
Department of Mathematics and Computer Science
Formal System Analysis

Fairness Assumptions in the
Modal µ-Calculus

Master Thesis

Myrthe Spronck

Supervisor:
Tim Willemse

September 2023

Abstract

The modal µ-calculus is a highly expressive logic, but its formulae are often hard
to understand. We have tools for testing if a model satisfies a model µ-calculus for-
mula, but if we are unsure of what the formula expresses we cannot draw definite
conclusions from the results. To mitigate the difficulties in designing µ-calculus
formulae, property specification patterns have been designed to help researchers
express common properties in the µ-calculus. However, existing translations of
these patterns to the modal µ-calculus only allow for the inclusion fairness as-
sumptions to a very limited degree, even though fairness assumptions are very
useful when model checking. Fairness assumptions allow the researcher to specify
that certain types of property violations that may exist in the model are unreal-
istic and should not be considered when determining if the property is satisfied.
This is often required because most of the time, when researchers model systems
they abstract away from certain details such as the way scheduling is done, which
then results in scenarios being represented in the model that would never occur in
reality. There exists, therefore, a need for a standard and proven way of including
a variety of fairness assumptions in modal µ-calculus formulae for properties. We
extend the existing translations from the property specification patterns to the
modal µ-calculus with ways to incorporate three common fairness assumptions:
weak fairness, strong fairness and fair reachability (also known as ∞-fairness or
hyperfairness) of the actions in a model. We also discuss other fairness assumptions
to a lesser extend, including unconditional fairness of actions and weak fairness,
strong fairness and fair reachability of parts of a model other than actions. When
it comes to the patterns, we start with a detailed discussion on the global response
pattern, which is one of the most commonly occurring ones. We then generalise
our approach to cover other patterns as well. Correctness proofs are included for
both the global response formulae and the generalised formulae. We conclude we
a brief discussion of how the formulae we have presented in this thesis can be used
in the model checking toolset mCRL2.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Related Work . 7
1.3 Research Questions . 8
1.4 Content . 10

2 Preliminaries 12
2.1 Labelled Transition Systems . 12

2.1.1 Assuming Progress . 16
2.2 Modal µ-Calculus . 17

2.2.1 Syntax . 17
2.2.2 Semantics . 18
2.2.3 Positive Normal Form . 22
2.2.4 Alternation Depth . 22
2.2.5 Syntactic Extensions . 23

2.3 Tools . 24
2.3.1 mCRL2 . 24
2.3.2 MLSolver . 25

3 Fairness Assumptions 26
3.1 Types of Fairness . 27
3.2 Defining Tasks . 30
3.3 Feasibility . 35
3.4 Other Fairness Assumptions . 36
3.5 Focus . 38

4 Global Response Formulae 39
4.1 The Global Response Pattern . 40
4.2 Design Approaches . 40
4.3 Weak Fairness of Actions . 41

4.3.1 Precondition Approach . 42

2

4.3.2 Non-Violate Approach . 43
4.4 Fair Reachability of Actions . 48

4.4.1 Precondition Approach . 49
4.4.2 Non-Violate Approach . 49
4.4.3 Comparison of Approaches 49

4.5 Unconditional Fairness of Actions 51
4.6 Strong Fairness of Actions . 53

5 Property Specification Patterns 58
5.1 Behaviours . 59
5.2 Scopes . 60
5.3 Notes on the Patterns . 62

6 Formulae for Patterns 64
6.1 Relevance of Fairness . 64
6.2 Formula Structures . 67
6.3 Correctness Claims . 71
6.4 Formula Details . 72

6.4.1 Response Before-Variant . 72
6.4.2 Response After . 73
6.4.3 Response Until . 74
6.4.4 Existence . 76

7 Generalising Formulae 77
7.1 Fair and Unfair Actions . 77

7.1.1 Generalised Weak Fairness of Actions (GWFA) 78
7.1.2 Generalised Strong Fairness of Actions (GSFA) 79
7.1.3 Generalised Fair Reachability of Actions (GFRA) 81
7.1.4 Combining All Generalised Formulae 81

7.2 Tasks . 83

8 Fairness Formulae in mCRL2 86
8.1 The Model . 87
8.2 The Formulae . 90
8.3 Case Study . 93

9 Conclusion 97
9.1 Research Questions . 97
9.2 Future Work . 100

Bibliography 101

3

Appendices 106

A Miscellaneous Proofs 106
A.1 Proof of Theorem 4.3 . 106
A.2 Proof of Proposition 4.4 . 111
A.3 Proof of Proposition 4.5 . 111
A.4 Proof of Lemma 3.13 . 112
A.5 Proof of Theorem 4.12 . 113
A.6 Proof of Theorem 4.15 . 118

B Proofs of Base Formulae 125
B.1 Proof of Theorem 6.1 . 125
B.2 Proof of Theorem 6.2 . 135
B.3 Proof of Theorem 6.3 . 148

C Note on the WFA Global Response Formula 159

D Alternate Formulae 161
D.1 Weak Fairness and Fair Reachability 161
D.2 Strong Fairness . 162

E Comparisons with Remenska 164
E.1 Response Before-variant . 165
E.2 Response After . 167
E.3 Response Until & Existence . 169

F Task Formulae 170

G Task Formulae in mCRL2 172

H Dekker’s Algorithm Model 174
H.1 mCRL2 Model . 174
H.2 µ-Calculus Formulae . 176
H.3 Script for SFA Formula . 179

4

Chapter 1

Introduction

1.1 Motivation

Model checking is a powerful technique for verifying the correctness of protocols,
software, and systems. To do model checking, a model must be created using
some modelling language. Additionally, the properties that should be satisfied
by the model must be expressed as formulae in some logic. Automatic tools can
then check if the formulae are satisfied by the model. In this thesis, the part of
this process we are interested in is the expressing of properties. One logic that
is used for this purpose is the modal µ-calculus [29] (also referred to as just the
µ-calculus). The µ-calculus is used in the model checking toolsets mCRL2 [11] and
CADP [21], among others. In particular due to the inclusion of fixpoint operators,
the modal µ-calculus is highly expressive, subsuming many other frequently used
logics such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL).
The price paid for the expressiveness of the µ-calculus is that its formulae can
become difficult to understand and design. To quote Bradfield and Stirling [8]:

“Fixpoint logics [such as the modal µ-calculus] are notorious for being
incomprehensible. Indeed, it has been known for several reasonably
expert people to spend an hour or two trying to work out whether a
one line formula means what it was intended to mean.”

A model checking tool might report that a model satisfies a given formula, but
if the researcher cannot be certain that the formula truly expresses the correct
property then no convincing conclusions can be drawn. In [41] it is shown that
even in published studies formulae crop up that do not express what the author
claims they express. Even if the researcher is confident the formula is correct, they
will also need to convince their peers. This gives rise to a desire to make it easier
for researchers to design correct µ-calculus formulae. A formula designed using a
reliable technique will be more convincing all parties.

5

This goal is very general, and no single solution will be able to fully address
it. We must therefore identify a smaller sub-problem, a subset of formulae that
researchers want to use but which are hard to design and for which it is difficult to
be sure they truly express what they should. Inspired by hurdles encountered in our
own research while working on [44], as well as discussions with others in the field
of model checking, we settle on the following sub-problem: the inclusion of fairness
assumptions in formulae representing common properties. Fairness assumptions
are assumptions on what executions of a model represent real executions of the
modelled system. Specifically, they limit which infinite executions of the model are
considered valid. Under a fairness assumption, a property need only be satisfied
in those valid executions. Violations in invalid executions are disregarded. It is
rather common for models to contain unrealistic infinite executions because when
modelling it is often required to abstract away from many of the details of the true
system. For example, a button that may be pressed at most one thousand times
before the system accepts no further input may simply be modelled as a button
that can be pressed infinitely often. Or a system that includes a scheduler that
enforces that each internal process is allowed to progress equally often may be
modelled without that scheduler, so that one process may act repeatedly without
the others getting a chance to progress. Such choices simplify the model and make
verification easier, but they can introduce executions that are not present in the
real-world system. Fairness assumptions are a solution to this problem.

Different fairness assumptions are distinguished by which executions they deem
to be invalid. It is important to make the right fairness assumptions when doing
verification. If the assumption labels too many executions as invalid, then there is
a risk that realistic violations of the property are ignored. But if the assumption
invalidates too few executions, then it might be decided a property is unsatisfied,
even though the violations occur on paths that are unrealistic. Hence, there is
not one perfect fairness assumption, and work focused on the ways to use fairness
assumptions in model checking should ideally cover multiple assumptions.

Fairness assumptions may be incorporated into a model checking procedure in
a number of different ways. For example, the tool itself could have options for
restricting the infinite paths that are considered. Consider the NuSMV model
checker [12], which allows users to specify fairness constraints as part of the model
and then accounts for those when doing LTL and CTL model checking. One can
also use existing features in the model checker to ignore some executions. In [3],
clever hiding of actions is used to ensure unrealistic executions can be ignored
using other tools that are already present in the CADP toolset. A more generic
solution is to incorporate the fairness assumption directly into the property that
is being checked. This approach allows for great flexibility: the tool itself does not
need to be changed and the designer of the formula can incorporate any fairness

6

assumption they wish, independent of what the tool’s designers have considered.
We therefore make this our chosen sub-problem of the larger issue of making

the design of modal µ-calculus formulae more reliable and accessible: how to
incorporate a variety of fairness assumptions into modal µ-calculus formulae. This
requires an exploration of which fairness assumptions exist in the literature, which
fairness assumptions make sense to make in the context of an event-based logic
like the µ-calculus, and how these fairness assumptions can be integrated into
a formula. Additionally the design of a formula depends on what property the
formula is supposed to express. Hence, our work requires us to have some idea of
what sorts of properties we need to design formulae for. For this, we look to the
property specification patterns presented in [15], which we introduce in the related
work section and explore in detail in later chapters.

In this thesis, we present formulae that cover many of the most commonly oc-
curring properties in model checking, under some of the most commonly discussed
fairness assumptions in the literature. We include correctness proofs for our for-
mulae, so that those using them can be assured of precisely what they express.

1.2 Related Work

We are not the first to consider that formulae, in both the modal µ-calculus and
other logics, can be hard to design. In 1999, Dwyer, Avrunin and Corbett con-
sidered the complexity of designing the right formula for a given property in an
arbitrary logic and aimed to solve this through presenting design patterns for prop-
erties [15]. These property specification patterns (PSP) each represent a particular
behaviour one may wish to specify, and all allow a variety of scopes during which
that behaviour must hold. The patterns were originally given with LTL, CTL and
Quantified Regular Expressions, but have since been extended with other logics.
Modal µ-calculus formulae for these patters have been designed by Radu Mateescu
for the CADP toolset. Daniela Remenska later extended Mateescu’s formulae with
variant interpretations of some of the scopes, as well as formulae under a form of
fairness close to what we call fair reachability of actions in this thesis [41]. We
include a detailed presentation of the PSP patterns in Chapter 5.

