Equivalence checking vs Model Checking

Let I be the implementation of a system, using the syntax of MPA/mCRL2.

Equivalence checking
Determine whether $I \equiv S$
- \equiv is some behavioural equivalence (e.g., \sim);
- S is a specification, also in MPA/mCRL2, of the intended behaviour of the system

Model checking
Determine whether $I \models F$
- \models is a satisfaction relation
- F specifies a desirable property of the system, expressed in some suitable logic
Properties of Reactive Systems

What kind of properties would we want to verify of reactive systems?

Modal properties—What can happen now? (possibility, necessity)
- can drink coffee now
- after a coin is inserted, a coffee can be obtained
- both tea and coffee can be obtained

Temporal properties—behaviour in time
- never drinks any alcohol
 (safety property: “something bad never happens”)
- every message will eventually be received
 (likeness property: “something good eventually happens”)

Hennessy-Milner Logic (syntax)

The set \mathcal{M} of Hennessy-Milner formulae is defined by:

$$F, G ::= \mathbf{tt} \mid \mathbf{ff} \mid F \land G \mid F \lor G \mid \langle \alpha \rangle F \mid [\alpha]F,$$

where α ranges over Act.

Abbreviations for $A = \{\alpha_1, \ldots, \alpha_n\} (n \in \mathbb{N})$:
- $\langle A \rangle F ::= \langle \alpha_1 \rangle F \lor \cdots \lor \langle \alpha_n \rangle F$
- $[A]F ::= [\alpha_1]F \land \cdots \land [\alpha_n]F$

(In particular, $\langle \emptyset \rangle F = \mathbf{ff}$ and $[\emptyset]F = \mathbf{tt}$.)
Intuitive interpretation

A formula F can be true or false in a particular state of a given LTS:

- tt is true in every state;
- ff is false in every state;
- $F \land G$ is true in a state s if, and only if, F and G are both true in s;
- $F \lor G$ is true in a state s if, and only if, (at least) one of F or G is true in s;
- $\langle \alpha \rangle F$ is true in a state s if, and only if, there exists a state s' such that $s \xrightarrow{\alpha} s'$ and F is true in s'; and
- $[\alpha]F$ is true in a state s if, and only if, for all states s' such that $s \xrightarrow{\alpha} s'$ it holds that F is true in s'.

The formula $\langle a \rangle tt$ expresses that an a-transition is possible. Intuitively, it is true in state s, but not in states s_1 and s_2.

The formula $\langle a \rangle tt \lor \langle b \rangle tt$ expresses that an a-transition or a b-transition is possible. Intuitively, it is true in states s and s_1, but not in state s_2.

The formula $[c](\langle a \rangle tt \land \langle b \rangle tt)$ expresses that every c-transition leads to a state that has both an outgoing a-transition and an outgoing b-transition. Intuitively, it is true in state s. Is it also true in state s_1? And what about state s_2?

The formula $[b]ff$ expresses that a b-transition always leads to a state in which ff is true. Intuitively, this formula is not true in states s and s_1. Is it true in s_2?
Properties of Reactive Systems

What kind of properties would we want to verify of reactive systems?

Modal properties—What can happen now? (possibility, necessity)
- can drink coffee now ... ⟨coffee⟩tt
- after a coin is inserted, a coffee can be obtained [coin]⟨coffee⟩tt
- both tea and coffee can be obtained ⟨coffee⟩tt ∧ ⟨tea⟩tt
 or ⟨coffee⟩⟨tea⟩tt ∨ ⟨tea⟩⟨coffee⟩tt, or ...

Temporal properties—behaviour in time
- never drinks any alcohol .. cannot yet be expressed
 (safety property: “something bad never happens”)
- every message will eventually be received cannot yet be expressed
 (liveness property: “something good eventually happens”)
(To be able to express temporal properties, we shall later add recursion to Hennessy-Milner Logic.)

Hennessy-Milner Logic (denotational semantics)

Let (S, Act, →) be an LTS.

For F ∈ M, we define [F] ⊆ S with recursion on the structure of F as follows:

- [tt] = S;
- [F ∧ G] = [F] ∩ [G];
- [[α]F] = ⟨·α·⟩[F];
- [ff] = ∅;
- [F ∨ G] = [F] ∪ [G];
- [[[α]F] = [·α·][F];

where ⟨·α·⟩ : 2^S → 2^S and [·α·] : 2^S → 2^S are defined by

⟨·α·⟩S' = {p ∈ S | ∃p'. p ⊢ p' and p' ∈ S'} ,
[·α·]S' = {p ∈ S | ∀p'. p ⊢ p' implies p' ∈ S'} .

