Algorithms for Model Checking (2IW55)

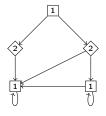
Lecture 12

The Recursive Algorithm for Parity games Background material:

"Recursive Solving of Parity Games Requires Exponential Time", Oliver Friedmann

December 31, 2010

Identify graph, priorities, owners, plays, and strategies in the following parity game.



Minimizing parity games

Solving parity game

- ► Self-loop elimination (vs Local resolution)
- Priority compaction
- Priority propagation
- Bisimulation minimisation

Definition (Bisimilarity of vertices)

Let $G = (V, E, p, (V_{\Diamond}, V_{\Box}))$ be a parity game. Let R be a symmetric relation. R is a bisimulation relation if v R v' implies

- $v \in V_{\diamond} \Leftrightarrow v' \in V_{\diamond}$
- p(v) = p(v')
- ightharpoonup v
 ightarrow w implies $\exists w'$ such that v'
 ightarrow w' and w R w'

Vertices v and v' are bisimilar ($v \equiv v'$) iff there exists a bisimulation relation R such that v R v'.

Definition (Bisimilarity of vertices)

Let $G = (V, E, p, (V_{\Diamond}, V_{\Box}))$ be a parity game. Let R be a symmetric relation. R is a bisimulation relation if v R v' implies

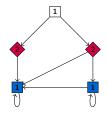
- $v \in V_{\Diamond} \Leftrightarrow v' \in V_{\Diamond}$
- p(v) = p(v')
- ightharpoonup v
 ightarrow w implies $\exists w'$ such that v'
 ightarrow w' and w R w'

Vertices v and v' are bisimilar ($v \equiv v'$) iff there exists a bisimulation relation R such that v R v'.

Theorem

 $v \equiv v'$ implies that v and v' are won by the same player

Original



Minimal bisimilar parity game

Minimizing parity games

Solving parity games

Let $G = (V, E, p, (V_{\diamond}, V_{\square}))$ be a parity game.

- ▶ There is a unique partition $(W_{\diamondsuit}, W_{\square})$ of V such that:
 - \diamondsuit has winning strategy $\varrho \diamondsuit$ from $W \diamondsuit$, and
 - \square has winning strategy ϱ_{\square} from W_{\square} .

Goal of parity game algorithms

Compute partitioning $(W_{\Diamond}, W_{\square})$ with strategies ϱ_{\Diamond} and ϱ_{\square} of V, such that ϱ_{\Diamond} is winning for player \Diamond from W_{\Diamond} and ϱ_{\square} is winning for player \square from W_{\square} .

Let $G = (V, E, p, (V_{\diamond}, V_{\square}))$ be a parity game.

We use the following notation:

- → is □, □ is ◇
- ▶ $G \setminus U$ is parity game G restricted to the vertices outside U. Formally $G \setminus U = (V', E', p', (V'_{\Diamond}, V'_{\sqcap}))$, with
 - $V' = V \setminus U$,
 - $E' = E \cap (V \setminus U)^2$,
 - p'(v) = p(v) for $v \in V \setminus U$,
 - $V'_{\Diamond} = V_{\Diamond} \setminus U$, and
 - $V_{\square}^{\prime\prime} = V_{\square} \setminus U$

- Divide and conquer
- Base: empty game
- Step: assemble winning sets/strategies from
 - winning sets/strategies of subgames
 - attractor strategy for one of players reaching set of nodes with minimal priority in the game

The attractor set for \bigcirc and set $U \subseteq V$ is the set of vertices such that \bigcirc can force any play to reach U.

Definition

Let $U \subseteq V$. We define the attractor sets inductively as follows:

$$Attr_{\bigcirc}^{0}(G, U) = U$$

$$Attr_{\bigcirc}^{k+1}(G, U) = Attr_{\bigcirc}^{k}(G, U)$$

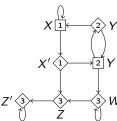
$$\cup \{v \in V_{\bigcirc} \mid \exists v' \in V : (v, v') \in E \land v' \in Attr_{\bigcirc}^{k}(G, U)\}$$

$$\cup \{v \in V_{\bigcirc} \mid \forall v' \in V : (v, v') \in E \implies v' \in Attr_{\bigcirc}^{k}(G, U)\}$$

$$Attr_{\bigcirc}(G, U) = \bigcup_{k \in \mathbb{N}} Attr_{\bigcirc}^{k}(G, U)$$

Example

Consider parity game G:

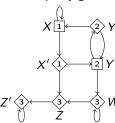


Compute:

- $\blacktriangleright Attr_{\Diamond}(G, \{Z\})$
- ightharpoonup $Attr_{\square}(G, \{W\})$

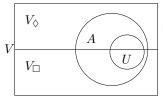
Example

Consider parity game G:

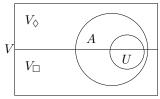


Compute:

- $Attr_{\diamond}(G, \{Z\}) = \{Z, X', W\}$
- $\blacktriangleright Attr_{\square}(G, \{W\}) = \{W, Y\}$

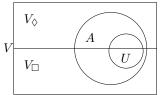


Let $U \subseteq V$. Let $A = Attr_{\Diamond}(G, U)$.