To our knowledge, Remenska’s formulae are some of the only existing guidelines
for how to incorporate fairness assumptions in modal µ-calculus formulae. Her
formulae are part of the Property ASSistant (PASS) tool, which allows users to
specify their properties using a questionnaire and then gives them the resulting
µ-calculus formula. Her work is one of the main reasons we chose to use PSP as
the property structures to design formulae for. The other reason for using PSP
as a basis is that surveys of properties used in the literature have shown a vast
majority of properties are covered by the property specification patterns [15, 41].

7

The property specification patterns of Dwyer et al. appear to be the most
popular pattern system for specifying properties in the literature. That does not
mean no other pattern systems exist, although most we encounter in the literature
are inspired by or extend PSP. For example, in [5] an survey is given of property
specification patterns for real-time systems, including extensions of the patterns
from [15]. Another example is [26], in which PSP is extended to also cover proba-
bilistic properties. Many of these extensions of PSP are not relevant for us, since
we use labelled transition systems without time or probability as our models.

When researching different fairness assumptions, [22] has been a phenomenal
resource. In this paper, Höfner and Van Glabbeek present an overview of many of
the fairness assumptions that appear in the literature. They also discuss the much
weaker progress assumptions and introduce a new assumption: justness. We recap
many of their definitions in Chapter 3 and use their taxonomy when discussion
fairness assumptions. Another great overview of different fairness assumptions is
[19], a book going into much detail on, in particular, strong, weak and uncondi-
tional fairness. A survey of the concept of fairness and the many perspectives that
exist on it is given in [30]. Further bibliographic notes on fairness assumptions
that appear in the literature are presented in Chapter 3.

In [7], Bouwman, Luttik and Willemse present a modal µ-calculus formula for
a property that matches the global response pattern for events under the justness
assumption from [22]. Their formula forms the basis for many of the formulae we
present in this thesis. They also present a proof of correctness for their formula,
which was an inspiration for many of the proofs presented in this thesis as well.

1.3 Research Questions

We break up our problem into several research questions. We here present these
questions, and give a brief preview of how we answer them.

First, we consider which fairness assumptions exist and which are the most
interesting for us to discuss.

RQ1: Which fairness assumptions exist in the literature, and of those
which are the most interesting and relevant for us to cover?

Based on our literature study, we determine weak fairness, strong fairness and
unconditional fairness are the most fundamental and commonly discussed fairness
assumptions, at least for event-based logics such as the modal µ-calculus is. Un-
conditional fairness has the undesirable property that it is infeasible, which leads
to us covering it in less detail than the other two. In addition to these, we decide
to cover the fair reachability assumption, since this appears to be a fairness as-
sumption for which some modal µ-calculus formulae have already been designed.

8

When it comes to what part of the model is treated fairly, we primarily look at the
actions that the system takes. However, we also discuss a method for generalising
what parts of the model are treated fairly.

The next step of our research is to choose a specific pattern from the property
specification patterns and provide formulae for this pattern in our chosen fairness
assumptions. We choose to start with the global response pattern, which says that
whenever some action q occurs, it must eventually by followed by an action r. This
is one of the most commonly occurring patterns.

RQ2: How can our chosen fairness assumptions be integrated into
modal µ-calculus formulae following the global response pattern?

We present formulae for global response under weak fairness of actions, strong
fairness of actions, fair reachability of actions and unconditional fairness of actions.
For the first three, we also provide correctness proofs. While it is correct, the strong
fairness formula is less than ideal due to its complexity being exponential in the
number of actions in the model. In later chapters we extend the formulae for global
response to fairness over other aspects of the model than actions. We also present
some ways the computational cost of the strong fairness formula can be mitigated,
although we do not manage to fully resolve it.

Once we have designed formulae for global response, we use the insights gained
to represent the other patterns from [15] as well.

RQ3: How can our chosen fairness assumptions be integrated into
modal µ-calculus formulae following the property specification patterns?

To answer this question, we first observe that for many of the patterns, fairness
is actually irrelevant: whether a property matching that pattern is satisfied in
a model is not affect by whether a fairness assumption is made. At least, this
is the case when the fairness assumption in question is feasible. For the main
patterns that are left, we present formulae under weak fairness, strong fairness
and fair reachability. Unconditional fairness is dropped at this point due to being
infeasible. Rather than presenting many separate formulae, we present pattern-
agnostic “base” formulae that include several placeholder variables. We then cover
the different patterns by showing how the placeholders should be filled in. The
base formulae are proven correct.

Finally, we consider how the formulae we present may be used in practice. For
this, we look at the model checking toolset mCRL2, with which we have experience
and which has some useful properties that we expand on in a later chapter.

RQ4: What is required for our designed formulae to be used in the
model checking tool mCRL2?

9

We provide a detailed explanation of what features a model should have for our
formulae to be usable, and how the formulae themselves can be represented within
mCRL2. We also include a small case study, showing these steps in practice and
illustrating the respective efficiency of our formulae.

1.4 Content

This thesis starts with a preliminaries chapter, Chapter 2. Here, we present la-
belled transition systems, which are what we use to represent models. We also
present most of the definitions on states, transitions and paths that we will use for
the remainder of this thesis. In Section 2.2, we present the syntax and semantics of
the modal µ-calculus. In the final part of the preliminaries chapter, we introduce
the tools we use throughout this thesis: mCRL2 and MLSolver.

While the presentation of the fairness assumptions could be considered part of
the preliminaries, we present them separately in Chapter 3. We do this because
this section is quite extensive, and does feature some original work, particularly
on fair reachability. We explain the general structure of a fairness assumption,
and then formally define weak fairness, strong fairness, unconditional fairness and
fair reachability in Section 3.1. We express what parts of the model are being
treated fairly through tasks, following the definitions from [22]. How these tasks
can be chosen is explored in Section 3.2, with examples. The word feasibility was
already mentioned, without explanation, in Section 1.3. This concept is explained
in Section 3.3 and we prove (or cite existing proofs) that weak fairness, strong
fairness and fair reachability are feasible, whereas unconditional fairness is not. In
Section 1.2 we mentioned bibliographic notes on a variety of fairness assumptions,
some of these are given throughout the chapter but most are in Section 3.4, where
we mention some of the fairness assumptions from the literature we chose not to
cover. We conclude the chapter by arguing why we chose to cover the fairness
assumptions that we have. At this point, we have answered most of RQ1.

We then move on to answering RQ2 in Chapter 4. We introduce the global
response pattern here in detail, since we have not yet fully explored all the property
specification patterns. We also discuss some different approaches for incorporating
fairness into a formula we have observed in the literature. We subsequently provide
formulae for global response under weak fairness of actions (Section 4.3), fair
reachability of actions (Section 4.4), unconditional fairness of actions (Section 4.5)
and strong fairness of actions (Section 4.6). For the unconditional fairness formula
an informal correctness argument is provided, the other three are properly proven.

We next aim to answer RQ3, but first provide an overview of the property spec-
ification patterns from [15], with Remenska’s extensions [41] and a few extensions
of our own, in Chapter 5. With this background, we then extend the formulae for

10

global fairness to cover more patterns in Chapter 6. This chapter opens with a
discussion of why fairness is irrelevant for some of the patterns. This can be seen
as the final part of the answer to RQ1, since this explains why we disregard un-
conditional fairness for much of this thesis. After this, the pattern-agnostic base
versions of the formulae are presented in Section 6.2. The table containing the
ways the placeholder variables should be filled in is also included in this section.
The correctness claims for these formulae are given in Section 6.3, although the
proofs of these claims are postponed to Appendix B due to their length. Finally,
we justify the contents of the table by discussing the ways the formulae are filled
in for different patterns in more detail in Section 6.4.

Up until this point, we have only covered a form of fairness where all actions
in the model must be treated fairly. In Chapter 7, we provide two generalisations
of the fairness assumptions: we present formulae stating that only some actions
are treated fairly; and we present formulae for different choices of tasks. These are
Section 7.1 and Section 7.2 respectively. With these added types of fairness, we
have properly answered RQ2 and RQ3.

Finally, we answer RQ4 in Chapter 8. We explain how an mCRL2 model must
be modified to work with our formulae, and how the formulae themselves can
be represented in the mCRL2 toolset. These explanations are given as a guide to
others that may wish to use the formulae we present in their own research projects.
Finally, we give a case study of analysing starvation freedom under fairness of
actions and fairness of components in Dekker’s mutual exclusion algorithm. The
main observation of interest here is that strong fairness of actions is extremely slow,
but strong fairness of components takes hardly any time to compute at all. This
demonstrates one way to mitigate the complexity of the strong fairness formula.
All mCRL2 files given as examples in this chapter, as well as the formulae and
batch script from Appendix H, can be found on Github at https://github.com/
MSpronck/FairnessInMucalc1.

We end this thesis with our conclusions in Chapter 9, including ideas for future
work in Section 9.2.

1This page has also been archived at http://web.archive.org/web/20230831220858/

https://github.com/MSpronck/FairnessInMucalc. Throughout this thesis, we frequently
include links to archived pages to reduce the risk of link rot, since we encountered many
broken links while working on this project. Archived Github pages seem to be incorrect in
some cases, not properly including all information. For the repository belonging to this the-
sis, the download link is archived at http://web.archive.org/web/20230831224931/https:

//codeload.github.com/MSpronck/FairnessInMucalc/zip/refs/heads/main. For all other
Github pages, we link to archived versions of the raw files.

11

https://github.com/MSpronck/FairnessInMucalc
https://github.com/MSpronck/FairnessInMucalc
http://web.archive.org/web/20230831220858/https://github.com/MSpronck/FairnessInMucalc
http://web.archive.org/web/20230831220858/https://github.com/MSpronck/FairnessInMucalc
http://web.archive.org/web/20230831224931/https://codeload.github.com/MSpronck/FairnessInMucalc/zip/refs/heads/main
http://web.archive.org/web/20230831224931/https://codeload.github.com/MSpronck/FairnessInMucalc/zip/refs/heads/main

Chapter 2

Preliminaries

In this chapter, we present many of the basic definitions and concepts that are used
throughout the rest of this thesis. We first introduce labelled transition systems in
Section 2.1, then the modal µ-calculus in Section 2.2. Finally, in Section 2.3, we
cover the tools we use throughout this thesis. The background information on fair-
ness assumptions is postponed to Chapter 3, since we present the preliminaries on
fairness together with some new observations. For similar reasons, the background
information on the property specification patterns is reserved for Chapter 5.

2.1 Labelled Transition Systems

We will first define the notion of a labelled transition system (LTS) which we use
to define system models and the semantics of the modal µ-calculus over those
models. Labelled transition systems appear in many forms in the literature, we
present one definition here.

