

Consider parity game G :

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

6: m ← 1
7: ©← �
8: U ← {v ∈ V | p(v) = 1} = {X ,X ′}
9: A← Attr�(G ,U) = {X ,X ′}
10: (X3,X�)← Recursive(G \ {X ,X ′}) = (∅, {Y ,Y ′,Z ,Z ′,W})
11: if X3 = ∅ then
12: W� ← A ∪ X3 = {X ,X ′,Y ,Y ′,Z ,Z ′,W}
13: W3 ← ∅
14: else
15: . . .
19: end if
20: return (W3,W�) = (∅, {X ,X ′,Y ,Y ′,Z ,Z ′,W})

So, player � wins from all vertices!

19/21

Department of Mathematics and Computer Science

Complexity

Let G = (V ,E , p, (V3,V�) be a parity game. n = |V |, e = |E |, d = |{p(v) | v ∈ V }|.

Worst-case running time complexity

O(e · nd)

Lowerbound on worst-case:

Ω(fib(n)) = Ω((
1 +
√
5

2
)n)

20/21

Department of Mathematics and Computer Science

Complexity

Let G = (V ,E , p, (V3,V�) be a parity game; n = |V |, e = |E |, d = |{p(v) | v ∈ V }|.
I Algorithm with best known upper bound: Big step algorithm due to Schewe, with

complexity
O(d · nd/3)

I Big step combines recursive algorithm with small progress measures;
I Small progress measures will be discussed first lecture in January

21/21

Department of Mathematics and Computer Science

Exercise

Consider the following parity game:

1
s1

2

s2
3

s3

I Compute the winning sets W3,W� for players 3 and � in this parity game using the
recursive algorithm.

I Translate this parity game to BES and solve the BES using Gauss elimination.

	Minimizing parity games
	Solving parity games