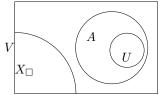
Let $U \subseteq V$. Let $A = Attr_{\Diamond}(G, U)$.

• \diamond cannot escape from $V \setminus A$.



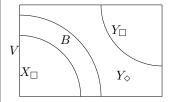
Let $U \subseteq V$. Let $A = Attr_{\Diamond}(G, U)$.

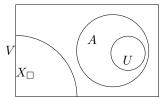
- \diamond cannot escape from $V \setminus A$.
- ightharpoonup cannot escape from A.



Let $U \subseteq V$. Let $A = Attr_{\Diamond}(G, U)$. Assume:

- ▶ X_{\square} is winning set for \square on $G \setminus A$;
- $B = Attr_{\square}(G, X_{\square});$
- ▶ Y_{\diamondsuit} is winning set for \diamondsuit on $G \setminus B$;
- ▶ Y_{\square} is winning set for \square on $G \setminus B$.



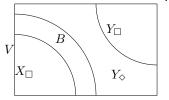


Let $U \subseteq V$. Let $A = Attr_{\Diamond}(G, U)$. Assume:

- ▶ X_{\square} is winning set for \square on $G \setminus A$;
- ▶ $B = Attr_{\square}(G, X_{\square});$
- ▶ Y_{\Diamond} is winning set for \Diamond on $G \setminus B$;
- ▶ Y_{\square} is winning set for \square on $G \setminus B$.

Then:

- ▶ Player ♦ can never leave B;
- ▶ Player \square can never leave $V \setminus B$;
- A winning strategy for player □ in G \ (V \ B) from V_□ ∩ B is also a winning strategy for player □ in G from V_□ ∩ B.



Recursively solve a parity game: Recursive(G). Returns partitioning $(W_{\diamond}, W_{\square})$ such that \diamond wins from W_{\diamond} , and \square wins from W_{\square} .

- 1: if $V_G = \emptyset$ then
- 2: $W_{\diamondsuit} \leftarrow \emptyset$
- 3: $W_{\square} \leftarrow \emptyset$
- 4: **return** $(W_{\diamondsuit}, W_{\square})$
- 5: end if

Recursively solve a parity game: Recursive(G). Returns partitioning $(W_{\diamond}, W_{\square})$ such that \diamond wins from W_{\diamond} , and \square wins from W_{\square} .

12: if $X_{\bigcirc} = \emptyset$ then 13: $W_{\bigcirc} \leftarrow A \cup X_{\bigcirc}$ 14: $W_{\bigcirc} \leftarrow \emptyset$

- 1: if $V_G = \emptyset$ then
- 2: *W*◊ ← ∅
- 3: $W_{\square} \leftarrow \emptyset$
- 4: **return** (*W*_⋄, *W*_□)
- 5: end if
- 6: $m \leftarrow \min\{p(v) \mid v \in V\}$
- (* Paper: max *)
- 7: $\bigcirc \leftarrow \begin{cases} \diamondsuit & \text{if m is even} \\ \square & \text{otherwise} \end{cases}$
- 8: $U \leftarrow \{v \in V \mid p(v) = m\}$
- 9: $A \leftarrow Attr_{\bigcirc}(G, U)$
- 10: $(X_{\Diamond}, X_{\square}) \leftarrow Recursive(G \setminus A)$

Recursively solve a parity game: Recursive(G). Returns partitioning $(W_{\diamond}, W_{\square})$ such that \diamond wins from W_{\diamond} , and \square wins from W_{\square} .

```
1: if V_G = \emptyset then

2: W_{\Diamond} \leftarrow \emptyset

3: W_{\Box} \leftarrow \emptyset

4: return (W_{\Diamond}, W_{\Box})

5: end if

6: m \leftarrow \min\{p(v) \mid v \in V\}

(* Paper: max *)

7: \bigcirc \leftarrow \begin{cases} \diamondsuit \text{ if m is even} \\ \Box \text{ otherwise} \end{cases}

8: U \leftarrow \{v \in V \mid p(v) = m\}

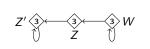
9: A \leftarrow Attr_{\bigcirc}(G, U)

10: (X_{\Diamond}, X_{\Box}) \leftarrow Recursive(G \setminus A)
```