Definition 2.1 (Labelled transition systems). Let M = (S, sinit ,Act ,Trans) be
an LTS, where

• S is a set of states.

• sinit ∈ S is an initial state.

• Act is a set of action labels. This set is also referred to as the alphabet of
the LTS.

• Trans ⊆ S×Act×S is a transition relation. We write s
a−→ t as shorthand for

(s, a, t) ∈ Trans . For a transition tr = (s, a, t) we have that source(tr) = s,
target(tr) = t and action(tr) = a.

12

s0 s1 s2

s3

t1: a t2: b

t3: c t5: c
t6: c

t4: c

Figure 2.1: A graphical representation of the LTS described in Example 2.2.

In this thesis, we consider only finite labelled transition systems. This means
systems with a finite number of states and a finite number of transitions. A
consequence of only considering finite sets of transitions, we are also restricted to
finite sets of actions. All correctness proofs in this thesis assume a finite system.
When a part of a proof relies on this assumption, it is noted. Model checking is
generally done on finite systems, hence this is not a strange assumption to make
given the topic of this thesis.

Example 2.2. As an example of an LTS, we show a graphical representation
of an LTS with S = {s0, s1, s2, s3}, sinit = s0, Act = {a, b, c}, and Trans =
{t1, t2, t3, t4, t5, t6} where t1 = (s0, a, s1), t2 = (s1, b, s2), t3 = (s1, c, s3), t4 =
(s2, c, s2), t5 = (s3, c, s1) and t6 = (s3, c, s2). The graphical representation is
shown in Figure 2.1.

We give a number of definitions on LTSs, which will be used in subsequent
chapters. Many of these come from [22]. These definitions are given on an LTS
M with S = {s0, s1, . . .}, sinit = s0, Act = {a1, a2, . . .} and Trans = {t1, t2, . . .}.

Definition 2.3 (Path). A path is an alternating sequence π = s0t1s1t2.. of states
and transitions, starting with a state and either being infinite or ending with a
state. For all i ≥ 0, siti+1si+1 can only be included in a path when ti+1 is a
transition from state si to state si+1 in M .

Unless stated otherwise, we only consider paths that start in the initial state
of the model. When we refer to the length of a path, we mean the number of
transitions on that path. Hence, a path consisting of only a single state is a path
of length zero. This path is sometimes called the empty path, even though it does
contain a single state.

When discussing paths, we often use the term “step” to refer to mean the
execution of some transition tk to go from sk−1 to sk. We sometimes use “a-step”
to refer to an arbitrary transition that is labelled with the action a. Additionally,

13

we often refer to a specific state or transition on a path, particularly in proofs.
While a state or transition from the model can occur multiple times on the same
path, when we write about a state sk or a transition tk for some k, we mean a
specific occurrence of that state or transition on the path. A final note on our
notation regarding paths in proofs: we often construct paths by appending a path
π′ that starts in a state s to a path π that ends in that same state s. We then
write ππ′. This is a slight abuse of notation, since the state s appears both at the
end of the sequence π and at the start of the sequence π′, but in the constructed
path it cannot appear twice in a row. It should be understood that when we write
ππ′, the s at the end of π overlaps with the s at the start of π′, so that there is
only a single s at that spot in the constructed sequence of states and transitions.

We proceed with some definitions of many of the properties a state, transition
or path can have.

Definition 2.4 (Enabledness of transitions). A transition t is enabled in a state
s if source(t) = s.

Definition 2.5 (Perpetual enabledness). A transition t is perpetually enabled on
a path π if t is enabled in every state of π.

Definition 2.6 (Relentless enabledness). A transition t is relentlessly enabled on
a path π if each suffix of π contains a state in which it is enabled.

Definition 2.7 (Deadlock state). A state s is a deadlock state when there are no
transitions enabled in s.

Definition 2.8 (Complete and partial paths). We say a path π is complete if it is
either infinite or ends in a deadlock state. If a path is not complete, it is partial.

If we speak of a path without specifying if it is complete or partial, it may be
either. However, we primarily discuss complete paths in this thesis, because most
of our arguments assume progress. We expand on this further in Section 2.1.1.

Definition 2.9 (Reachable state). A state s is reachable from a state s′ if there
exists a path starting in s′ which ends in s.

Definition 2.10 (Reachable transition). A transition t is reachable from a state s
if there exists a path starting in s which ends in a state s′ such that source(t) = s′.

The notions of relentless reachability and perpetual reachability of both states
and transitions are defined analogously to relentless and perpetual enabledness of
transitions. It is interesting to note that relentless and perpetual reachability of
transitions are equivalent when considering complete paths, unlike relentless and
perpetual enabledness of transitions. We prove both those claims here.

14

s0 s1

t1: a

t2: b

Figure 2.2: A counterexample showing that relentless enabledness of a transition
does not imply perpetual enabledness.

Lemma 2.11. On a complete path π, if a transition t is perpetually enabled it is
also relentlessly enabled.

Proof. This follows directly from the definitions: if t is perpetually enabled on π
then it is enabled in every state of π. Hence, every suffix of π contains only states
in which t is enabled. From this we conclude that every suffix of π contains at least
one state in which t is enabled, and t is therefore relentlessly enabled on π.

Lemma 2.12. On a complete path π, a transition t being relentlessly enabled does
not imply that it is also perpetually enabled.

Proof. This can be shown with a simple counterexample. See Figure 2.2. Consider
the only complete path on this LTS: the infinite path (s0t1s1t2)

ω. On this path,
both t1 and t2 are enabled relentlessly, but neither is enabled perpetually.

Lemma 2.13. On a complete path π, a transition t is perpetually reachable if, and
only if, it is relentlessly reachable.

Proof. This proof has two directions. Firstly, that perpetual reachability implies
relentless reachability. The argument here is very similar to that of Lemma 2.11:
if t is perpetually reachable on π then it is reachable from every state of π. Hence
every suffix of π contains a state in which t is reachable, and so t is relentlessly
reachable.

The other direction is that relentless reachability implies perpetual reachability.
We assume that every suffix of π contains a state from which t is reachable. We
will prove that t is reachable from every state of π. Let s be an arbitrary state on
π. Let π′ be the suffix of π starting at s. There must exist a state s′ on π′ from
which t is reachable, hence there exists a path πs′ starting in s′ and ending in a
state on which t is enabled. Since s′ is on π′ and s is the first state of π′, we know
s′ comes later in π than s or s = s′. Let πs be the path starting in s and ending in
s′ (the empty path if s = s′). Then πsπs′ is a path starting in s, ending in a state
on which t is enabled. Hence, t is reachable from s. Since s is an arbitrary state on
π, we have proven t is reachable from every state of π and hence t is perpetually
reachable on π.

15

In much of this thesis, we abstract away from specific transitions and instead
refer solely to actions. Each of the definitions on transitions we have presented
can also be given for actions. In short: an action a is enabled in a state s if there
is a transition t enabled in s that is labelled with a. An action a is reachable from
a state s if a transition t is reachable from s that is labelled with a. Relentless and
perpetual enabledness and reachability are also defined for actions, analogously to
how they are defined for transitions.

We also give the following definition, which is specific to discussions on the
occurrence of actions in paths:

Definition 2.14 (a-free paths). A path π is a-free for an action a if no transition
labelled with a occurs in π.

2.1.1 Assuming Progress

In the introduction, we stated that fairness assumptions limit which infinite execu-
tions (paths) of a model are considered valid. Progress assumptions are a strongly
related concept: these are assumptions that limit which finite paths are considered
valid. Progress assumptions are much less controversial than fairness assumptions,
and are even frequently made implicitly [22].

A progress assumption boils down to assuming that the system underlying a
model will not stop executing arbitrarily. Under what conditions we consider it
reasonable for an execution to terminate depends on the system. The default
progress assumption is the following: as long as it is possible for the system to
perform an action, it will eventually do so. Applied to paths, this means a path
under the assumption of progress cannot end in a state where transitions are still
enabled.

Definition 2.15 (Progress). A path π is progressing if it is either infinite or ends
in a deadlock state. The progress assumption states all paths are progressing.
Hence, if we assume progress only progressing paths are considered valid.

Note that the definition of a progressing path coincides with the definition of
a complete path from Definition 2.8. Hence, under this progress assumption only
complete paths are considered valid. This is the progress assumption we use in
this thesis. Unless stated otherwise, we make this assumption for all subsequent
discussions and arguments.

Assuming Definition 2.15 is often justified. If we are modelling a system that
does not require outside stimuli to perform actions there is little reason why it
would stop performing actions while it is still capable of making progress. How-
ever, there are some contexts where this assumption is too strong because the
system does rely on interactions with an environment. As an example, consider a

16

model representing a coffee machine that has an action order made, which repre-
sents a user requesting a coffee. This coffee machine interacts with its environment,
the users, and the order made action represents an interaction with that environ-
ment. We may want to avoid assuming that there will always be a next customer
when we are doing verification. This gives rise to the concept of blocking actions:
actions that require participation of the environment, and hence should not be
assumed to always occur eventually. If we use the progress assumption from Def-
inition 2.15, we would be assuming that a path is not valid if it ends in a state
in which order made is enabled. This would mean assuming there will always be
a next customer. In this case, this progress assumption would be too strong. An
alternative progress assumption, taking blocking actions into account, is presented
in [22]. The starvation freedom under justness µ-calculus formula presented in [7]
takes blocking actions into account.

Designing modal µ-calculus formulae that take different progress assumptions
into account is an interesting topic. However, in this thesis we focus specifically
on fairness and so we do not consider blocking actions and progress assumptions,
other than Definition 2.15, any further here.

2.2 Modal µ-Calculus

There are many introductions to the modal µ-calculus available. For the overview
given here we base ourselves largely on [8, 9, 10] and [24, Chapter 6].

2.2.1 Syntax

The syntax of the modal µ-calculus is described by the following grammar, which
is parameterised with the set of action labels Act as well as a set of formal variables
Var :

ϕ, ψ ::= tt | ff | X | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | [a]ϕ | ⟨a⟩ϕ | µX .ϕ | νX .ϕ

Where tt and ff are the Booleans true and false, X is taken from the set Var and
a from the set of action labels Act . The ⟨ ⟩ is referred to as the diamond operator,
[] as the box operator. The µ is called the least fixpoint operator, ν the greatest
fixpoint operator1.

The following order of precedence is used: [] and ⟨ ⟩ bind the strongest, fol-
lowed by ¬, then ∧ and ∨, then ⇒, and finally µ and ν. For example νX.¬[a]X ∧

1The terms “fixpoint” and “fixed point” are frequently used interchangeably. We follow the
suggestion made in [8] of speaking of “fixpoint operators” which give us the “fixed points” of
functions.

17

ϕ ⇒ ⟨a⟩tt is the same as νX .((¬([a]X) ∧ ϕ) ⇒ ⟨a⟩tt). We will rarely rely on
this order of precedence, instead we will use brackets whenever there may be any
ambiguity.