2^S denotes the powerset of S, i.e., the set of all subsets of S
Let $S = \{s, s_1, s_2\}$. Then

$$\llbracket \langle a \rangle \rrbracket \top = \langle t \cdot \rangle \top = \langle \cdot \rangle S$$

$$= \{ p \in S \mid \exists p'. p \xrightarrow{a} p' \text{ and } p \in S \} = \{s\}$$

$$\llbracket \langle a \rangle \rrbracket \top \lor \llbracket \langle b \rangle \rrbracket \top = \llbracket \langle a \rangle \rrbracket \top \cup \llbracket \langle b \rangle \rrbracket \top = \langle \cdot \rangle S \cup \langle \cdot \rangle \{s\}$$

$$= \{ p \in S \mid \exists p'. p \xrightarrow{a} p' \text{ and } p \in S \}$$

$$\cup \{ p \in S \mid \exists p'. p \xrightarrow{b} p' \text{ and } p \in S \}$$

$$= \{s\} \cup \{s, s_1\} = \{s, s_1\}$$
Satisfaction

Let $(S, \text{Act}, \rightarrow)$ be an LTS.

We say that $p \in S$ satisfies Hennessy-Milner formula $F \in \mathcal{M}$ (notation: $p \models F$) if $p \in [F]$.

(If p does not satisfy F, then we write $p \not\models F$.)

Then the following properties hold for all $p \in S$, for all $F, G \in \mathcal{M}$ and for all $\alpha \in \text{Act}$:

- $p \models tt$;
- $p \nmodels ff$;
- $p \models F \land G$ if, and only if, $p \models F$ and $p \models G$;
- $p \models F \lor G$ if, and only if, $p \models F$ or $p \models G$;
- $p \models \langle \alpha \rangle F$ if, and only if, there exists $p' \in S$ such that $p \xrightarrow{\alpha} p'$ and $p' \models F$; and
- $p \models [\alpha] F$ if, and only if, for all $p' \in S$ such that $p \xrightarrow{\alpha} p'$ it holds that $p' \models F$.

(Proofs of these properties are straightforward.)

Negation?

Negation has (purposely) been omitted from the syntax, but it can be expressed.

For every formula $F \in \mathcal{M}$, let $F^c \in \mathcal{M}$ be recursively defined as follows:

- $tt^c = ff$;
- $(F \land G)^c = F^c \lor G^c$;
- $(\langle \alpha \rangle F)^c = [\alpha] F^c$;
- $ff^c = tt$;
- $(F \lor G)^c = F^c \land G^c$;
- $([\alpha] F)^c = \langle \alpha \rangle F^c$.

Let $(S, \text{Act}, \{ \xrightarrow{\alpha} \mid \alpha \in \text{Act} \})$.

Then, for every $F \in \mathcal{M}$, we have $[F^c] = S \setminus [F]$.

Hence, for all $p \in S$, $p \models F^c$ if, and only if, $p \nmodels F$.

/ department of mathematics and computer science
Hennessy-Milner Logic and Strong Bisimilarity

Image finite
Let \((S, \text{Act}, \rightarrow)\) be an LTS.
A state \(p \in S\) is image-finite if \(\{p' \mid p \xrightarrow{\alpha} p'\}\) is finite for every \(\alpha \in \text{Act}\).
The LTS is image-finite if so is each of its states.

Hennessy-Milner Theorem
Let \((S, \text{Act}, \rightarrow)\) be an image-finite LTS.
Then, for all \(p, q \in S\), we have that \(p \sim q\) if, and only if, \(p\) and \(q\) satisfy the same Hennessy-Milner logic formulae.

Distinguishing formula
If two states \(p\) and \(q\) are states in an image-finite LTS and \(p \not\sim q\), then there exists a so-called distinguishing formula, i.e., a Hennessy-Milner logic formula \(F\) such that \(p \models F\) and \(q \not\models F\).

Note that the LTS is image-finite.

By the Hennessy-Milner, to prove that \(s \not\sim t\), it suffices to find a distinguishing Hennessy-Milner formula for \(s\) and \(t\), i.e., a formula \(F\) such that \(s \models F\) and \(t \not\models F\).

We can take \(F = \langle a \rangle[c] \mathbf{ff}\). On the one hand, since \(s \not\xrightarrow{a} s_1\) and \(s_1 \not\xrightarrow{c}\), we have that \(s \models F\). On the other hand, since \(t_1 \xrightarrow{a} t_2\) and \(t \not\xrightarrow{a} t_1\) is the only transition from \(t\) labelled \(a\), we have that \(t \not\models F\).