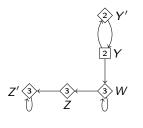
12: if
$$X_{\bigcirc} = \emptyset$$
 then
13: $W_{\bigcirc} \leftarrow A \cup X_{\bigcirc}$
14: $W_{\bigcirc} \leftarrow \emptyset$
15: else
16: $B \leftarrow Attr_{\bigcirc}(G, X_{\bigcirc})$
17: $(Y_{\Diamond}, Y_{\square}) \leftarrow Recursive(G \setminus B)$
18: $W_{\bigcirc} \leftarrow Y_{\bigcirc}$
19: $W_{\bigcirc} \leftarrow B \cup Y_{\bigcirc}$
20: end if
21: return $(W_{\Diamond}, W_{\square})$

Apply the recursive algorithm to the following parity game G

6:
$$m \leftarrow 3$$
7: $\bigcirc \leftarrow \square$
8: $U \leftarrow \{v \in V \mid p(v) = 3\} = \{W, Z, Z'\}$
9: $A \leftarrow Attr_{\square}(G, U) = \{W, Z, Z'\}$
10: $(X_{\Diamond}, X_{\square}) \leftarrow Recursive(G \setminus V) = (\emptyset, \emptyset)$
11: if $X_{\Diamond} = \emptyset$ then
12: $W_{\square} \leftarrow A \cup X_{\square} = A = \{W, Z, Z'\}$
13: $W_{\Diamond} \leftarrow \emptyset$
14: else
15: ...
19: end if
20: return $(W_{\Diamond}, W_{\square}) = (\emptyset, \{W, Z, Z'\})$

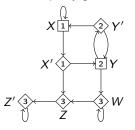


Apply the recursive algorithm to the following parity game G



```
6: m \leftarrow 2
7: \bigcirc \leftarrow \lozenge
8: U \leftarrow \{v \in V \mid p(v) = 2\} = \{Y, Y'\}
9: A \leftarrow Attr_{\lozenge}(G, U) = \{Y, Y'\}
10: (X_{\lozenge}, X_{\square}) \leftarrow Recursive(G \setminus \{Y, Y'\}) = (\emptyset, \{Z, Z', W\})
11: if X_{\square} = \emptyset then
12: ...
14: else
15: B \leftarrow Attr_{\square}(G, X_{\square}) = \{Y, Y', Z, Z', W\}
16: (Y_{\diamondsuit}, Y_{\square}) \leftarrow Recursive(G \setminus V) = (\emptyset, \emptyset)
17: W_{\diamondsuit} \leftarrow Y_{\diamondsuit} = \emptyset
18: W_{\square} \leftarrow B \cup Y_{\square} = B = \{Y, Y', Z, Z', W\}
19: end if
20: return (W_{\diamondsuit}, W_{\square}) = (\emptyset, \{Y, Y', Z, Z', W\})
```

Consider parity game G:



```
6: m \leftarrow 1
7: \bigcirc \leftarrow \square
8: U \leftarrow \{v \in V \mid p(v) = 1\} = \{X, X'\}
9: A \leftarrow Attr_{\square}(G, U) = \{X, X'\}
10: (X_{\diamondsuit}, X_{\square}) \leftarrow Recursive(G \setminus \{X, X'\}) = (\emptyset, \{Y, Y', Z, Z', W\})
11: if X_{\diamondsuit} = \emptyset then
12: W_{\square} \leftarrow A \cup X_{\diamondsuit} = \{X, X', Y, Y', Z, Z', W\}
13: W_{\diamondsuit} \leftarrow \emptyset
14: else
15: ...
19: end if
20: return (W_{\diamondsuit}, W_{\square}) = (\emptyset, \{X, X', Y, Y', Z, Z', W\})
```

So, player \square wins from all vertices!

Let $G = (V, E, p, (V_{\Diamond}, V_{\Box}))$ be a parity game. $n = |V|, e = |E|, d = |\{p(v) \mid v \in V\}|$.

Worst-case running time complexity

$$\mathcal{O}(e \cdot n^{d})$$

Lowerbound on worst-case:

$$\Omega(fib(n)) = \Omega((\frac{1+\sqrt{5}}{2})^n)$$

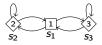
Let
$$G = (V, E, p, (V_{\Diamond}, V_{\Box}))$$
 be a parity game; $n = |V|, e = |E|, d = |\{p(v) \mid v \in V\}|$.

Algorithm with best known upper bound: Big step algorithm due to Schewe, with complexity

$$\mathcal{O}(d \cdot n^{d/3})$$

- Big step combines recursive algorithm with small progress measures;
- Small progress measures will be discussed first lecture in January

Consider the following parity game:



- ▶ Compute the winning sets W_{\Diamond} , W_{\Box} for players \Diamond and \Box in this parity game using the recursive algorithm.
- ▶ Translate this parity game to BES and solve the BES using Gauss elimination.