There is an additional requirement on µ-calculus formulae: they must have
syntactic monotonicity. A formula ϕ is syntactically monotonic if, and only if, for
every fixed point µX.ψ or νX.ψ in ϕ, X occurs positively in ψ. This means that
every occurrence of the variable X in ψ must be preceded by an even number of
negations. For the purpose of counting negations, ϕ⇒ ψ should be read as ¬ϕ∨ψ.
We impose the requirement of syntactic monotonicity to guarantee fixpoints are
meaningful: syntactic monotonicity is sufficient for ensuring that the least and
greatest fixed points of a formula ϕ evaluated on a model M actually exist and
can be computed when calculating the semantics of (µ/ν)X.ϕ on M . For the
reasons why this is the case, we refer to the cited sources. The underlying theory
is outside the scope of this thesis.

It should be noted that there are other variants of the modal µ-calculus. In
particular, some presentations include atomic propositions which allow for state
information to be referenced. We do not account for this here, since the forms
of fairness we consider are restricted to transitions being taken fairly rather than
states being visited fairly.

2.2.2 Semantics

Before we give the formal semantics of the modal µ-calculus, we present an intuitive
explanation. Given a model M = (S, sinit ,Act ,Trans), the semantics of formula
ϕ are the subset of S on which that formula evaluates to true. Boolean tt is true
in every state, ff in no state. A formal variable describes a set of states, and
so is true in every state that is in that set. The formal variables can be bound
by µ or ν, or they can be free in which case an environment, mapping each free
variable to a set of states, must be given before the formula can be evaluated. The
connectives from propositional logic behave as would be expected. The box and
diamond operators, ⟨ ⟩ and [], represent the possibility and necessity modalities
respectively. The formula ⟨a⟩ϕ can be read as “it is possible to do an a-action
such that in the next state ϕ holds”. Dually, [a]ϕ can be read as “after every a-
action, in the next state ϕ necessarily holds”. The fixpoint operators, µ and ν, are
more difficult to understand intuitively, this is part of the reason why µ-calculus
formulae can be hard to interpret.

Fixpoints operators can be understood as a way to add recursion to a formula.
This is useful because the µ-calculus is a state-based logic, and many of the proper-
ties we want to express are on paths. Using recursion, we can reason about paths.
The difference between the least and greatest fixpoint operators is how far the
recursion may be unfolded. The least fixed point, indicated by µ, represents finite

18

unfolding. It is often used to indicate that something must eventually happen: if
something eventually happens, then you can only take finitely many steps where
it does not happen. Therefore, µ is often used in liveness properties (“something
good eventually happens”). On the other hand, the greatest fixed point, ν, allows
for infinite unfolding. It is often used to express that something must hold invari-
antly: if something is invariantly true, then even if you take infinitely many steps
it must remain true. The greatest fixpoint operator is often used for safety prop-
erties (“something bad never happens”). The slogan “ν means looping, µ means
finite looping” [9] can give us some intuitive insight into formulae, but when fixed
points are nested it is often not enough. When least and greatest fixpoint operators
alternate, it becomes particularly hard to grasp the meaning of a formula.

The formal semantics of a modal µ-calculus formula is the set of states of a
given LTS in which it is satisfied. Hence, to calculate the semantics of a formula ϕ,
we also need to give an LTSM = (S, sinit ,Act ,Trans). Additionally, as previously
suggested, if there are any free formal variables in ϕ we also need an environment
ϵ which maps from Var to subsets of S. We give the semantics JϕKMϵ as follows:

JttKMϵ = S
Jff KMϵ = ∅
JXKMϵ = ϵ(X)

J¬ϕKMϵ = S \ JϕKMϵ
Jϕ ∧ ψKMϵ = JϕKMϵ ∩ JψKMϵ
Jϕ ∨ ψKMϵ = JϕKMϵ ∪ JψKMϵ

Jϕ⇒ ψKMϵ = J¬ϕ ∨ ψKMϵ
J⟨a⟩ϕKMϵ = {s ∈ S | ∃s′∈S .s

a−→ s′ ∧ s′ ∈ JϕKMϵ }
J[a]ϕKMϵ = {s ∈ S | ∀s′∈S .s

a−→ s′ ⇒ s′ ∈ JϕKMϵ }

JνX.ϕKMϵ =
⋃

{S ′ ⊆ S | S ′ ⊆ JϕKMϵ[X:=S′]}

JµX.ϕKMϵ =
⋂

{S ′ ⊆ S | S ′ ⊇ JϕKMϵ[X:=S′]}

Where ϵ[X := S ′] represents an environment where X is interpreted as S ′, and
all other variables are interpreted as they are in ϵ.

We say that a state s of M satisfies formula ϕ, written as s ⊨ ϕ, if, and only if,
s ∈ JϕKMϵ0 where ϵ0 gives the initial mapping for all free variables. An LTS satisfies
ϕ if, and only if, its initial state satisfies ϕ. If the model M is fixed, we often leave
it out and just write JϕKϵ.

There are alternative ways to give the semantics of µ-calculus formulae, for
example the semantics can be given in terms of games as shown in [10]. We
restrict ourselves to the semantics presented above.

19

s0 s1

t1: a

t2: a s2
t3: b

Figure 2.3: The LTS for Example 2.16.

We illustrate the given semantics with a few example formulae, specifically
showing the different uses of least fixpoint, greatest fixpoint, box and diamond
operators. For the following example, we takeM to be the LTS shown in Figure 2.3
and we take an arbitrary environment ϵ, since there will be no free variables in our
example formulae.

Example 2.16. We stated that least fixpoints are often used for liveness properties
and greatest fixpoints for safety properties. We illustrate that here. Take for
instance the liveness property “there exists a sequence of a-actions which leads
to a state where b is enabled”. In the modal µ-calculus this could be expressed
as ϕ1 = µY .(⟨a⟩Y ∨ ⟨b⟩tt)2. This formula holds in states where b is enabled, or
which can reach a state where b is enabled in finitely many a-steps. Consider the
LTS in Figure 2.3, this formula is satisfied in the initial state of that LTS because
it is possible to reach s1, in which b is enabled, by doing the transition t2 from s0,
which is labelled with an a. We can calculate the semantics to confirm this. We
do not show every intermediate step of the calculation, to save space.

Jϕ1KMϵ =
⋂

{S ′ ⊆ S | S ′ ⊇ J⟨a⟩Y ∨ ⟨b⟩ttKMϵ[Y :=S′]}

=
⋂

{S ′ ⊆ S | S ′ ⊇ J⟨a⟩Y KMϵ[Y :=S′] ∪ J⟨b⟩ttKMϵ[Y :=S′]}

=
⋂

{S ′ ⊆ S | S ′ ⊇ J⟨a⟩Y KMϵ[Y :=S′] ∪ {s ∈ S | ∃s′∈S .s
b−→ s′ ∧ s′ ∈ S}}

=
⋂

{S ′ ⊆ S | S ′ ⊇ {s ∈ S | ∃s′∈S .s
a−→ s′ ∧ s′ ∈ S ′} ∪ {s1}}

= {s0, s1} ∩ {s0, s1, s2}
= {s0, s1}

For the second to last step, this state space is small enough that we can consider
every possible S ′ ⊆ S and manually check if they satisfy S ′ ⊇ {s ∈ S | ∃s′∈S .s

a−→
s′ ∧ s′ ∈ S ′} ∪ {s1}}. We find only {s0, s1} and {s0, s1, s2} meet this requirement.

2Where possible, we prefer to use X and Z as the formal variables for greatest fixpoints and
Y and W for least fixpoints. This is purely a stylistic preference.

20

Replacing the first diamond operator with a box results in ϕ2 = µT.([a]Y ∨
⟨b⟩tt). This states all sequences of a-steps lead to a state where b is enabled in
finitely many transitions. This formula is not satisfied by s0, since the transition
t1 can be taken infinitely often from s0 without every reaching a state where b is
enabled. We once again compute the semantics:

Jϕ2KMϵ =
⋂

{S ′ ⊆ S | S ′ ⊇ J[a]Y ∨ ⟨b⟩ttKMϵ[Y :=S′]}

=
⋂

{S ′ ⊆ S | S ′ ⊇ J[a]Y KMϵ[Y :=S′] ∪ {s1}}

=
⋂

{S ′ ⊆ S | S ′ ⊇ {s ∈ S | ∀s′∈S .s
a−→ s′ ⇒ s′ ∈ S ′} ∪ {s1}}

= {s1, s2} ∩ {s0, s1, s2}
= {s1, s2}

Note that s1 and s2 satisfy this formula because they do not have any a-transitions,
which means that any condition on all sequences of a-steps is vacuously satisfied.

Greatest fixpoints are more suited for safety properties, such as “along all
sequences of a-actions, b is never enabled”. This property can be expressed as
ϕ3 = νX .([a]X ∧ [b]ff). We use [b]ff to represent states that do not admit b-
transitions, since that is the only way for a state to satisfy the condition that all
b-transitions lead to states in the empty set. Of course, this formula is not satisfied
in s0, since after taking t2 we are in a state where b is enabled.

Jϕ3KMϵ =
⋃

{S ′ ⊆ S | S ′ ⊆ J[a]X ∧ [b]ff KMϵ[X:=S′]}

=
⋃

{S ′ ⊆ S | S ′ ⊆ J[a]XKMϵ[X:=S′] ∩ J[b]ff KMϵ[X:=S′]}

=
⋃

{S ′ ⊆ S | S ′ ⊆ J[a]XKMϵ[X:=S′] ∩ {s ∈ S | ∀s′∈S .s
b−→ s′ ⇒ s′ ∈ ∅}}

=
⋃

{S ′ ⊆ S | S ′ ⊆ {s ∈ S | ∀s′∈S .s
a−→ s′ ⇒ s′ ∈ S ′} ∩ {s0, s2}}

= ∅ ∪ {s2}
= {s2}

Swapping out the box for the diamond gives us ϕ4 = νX .(⟨a⟩X ∧ [b]ff), which
is satisfied in s0 because t1 exists: no b-transitions are enabled in s0 and from s0
we can take an a-transition back to s0, so we have a loop where b is never enabled.

Jϕ4KMϵ =
⋃

{S ′ ⊆ S | S ′ ⊆ J⟨a⟩X ∧ [b]ff KMϵ[X:=S′]}

=
⋃

{S ′ ⊆ S | S ′ ⊆ J⟨a⟩XKMϵ[X:=S′] ∩ {s0, s2}}

=
⋃

{S ′ ⊆ S | S ′ ⊆ {s ∈ S | ∃s′∈S .s
a−→ s′ ∧ s′ ∈ S ′} ∩ {s0, s2}}

= ∅ ∪ {s0}
= {s0}

21

2.2.3 Positive Normal Form

If there are no negations in a formula besides ff (which can be seen as ¬tt), the
formula is in positive normal form (PSN). Any µ-calculus formula can be rewritten
to a semantically equivalent formula in positive normal form using the following
rules:

• ¬tt ≡ ff

• ¬(ϕ ∧ ψ) ≡ (¬ϕ) ∨ (¬ψ)

• ¬(ϕ⇒ ψ) ≡ ¬((¬ϕ) ∨ ψ)

• ¬([a]ϕ) ≡ ⟨a⟩(¬ϕ)

• ¬(µX .(ϕ)) ≡ νX .(¬ϕ[X := ¬X])

Where ≡ means that two expressions are semantically equivalent: they give the
same results when they are evaluated on the same model and environment, regard-
less of what that model and environment are.

There are some algorithms and tools that are only defined for formulae in
positive normal form. We largely do not worry about whether formulae are in
PSN here. However, we will at times refer to rewriting formulae to move negation
inward, in which case we are applying these rules.

2.2.4 Alternation Depth

There are a number of different algorithms for checking whether a given modal
µ-calculus formula is satisfied by the initial state of some model. These algorithms
are well outside the scope of this thesis. However, for the purposes of evaluating
the complexity of the formulae we present, it is useful to introduce the concept of
alternation depth. This is because for a many common algorithms, for example the
Emerson-Lei algorithm [17], the alternation depth of the formula and the number
of states in the model are the most important factors for how expensive it is to
check the formula on the model.

In short, the alternation depth of a formula in positive normal form is a measure
of how often least and greatest fixpoints alternate in a formula. A greatest fixpoint
nested inside a least fixpoint gives a depth of two, but a least fixpoint inside of
a least fixpoint only has a depth of one. It is important that the nested fixpoint
actually depends on the outer fixpoint, for it to contribute to the alternation depth.
For example, in νX.(⟨a⟩X ∨ µY.(⟨b⟩Y ∨ ⟨c⟩tt)) the least fixpoint does not depend
on the variable X, and as such the depth of this formula is one, rather than two.
A formula is called alternation-free when it has an alternation depth of at most
one [35]. Indeed, the formula presented here is alternation-free.

22

There are a number of different ways in which the alternation depth can be
computed. In [9], the authors give a few examples of how the computation pro-
posed in [38] differs from the one used in [17]. We are not concerned with the exact
way in which the alternation depth of a formula is calculated, for more information
on this topic we point to the cited papers. The intuition provided in this section
is sufficient to understand the few remarks on complexity and alternation depth
we make in this thesis.

2.2.5 Syntactic Extensions

In most of the formulae shown in this report the box and diamond operators are
given with a regular expression over sets of actions instead of a single action. This is
a rather common extension of the µ-calculus syntax, based on the way operators are
defined for Propositional Dynamic Logic (PDL) [18]. As long as we consider finite
sets of actions (which as noted in Section 2.1, we do), adding regular expressions
does not increase the expressivity of the µ-calculus. It does, however, make it
easier to write formulae. Instead of requiring the box and diamond operations to
be over single actions, we let them be over regular formulae R:

R,Q ::= ε | α | R ·Q | R +Q | R⋆ | R+

α, β ::= a | true | false | α | α ∩ β | α ∪ β | α \ β

Here ε represents the empty sequence of actions, which is defined as [ε]ϕ = ⟨ε⟩ϕ =
ϕ. The α represents an action formula; · is the concatenations of two regular
formulae; + is the union; and finally ⋆ gives the closure and + the positive closure
of a regular formula. The closure in particular makes it easier to express certain
properties, for example [a⋆]ϕ represents that ϕ must hold in every reachable state
reachable with only a-transitions. The regular formulae build on top of action
formulae rather than simple actions. For the action formulae, a is the set containing
exactly the action a; true and false here represent the set of all actions and the
empty set respectively; α is the set of all actions in Act except those in α; and
∩, ∪ and \ are the usual set operators. Note that because we have defined a to
represent the set containing exactly the action a, we will be using set operators on
single actions in action formulae, without placing brackets around them.

We do not give new semantics for the box and diamond operator on regular
formulae. Instead, we define these operators by the equivalent formulae in the
standard modal µ-calculus. As stated previously, when Act is finite these new
operators do not increase the expressivity of the language, so such translations to
the standard modal µ-calculus are always possible.

• [α]ϕ where α is an action formula can be expressed as
∧

a∈α[a]ϕ.

23

• ⟨α⟩ϕ as
∨

a∈α⟨a⟩ϕ.

• [R ·Q]ϕ and ⟨R ·Q⟩ϕ can be expressed as [R][Q]ϕ and ⟨R⟩⟨Q⟩ϕ respectively.

• [R +Q]ϕ is [R]ϕ ∧ [Q]ϕ and ⟨R +Q⟩ϕ is ⟨R⟩ϕ ∨ ⟨Q⟩ϕ.

• [R⋆]ϕ can be expressed as νX .([R]X ∧ ϕ), and [R+]ϕ as [R][R⋆]ϕ.

• ⟨R⋆⟩ϕ is µX .(⟨R⟩X ∨ ϕ) and ⟨R+⟩ϕ is ⟨R⟩⟨R⋆⟩ϕ.

The CADP toolset’s version of the µ-calculus also contains some other exten-
sions of the syntax that do not increase expressivity, such as the option (?) and
infinite looping (@) operators [36]. None of the formulae we discussed in this thesis
use these additional operators, so we do not include their definitions here.

2.3 Tools

Throughout this thesis we use a few tools for checking our results, we introduce
them here. For all experiments reported, an HP ZBook Studio G4 (2018) was used
with an Intel Core i7-7700HQ CPU, 2.81 GHz processor and 8 GB of RAM.

2.3.1 mCRL2

The mCRL2 toolset [11] contains tools that support the modelling and verification
of concurrent systems. Modelling is done in the mCRL2 language [24], a process
algebra based on the Algebra of Communicating Processes (ACP) [4] with some
extensions including the ability to add data to action labels. These models can
be interpreted as LTSs, which we can then check properties on. Properties are
specified using the modal µ-calculus, extended with the syntactic extensions we
introduced in Section 2.2, the ability to quantify over the data in action labels and
the addition of data to the formal variables used with fixpoint operators.

More information on mCRL2 can be found in [11, 24] or on the mCRL2 web-
site3. We do not explain the mCRL2 language here further. We only show mCRL2
models in Chapter 8, which is the chapter dedicated to how to use our formulae
when doing verification with this toolset. The discussion there is primarily of
interest to those that are already familiar with mCRL2. We include short expla-
nations of the example models in that chapter for those readers that are unfamiliar
with the language but are still interested in what features are required to use our
formulae.

3The mCRL2 website can be found at https://www.mcrl2.org/web/index.html.

24

https://www.mcrl2.org/web/index.html

Outside of Chapter 8, we also use mCRL2 to confirm our claims whenever we
state a particular formula is or is not satisfied in a model in other chapters. We
use the June 2022 release of mCRL2.

2.3.2 MLSolver

MLSolver [20] is a tool for checking the validity and satisfiability of formulae in a
variety of modal fixpoint logics. The link to the tool given in [20] no longer works,
but it can still be found on Github4, together with installation instructions. We
use version 1.4 of the tool.

Checking if a formula is valid means checking if the formula is satisfied by all
possible models. We use the tool for satisfiability checking instead. A formula is
satisfiable if there exists some model which satisfies it. MLSolver supports a num-
ber of modal fixpoint logics. Most important for our purposes is that it includes
the modal µ-calculus, albeit under the name labelled modal µ-calculus. It also
includes CTL, CTL⋆, PDL and the linear-time µ-calculus with the distribution,
and allows for users to add other logics as well. To our knowledge, MLSolver is the
only currently existing tool for checking satisfiability of modal µ-calculus formulae.

We use MLSolver several times in this thesis to test whether two formulae are
equivalent. To do this, we use that observation that if formula ϕ and formula ψ
are equivalent, then both ϕ ∧ ¬ψ as well as ¬ϕ ∧ ψ are unsatisfiable. When we
feed our formulae to MLSolver, we do need to modify them a bit. The syntactic
extensions we use in this thesis do not appear to be allowed in MLSolver, so we
need to reduce our formulae back to the basic µ-calculus syntax. This means we
need to use choose an Act , since we cannot eliminate expressions like true and
α without knowing the full alphabet. Consequently, when MLSolver reports that
two formulae are equivalent, this result only holds for the alphabet we have chosen.
The size of the alphabet we can experiment with differs depending on the formulae
we are checking, we found that in some cases we could easily go up to an alphabet
of size 8, whereas in some cases MLSolver threw an error with an alphabet as small
as 3. Due to a lack of documentation, we did not manage to resolve this error.

Regardless of how large the alphabet we can test with, MLSolver will never
tell us if two formulae are equivalent for an arbitrary choice of Act . We can still
use MLSolver to quickly check if it is likely two formulae are equivalent. If the
tool reports they are not equivalent, it also gives an example LTS demonstrating
this fact, so we have proof of them not being equivalent. If it reports they are
equivalent for some specific alphabet, we have strong reason to suspect they are
indeed equivalent in general and we can work on proving it manually.

4The Github link is archived at http://web.archive.org/web/20230811153633/https://
github.com/tcsprojects/mlsolver.

25

http://web.archive.org/web/20230811153633/https://github.com/tcsprojects/mlsolver
http://web.archive.org/web/20230811153633/https://github.com/tcsprojects/mlsolver

Chapter 3

Fairness Assumptions

In this chapter, we discuss fairness assumptions: which exist in the literature and
which we will be presenting formulae for in the remainder of this thesis.

In Section 2.1.1, we mentioned how progress assumptions reduce the set of finite
paths that are considered valid paths. Fairness assumptions work similarly, but for
infinite paths. A fairness assumption describes a set of criteria a path must respect
in order to be fair, if it does not respect these criteria it is unfair. By making the
assumption, we state that only the fair paths should be considered valid. This is
relevant when determining which properties hold, since we only require a property
to be satisfied by all valid paths when determining whether it holds for a model.

There are many different fairness assumptions in the literature, distinguished
by which paths they deem fair, but they all share the same basic structure: if
some choice is possible sufficiently often, it is taken sufficiently often. The precise
meanings of “choice”, “possible” and “sufficiently often” vary depending on the
exact fairness assumption [1]. In this thesis, we are considering LTSs for our models
and so “choice” will usually refer to one or several transitions, and “possible”
will usually be interpreted as the enabledness or reachability of those transitions.
When different models are used, other qualities may be considered such as atomic
propositions when using Kripke structures or the enabledness of guards when using
programs in the language of guarded commands [14, 19].

Since fairness assumptions only limit the set of infinite paths that are consid-
ered, we enforce that regardless of the specifics of the assumption, all finite paths
are fair. For some fairness assumptions, the fact that all complete finite paths are
fair follows directly from their definition even if no special exception is made for
finite paths. For others, this is not the case. We here give all fairness definitions
specifically on infinite paths, with the understanding that by definition all finite
paths are fair.

We will first introduce a number of different base types of fairness, namely weak
fairness, strong fairness, unconditional fairness and fair reachability. These types

26

define how the “sufficiently often” and “possible” parts of the fairness assumption
should be interpreted. Some different examples of interpretations of “choice” are
given afterwards in Section 3.2, answering the question of what it is exactly that
is being treated fairly. We will expand on our reasons for choosing these four base
types in Section 3.5. In short, weak, strong fairness and unconditional fairness are
some of the most commonly discussed forms of fairness. We discuss fair reachability
because there is precedent for this type of fairness being used when model checking
with modal µ-calculus formulae.

For all our definitions, we fix the model M = (S, sinit ,Act ,Trans). The defini-
tions we present in this chapter use the notion of tasks from [22].

Definition 3.1 (Task). A task is a set of transitions of the associated transition
system M . A task T ⊆ Trans is enabled in a state s if ∃t∈T .source(t) = s. A task
T occurs in π if there is at least one transition t ∈ T that is part of π.

A transition system can be extended with a set of tasks T . Similar to how
transitions can be perpetually or relentless enabled, so can tasks. To re-iterate:
a task is perpetually enabled on path π if it is enabled in every state of π; it is
relentlessly enabled if each suffix of π contains a state in which it is enabled. If
we consider a task T consisting only of a single transition t, then t being perpetu-
ally/relentlessly enabled coincides with T being perpetually/relentlessly enabled.
The concept of reachability of transitions can also be extended to tasks: a task T
is reachable from a state s if there exists a path starting in s which ends in a state
s′ where T is enabled in s′. Once again, the concept of perpetual and relentless
reachability also apply. Here too perpetual and relentless reachability coincide,
with the exact same argument as given for Lemma 2.13.

3.1 Types of Fairness

Two of the most commonly discussed forms of fairness are weak fairness and strong
fairness. They are based on the concepts of tasks being perpetually and relentlessly
enabled respectively.

Definition 3.2 (Weak fairness). An infinite path π is weakly fair if for every task
T for which there exists a state s ∈ π such that from s onwards T is perpetually
enabled, T occurs infinitely often in π. Equivalently, an infinite path π is weakly
fair if for every suffix π′ of π, every task T which is perpetually enabled in π′ occurs
in π′. The weak fairness assumption states that all infinite paths are weakly fair.
Hence, under the weak fairness assumption only weakly fair paths are considered
valid paths.

27

Definition 3.3 (Strong fairness). An infinite path π is strongly fair if for every
task T which is relentlessly enabled on π, T occurs infinitely often. Equivalently,
an infinite path π is strongly fair if for every suffix π′ of π, every task T which is
relentlessly enabled in π′ occurs in π′. The strong fairness assumption states all
infinite paths are strongly fair. Hence, under the strong fairness assumption only
strongly fair paths are considered valid paths.

The concept of weak fairness is called justice in [33]. In the same paper,
strong fairness is simply called fairness. Strong fairness is also sometimes called
compassion [34]. The names weak fairness and strong fairness appear in [2].

One form of fairness is considered stronger than another when it labels more
paths as unfair, meaning fewer paths are considered valid and hence properties
need to be satisfied in fewer paths. Since every task that is perpetually enabled
is also relentlessly enabled, every strongly fair path is also weakly fair, but the
reverse does not hold. Hence, the conditions for a path to be strongly fair are
strictly more restrictive than the conditions for it being weakly fair. Therefore
strong fairness is stronger than weak fairness, hence the name.

In addition to weak and strong fairness, there is also unconditional fairness,
which states that the selected events must happen infinitely often, regardless of
how often they are enabled [19]. This type of fairness is often considered too
strong in contexts where some events can become disabled. We still give a task-
based definition for unconditional fairness because we will use it in our discussion
of strong fairness in Chapter 4.

Definition 3.4 (Unconditional fairness). An infinite path π is unconditionally fair
if every task T occurs infinitely often. Equivalently, an infinite path π is uncon-
ditionally fair if every task T occurs in every suffix π′ of π. The Unconditional
fairness assumption states all infinite paths are unconditionally fair. Hence, if we
assume unconditional fairness only unconditionally fair paths are considered valid.

Unconditional fairness appears in [33] under the name impartiality. It is in
many ways the strongest fairness assumption one can make: the requirement for a
choice to be possible sufficiently often is fully removed from the standard fairness
assumption structure, leaving only that every “choice” must be made infinitely
often. As we will see in Section 3.3, there are some downsides to unconditional
fairness which is why we choose to discuss it less in this thesis than the other types
of fairness we cover.

The final type of fairness we consider is what we call fair reachability (alterna-
tively: fair reachability of tasks). This is an odd one out, since to our knowledge
this fairness assumption is not presented under this name in any of the literature,
although there are similarly-named related notions. We chose this name in refer-
ence to the fair reachability property in [35]. The formula given in that paper is

28

meant to represent a property which is there called “fair reachability”, rather than
some property under a fairness assumption. However, this exact formula is given
in other places such as [41] as a variant of the global response pattern (see Chap-
ter 4) under a not otherwise specified fairness assumption. We reverse-engineered
the underlying fairness assumption that one would need to make for this statement
to be true. The result is what we present here.

Definition 3.5 (Fair reachability). An infinite path π satisfies fair reachability if
for every task T for which there exists a state s ∈ π such that from s onward T
is perpetually reachable, T occurs infinitely often in π. Equivalently, an infinite
path π satisfies fair reachability if for every suffix π′ of π, every task T which is
perpetually reachable in π′ occurs in π′. The fair reachability assumption states all
infinite paths satisfy fair reachability. Hence, if we assume fair reachability then
only paths satisfying fair reachability are considered valid.

Intuitively, fair reachability is similar to weak fairness except we look at tasks
that are perpetually reachable rather than perpetually enabled. Of course, we
could give a reachability version of strong fairness as well, but as discussed earlier,
perpetual reachability and relentless reachability are equivalent. So the resulting
notion would be equivalent to Definition 3.5.

In [40] an assumption called fair reachability is presented, which corresponds
to our presentation here except it is on states: the fair reachability assumption
presented there is that an infinite path is unfair with respect to a set of states P
if the states in P are infinitely often reachable but only finitely often visited. This
concept is generalised to fair reachability of predicates, which says that an infinite
path is unfair if there exists some predicate on all states such that the path is unfair
with respect to the set of states satisfying this predicate. We concede our use of
the term fair reachability may be confusing, in light of this other definition of fair
reachability. However, it is our view that the name accurately reflects the definition
and gives a clear intuitive description of what the assumption entails. Additionally,
the two concepts of fair reachability are similar enough that sharing a name will
not lead to confusion, particularly since we do not consider fairness with respect
to states in this thesis. Should one need to distinguish the fair reachability we
present from fair reachability of predicates, we propose the name fair reachability
of tasks for Definition 3.5.

Our fair reachability (of tasks) definition corresponds to [6]’s ∞-fairness and
[31]’s hyperfairness. We did not use these names for the following reasons: ∞-
fairness does not seem to be well-known, and we find the name not particularly
descriptive of the actual definition. The name makes sense in the context of [6]
because there k-fairness for any natural number k is given as well, but it is not
suitable to our discussion here. Hyperfairness is a clearer name, highlighting that
this assumption is even stronger than strong fairness (see below). The reason

29

we do not use it is that [45] introduces an alternate definition under the name
hyperfairness, we could inspire confusion.

To add fair reachability to our comparison of the relative strength of the as-
sumptions, observe that every task that is relentlessly enabled is also relentlessly
reachable and, since relentless reachability is equivalent to perpetual reachability,
also perpetually reachable. This means for an arbitrary path, the set of tasks that
is relentlessly enabled is a subset of those that are perpetually reachable. Hence,
every path that satisfies fair reachability is also strongly fair. Therefore we can say
that fair reachability is stronger than strong fairness, and therefore also stronger
than weak fairness. It is still weaker than unconditional fairness, of course, since
the set of perpetually reachable tasks is still a subset of the set of all tasks. We
formalise the arguments on strength we have given in this section here:

Lemma 3.6. Unconditional fairness is stronger than fair reachability, which is
stronger than strong fairness, which is stronger than weak fairness.

Remark. At the start of this chapter, we stated that by definition all finite paths
are fair and that fairness assumptions can only require conditions to be satisfied
on infinite paths. We also noted that for some fairness assumptions, the fact that
all finite paths are fair follows immediately from the definition, even if defined on
all paths instead of only infinite ones. It turns out that, if we assume progress,
this is the case for weak fairness, strong fairness and fair reachability. This can be
observed easily: under progress, the only finite paths we consider are those ending
in a deadlock state. In a deadlock state, no transitions are enabled and hence no
tasks are enabled or reachable. This means that no task can be relentlessly or
perpetually enabled or reachable in any suffix of π. This means that vacuously,
every task that is perpetually enabled/ relentlessly enabled/ perpetually reachable
in the suffix of a finite complete path will occur in that suffix.

Because of this observation, the restriction that the definition only applies to
infinite paths can be scrapped from Definition 3.2, Definition 3.3 and Definition 3.5
when we assume progress. No such argument applies to unconditional fairness,
since as long as there are any tasks, no finite path will satisfy the condition that
every task occurs infinitely often, regardless of whether we assume progress. Hence,
the restriction to infinite paths in Definition 3.4 is important.

3.2 Defining Tasks

The tasks referenced in the definitions of weak, strong and unconditional fairness,
as well as fair reachability, can be chosen uniquely to the model under consider-
ation. Depending on domain knowledge of the system being modelled, one may

30

choose certain tasks. This is local fairness. Alternatively, we can use the specifica-
tion of M and some set of rules to determine the set of tasks T . This approach is
called global fairness [22]. We here repeat the global fairness definitions from [22].
These can then be combined with the notions of strong, weak and unconditional
fairness, as well as fair reachability, to specify a fairness assumption.

As stated, these global fairness definitions rely on information in the speci-
fication of the model. This can be the set of transitions, or the actions those
transitions are labelled with. Depending on the model under consideration, there
may also be additional information available. A single modelM may, for example,
be the result of the synchronisation of several components taken from a set C,
each with their own individual models. We refer to the transitions executed by
each component in its own model as instructions (taken from a set I). When the
components are synchronised, the instructions contribute to the transitions in the
resulting model. A transition in M may originate from some specific instruction
by one component, but sometimes several components need to synchronise for a
particular transition to occur, in which case several components and several in-
structions contribute to a single transition in M . In our discussions, we always let
the instruction we discuss correspond to the transitions taken by each component,
but the concept of instructions can also be interpreted differently. For example, if
M models the execution of some code we may say the instructions corresponding
to a transition in M are the lines of code that give rise to that transition.

We add functions instr from the set of transitions Trans to a subset of the set
of instructions I, and comp from Trans to a subset of the set of components C.

Depending on how instr and comp are defined for a particular model, the global
fairness definitions may result in empty tasks. In fact, certain global fairness
definitions are guaranteed to produce at least one empty task. This is not a
problem for weak and strong fairness, nor for fair reachability, since an empty task
will never be enabled or reachable. However, for unconditional fairness it causes
an issue since the empty task can never occur. Since this effect is undesirable,
empty tasks are always eliminated from T .

Consider the following example, which we also use as a running example for
our task-based definitions.

Example 3.7. We have a component C1 which can do an a1-action, followed by
b1-action which returns it to its initial state. Additionally, we have the component
C2 which does a b2-action, then an a2-action, at which point it is back in its initial
state. In Figure 3.1, we show both LTSs as well as one way in which they could
be synchronised. This synchronisation has an a-transition whenever C1 does an a1
action or C2 does an a2 action. Similarly, the synchronisation has a b-transition
whenever C1 does a b1 or C2 does a b2. In the figure, we have annotated the
occurrences of a and b with which component is responsible for that transition,

31

c1,0 c1,1

t1,1: a1

t1,2: b1

(a) LTS for C1.

c2,0 c2,1

t2,1: b2

t2,2: a2

(b) LTS for C2.

s0

s1 s2

t1: a(1)

t4: a(2)

s3

t2: b(1)

t3: b(2)

t5: b(2) t7: a(1)

t6: a(2) t8: b(1)

t9: c t10: d

(c) LTS for the synchronisation. Each transition has a unique identi-
fier and an action. To each action, we added between brackets which
component’s instruction corresponds to the action, so t1 : a(1) repre-
sents the first transition, which has action label a and was caused by
instruction a1 from component C1.

Figure 3.1: The LTSs described in Example 3.7.

but this is only for illustrative purposes. We have added the action c which can
occur when a1 and b2 occur simultaneously, and d which can occur when a2 and
b1 occur simultaneously.

The synchronisation, Figure 3.1c, is what we use as our model in this example.
The instructions are a1, a2, b1 and b2, the actions are a, b, c and d. The function
instr in this example has t1 7→ {a1}, t2 7→ {b1}, t3 7→ {b2}, t4 7→ {a2}, t5 7→ {b2},
t6 7→ {a2}, t7 7→ {a1}, t8 7→ {b1}, t9 7→ {a1, b2} and t10 7→ {a2, b1}. As for comp,
t1, t2, t7 and t8 all map to {C1}, t3, t4, t5, t6 all map to {C2} and t9, t10 both map
to {C1, C2}.

We now give the six global fairness definitions from [22]. In these we refer to
the mappings comp and instr . We use Example 3.7 to give examples for each
global fairness definition.

32

Fairness of Transitions

Fairness of transitions assigns every transition to its own task, giving us

T = {{t} | t ∈ Trans}
For Example 3.7: T = {{t1}, {t2}, {t3}, {t4}, {t5}, {t6}, {t7}, {t8}, {t9}, {t10}}.

Fairness of Actions

Fairness of actions assigns transitions to tasks based on the action the transition
is labelled with. We define

T = {Ta | a ∈ Act}
where

Ta = {t ∈ Trans | action(t) = a}
For Figure 3.1c, note that the (1) and (2) annotations to a and b-actions are only
added to distinguish where the actions came from, they are not part of the action
label: Act = {a, b, c, d} and hence T = {{t1, t4, t6, t7}, {t2, t3, t5, t8}, {t9}, {t10}}.

Fairness of Instructions

Fairness of instructions separates tasks based on if a particular instruction con-
tributed to that task. We define

T = {TI | I ∈ I}
where

TI = {t ∈ Trans | I ∈ instr(t)}
In the case of Example 3.7, we get sets of tasks based on the instructions a1, a2,
b1 and b2: T = {{t1, t7, t9}, {t4, t6, t10}, {t2, t8, t10}, {t3, t5, t9}}.

Fairness of Synchronisations

For fairness of instructions, we look at whether an instruction contributed to a
transition. For fairness of synchronisations, we instead look at the exact subset of
I that is responsible for a transition. We define

T = {TS | S ⊆ I}
where

TS = {t ∈ Trans | instr(t) = S}
Recall that empty tasks are ignored, so T∅, as well as the task for any combination
of instructions that do not contribute to a transition together, should not be
included in T .

In Example 3.7, we get T = {{t1, t7}, {t4, t6}, {t2, t8}, {t3, t5}, {t9}, {t10}}.

33

Fairness of Components

Fairness of components is similar to fairness of instructions, but we look at which
components contribute to a transition rather than which instructions. We define

T = {TC | C ∈ C}

where

TC = {t ∈ Trans | C ∈ comp(t)}

In Example 3.7, we have the components C1 and C2, and we get two corresponding
tasks. Hence, T = {{t1, t2, t7, t8, t9, t10}, {t3, t4, t5, t6, t9, t10}.

Fairness of Groups of Components

Fairness of groups of components is to fairness of components what fairness of
synchronisations is to fairness of instructions. We look at subsets of components
instead of specific components to construct our sets. We define

T = {TG | G ⊆ C}

where

TG = {t ∈ Trans | comp(t) = G}

Similarly to fairness of synchronisation, we ignore empty tasks.

In Example 3.7, we get T = {{t1, t2, t7, t8}, {t3, t4, t5, t6}, {t9, t10}}.

Remark. We will often refer to fairness assumptions with acronyms, describing
both the type of fairness and which global task definition we are considering. For
weak fairness, acronyms start with WF; for strong fairness with SF; for uncondi-
tional fairness with UF; and finally for fair reachability with FR. The end of the
acronym indicates the task definition: T for fairness of transitions, A for fairness
of actions, I for fairness of instructions, S for fairness of synchronisation, C for
fairness of components, and finally G for fairness of groups of components. For
example, we refer to weak fairness of actions as WFA, or to fair reachability of
synchronisation as FRS.

We use this notation both to describe assumptions we are making, e.g “we
assume WFA”, and to describe that a path satisfies a particular assumption. For
example, we may say “π is an WFA path” to mean that the path π satisfies weak
fairness of actions.

34

3.3 Feasibility

There are a number of qualities one may judge fairness assumptions on. While
a discussion of such qualities falls outside the scope of this thesis, one of them is
relevant in some of our later discussions, specifically Chapter 6: feasibility.

As repeatedly stated, fairness assumptions limit the set of infinite paths we
consider valid and progress assumptions limit the set of finite paths. One may
wonder what happens if the combination of assuming and fairness results in there
not being any valid paths anymore. Take the following example:

Example 3.8. Consider Figure 3.2: by the progress assumption from Defini-
tion 2.15, only s0t1(s1t2)

ω is a valid path. But if we also assume unconditional
fairness of actions, then this is not a fair path because r occurs only finitely often.
Hence, if we assume both progress and UFA, this system has no paths at all.

Feasibility is a property of fairness assumptions that states such situations
cannot occur. We consider feasibility with respect to the different base types of
fairness – weak fairness, strong fairness, unconditional fairness and fair reachability
– independent from how the tasks as chosen. Adapting the definition of feasibility
from [1] to tasks, we give the following definition for feasibility:

Definition 3.9 (Feasibility). A fairness assumption is feasible if, and only if, for
any chosen set of tasks, any finite partial path in any model can be extended to a
fair complete path.

To prove a fairness assumption infeasible, we merely need to provide a model
and set of tasks and demonstrate that some finite partial path cannot be extended
to a fair complete path.

Lemma 3.10. Unconditional fairness is infeasible.

Proof. This has been demonstrated by the example above: s0t1s1 is a finite partial
path but it cannot be extended to a fair path. This example uses unconditional
fairness of actions.

s0 s1
t1: r

t2: q

Figure 3.2: An LTS demonstrating how combining progress and unconditional
fairness of actions can eliminate all paths from a system.

35

In [22] it is proven that weak fairness and strong fairness are feasible if there
are only countably many tasks enabled in each state. Since we assumed the set of
transitions is finite, there are only ever finitely many tasks enabled in each state.
The results from [22] therefore apply for all formulae we discuss in this thesis.

Lemma 3.11. Weak fairness is feasible ([22]).

Lemma 3.12. Strong fairness is feasible ([22]).

We claim the same holds for fair reachability, also under the assumption T is
finite, which is the case for all formulae and models we consider.

Lemma 3.13. Fair reachability is feasible.

The proof of this claim is given in Appendix A.4.

3.4 Other Fairness Assumptions

The fairness assumptions we have covered up until this point do not cover all types
of fairness that appear in the literature. For one reason or another, the other types
of fairness we have come across are not relevant to our discussions here.

For example, equifairness [25] requires that tasks that meet some condition
(depending on whether it is weak equifairness, strong equifairness or unconditional
equifairness) must not only occur infinitely often, but that all tasks that meet the
condition must infinitely often have occurred the same number of times. The idea
is that if a choice between different options has to be made infinitely often, then
it is only fair if every choice gets made the same number of times. This idea is
interesting, but impractical to design modal µ-calculus formulae for. We would
need to incorporate a counter in our formulae, tracking how much more often one
task has been taken than another so far. If the value in this counter can grow
unboundedly (but not infinitely) large, we get unboundedly large formulae using
the modal µ-calculus syntax we provide here. In future work, we might look at
fairness notions similar to equifairness, for example requiring that the difference
in occurrence may be at most k for a chosen value of k.

In addition to giving an overview of existing fairness assumptions, [22] also pro-
poses two new ones: strong weak fairness and justness. Unsurprisingly, strong weak
fairness is weaker than strong fairness and stronger than weak fairness. Strong
weak fairness says that if a task is perpetually requested from some point onwards
and is relentlessly enabled, it must occur infinitely often. The notions of a task
being enabled and occurring have been defined already, but we have not described
what it means for a task to be requested. Based on the presentation in [22], this
will depend on the model under consideration. It is not clear to us at this time how

36

to generalise the idea of a task being requested in such a way we can easily add
it to the list of fairness assumptions we cover in this thesis, so we do not further
cover strong weak fairness.

Justness is not exactly a fairness assumption according to Van Glabbeek and
Höfner. Instead it is intended as a middle ground between progress and fairness
assumptions. Justness excludes infinite paths, so it fits with fairness assumptions
in that respect, but it is weaker than all other fairness assumptions we have covered.
This makes justness a less controversial assumption to make than other fairness
assumptions. Additionally, much like progress assumptions, liveness properties
rarely hold on models without assuming justness. The justness assumption boils
down to assuming progress for all components underlying a model: we assume each
individual component will continue making progress, unless it is interfered with by
the actions of another component. This is stronger than just assuming progress,
since we also exclude scenarios where the model as a whole makes progress but
an individual component does not, even when nothing has interfered with the
ability for that component to make progress. Since it does not quite fall under the
header of fairness assumptions, we consider justness outside of the scope of this
thesis. However, a modal µ-calculus formula for starvation freedom under justness
is presented in [7]. In fact, this formula serves as a major inspiration for our weak
fairness and fair reachability formulae.

There are also concepts of fairness that rely on different models than LTSs as we
present them in Section 2.1. For example, if probabilistic transitions are included
in the LTS then we might consider fairness differently. A fair violating path shows a
worst-case scenario which results in our desired property not being satisfied. Often,
such a path can only exist if the path always makes the “bad” choice whenever a
nondeterministic choice has to be made. We accept this for nondeterminism, but
when considering probability no “choices” are being made, it is –metaphorically– a
die roll. And when we consider an infinite path, the probability of the dice always
landing on the “bad” choice becomes zero. At least, as long as there is always an
alternative. In [39], Pnueli considers which fairness assumption needs to be made
to analyse the nondeterministic version of a probabilistic program in such a way
that the results apply to the probabilistic program as well. He introduces extreme
fairness, which in [22] is explained as letting tasks be defined by any predicate
in first-order logic. In this thesis, we do consider arbitrarily chosen tasks but do
not take the step of saying something must be fair for all possible choices of tasks
simultaneously.

We have previously mentioned fairness assumptions that consider state infor-
mation, such as fair reachability of predicates [40]. These require the use of a
model where state information is available, such as atomic propositions in Kripke
structures.

37

3.5 Focus

All these fairness definitions are very interesting, and could make for valuable
future work. However, in this thesis we restrict ourselves to the fairness types
given in Section 3.1. From our literature study, weak and strong fairness appear
to be the two most commonly discussed types of fairness. Unconditional fairness is
also commonly discussed, and in [19] it is one of the three classes of fairness that are
primarily discussed. The other two being, of course, weak and strong fairness. We
also discuss unconditional fairness because we find it helpful for designing formulae
for strong fairness. Finally, fair reachability of tasks seems to be a type of fairness
that has been considered for modal µ-calculus formulae in the past. As explained
in Section 3.1, we actually came to the fair reachability assumption by reverse-
engineering the formula for global response under an otherwise unspecified fairness
assumption presented in [41]. Hence, there is precedence for fair reachability being
used in this context, and the formulae from [41] give us an interesting point of
comparison for the formulae we design. Of these four types of fairness, we discuss
unconditional fairness less than the other three due to it being infeasible.

Regarding the types of global fairness introduced in Section 3.2, this thesis will
primarily discuss fairness of actions. We will discuss WFA, SFA, UFA and FRA in
Chapter 4 and Chapter 6. The other task-based definitions, as well as more general
formulae for any choice of tasks, will be discussed briefly in Section 7.2. We will go
into why we made this choice in Chapter 7 in more detail. For now, we will note
that from the syntax of the modal µ-calculus presented in Section 2.2, information
on action labels can be referenced directly in formulae, but information on tran-
sitions, components and instructions cannot. Our definition of labelled transition
systems from Section 2.1 also does not include information on components and
instructions. The consequence is that in order to use information on transitions,
components and instructions in modal µ-calculus formulae, this information needs
to somehow be incorporated into the LTS under consideration and made avail-
able in the form of action labels to be usable. This makes fairness of actions the
task definition that lends itself the best to being incorporated in modal µ-calculus
formulae, as the others require more circuitous methods to be usable.

38

Chapter 4

Global Response Formulae

In this thesis, we consider formulae that follow the property specification patterns
from [15]. We briefly mentioned these patterns in Section 1.2, and give a detailed
overview of them in Chapter 5. Before exploring all the different patterns, we first
spend this chapter on how to design formulae for one specific one: global response.
We explain the global response pattern in more detail in Section 4.1. In short,
global response states that along every path, whenever the action q occurs it must
eventually be followed by the action r. The q and r actions are placeholders, how
they are filled in depends on the modal and the property.

We start with a specific pattern, rather than directly covering all patterns, so
that we can first focus on how the fairness assumptions can be integrated into a
formula. We choose global response as the first pattern for two reasons. Firstly,
this pattern is frequently used in practice. In the survey of common properties
in [15] global response was found to be used to most often. In a similar survey
in [41], global response is the third most common, with global absence and global
precedence being more frequent. However, as we will argue in Chapter 6, fairness is
irrelevant for these patterns. Our second reason is personal interest: one common
property that fits the global response pattern is starvation freedom of a mutual
exclusion protocol. In different research, we have run into the lack of proven
formulae for starvation freedom under weak and strong fairness in particular.

In this section, we present formulae for properties fitting the global response
pattern under weak fairness of actions (Section 4.3), fair reachability of actions
(Section 4.4 and strong fairness of actions (Section 4.6). We also briefly discuss
unconditional fairness of actions (Section 4.5) as a prelude to the strong fairness
formula. For all our formulae, we fix the model M = (S, sinit ,Act ,Trans). Since
we are considering fairness of actions, every task is made up of exactly those
transitions that are labelled with the same action. For convenience, we therefore
abstract away from the tasks themselves and simply speak about actions. In our
arguments, we assume progress as defined in Definition 2.15.

39

4.1 The Global Response Pattern

Since we have not yet discussed patterns in detail, we give a more formal intro-
duction to the global response pattern here.

Definition 4.1 (Global response). A global response property holds along a path
π if for every transition tn in π with action(tn) = q, there exists a transition tm in
π with action(tm) = r and m > n.

A global response property under a chosen fairness assumption holds on a
model M if it holds on all fair and complete paths of M . A path violates global
response if there is an occurrence of q which is not followed by r.

If we do not make any fairness assumptions, meaning all paths are fair, then
the property can be stated in the µ-calculus as follows:

[true⋆ · q]µY .(⟨true⟩tt ∧ [r]Y) (4.1)

This can be interpreted as: whenever a q-action occurs along any path, there may
be at most finitely many non-r steps until we reach a state where r, and only r,
is enabled. The ⟨true⟩tt part of the formula is included to ensure that paths that
end in a deadlock without an r having occurred are considered violating paths.

An equivalent formula, stating there does not exist any violating path, is:

¬(⟨true⋆ · q⟩νX .([true]ff ∨ ⟨r⟩X) (4.2)

Which expresses that there does not exist a path on which eventually a q-action is
done, followed by a sequence of non-r-actions that is either infinite or eventually
reaches a deadlock state. That Formula 4.1 and Formula 4.2 are equivalent can be
seen by moving the negation in Formula 4.2 inwards, as described in Section 2.2.3.

Our goal is to modify these formulae so that unfair violating paths are ignored.

4.2 Design Approaches

Before designing our own formulae, it is prudent to consider how others have
incorporated fairness assumptions into formulae. For this, we looked at papers
where properties are used that fit the global response pattern, such as starvation
freedom. In our literature study, we identified three general approaches to adding
a fairness assumption to a global response property:

1. Model-specific: when considering a specific model, it may be possible to
identify exactly the unfair violating paths. The model or the property can
then be modified to eliminate or ignore those traces. This approach can be

40

seen in [23]. In this paper an unfair violation path for starvation freedom
is found while analysing Dekker’s mutual exclusion algorithm. This specific
violation is then added to the formula as an allowed path. The new formula
detects paths that violate the starvation freedom property but are different
from the previously found violation.

2. Non-violate: while characterising a fair path and an unfair path are theo-
retically equally difficult problems, in practice it is often the case that for-
mulating “no fair violation exists” is easier than formulating “all violations
are unfair”. This approach is to first characterise a fair, violating path and
then use a formula to express no such path exists. An example can be seen
in [7] where starvation freedom under justness is presented as a µ-calculus
formula in this style.

3. Precondition: many fairness assumptions are of the form “if something is
possible often enough, it must occur”. If we have a property that requires a
particular event to occur, and we know for certain that event is possible often
enough, we can conclude that under this fairness assumption the property
will be satisfied. This means that in some cases it is sufficient to express that
the event is possible often enough. The conclusion that it occurs then follows
directly. This can be seen in the fair reachability formula presented in [35]:
it says that after a send -action, as long as there has been no receive-action,
a receive action is always reachable. If we assume that every action that
is perpetually reachable must eventually occur (FRA) and the formula is
satisfied, we can conclude that after every send there is eventually a receive.

We do not consider the model-specific approach further, since it is not a general
solution to the problem of expressing a property holds under a fairness assumption.
We do consider both the non-violate and the precondition approaches. Our general
preference goes to the non-violate approach, since it is more flexible. We also
find that for many fairness assumptions, the precondition approach is difficult to
formulate. As such, we only present the non-violate version for most formulae.
Where we do give a precondition formula, it is because it has been used by others
or it serves as a point of comparison for our non-violate formulae.

4.3 Weak Fairness of Actions

Recall that the weak fairness of actions (WFA) assumption states that a path is
unfair if there is an action that is perpetually enabled in some suffix of the path
but does not occur in that suffix. This means that on all fair paths, if an action is
perpetually enabled from some point onwards it is guaranteed to occur.

41

s0 s1 s2 s3
t4: rt3: bt1: q

t2: a

s3

Figure 4.1: A transition system on which Formula 4.3 is false but which does
satisfy global response under WFA.

4.3.1 Precondition Approach

To express global response is satisfied under WFA we need to express that for all
WFA paths, a q action is always followed by an r action. Following the precondition
approach, we need to express that, after any q-action, r will eventually occur or r
will be perpetually enabled. After all, if we assume WFA then if r is perpetually
enabled it must also occur. This can be expressed in the µ-calculus as follows:

[true⋆ · q]µY.((⟨true⟩tt ∧ [r]Y) ∨ νX .((⟨r⟩tt ∨ Y) ∧ [r]X)) (4.3)

This expresses that after any q, as long as no r occurs, we will in finitely many
steps reach a state in which r is enabled and from which, as long as we do not
do an r-step, r will remain enabled. That brief intuitive explanation does not
explain why we write ⟨r⟩tt ∨Y instead of simply ⟨r⟩tt inside the greatest fixpoint.
The reason for including this is difficult to explain intuitively, but serve as a good
example of the complexities of designing modal µ-calculus formulae. A discussion
of this detail in the formula is given in Appendix C, for the interested reader.

However, it turns out this formula does not express quite what we want: namely
that every action is treated fairly. Instead, it only expresses that r must be treated
fairly. Consider the following example.

Example 4.2. See Figure 4.1 for a transition system on which Formula 4.3 is
false. This is the case because after doing a q-action, infinitely many non-r actions
(namely a) can be done without r ever becoming enabled. However, this is not a
weakly fair path since along this path b is perpetually enabled after q occurs but
b is never actually taken. Indeed, under WFA the b-action would have to occur
eventually, which would also ensure r occurs.

Encoding that every action must be treated fairly is much more difficult in
the precondition approach then that one action must be treated fairly. In fact,
it is somewhat counter to the core principle of the approach: we want a formula
that, combined with the assumption, directly allows us to conclude the property

42

we care about. Incorporating that every action must be treated fairly brings us
much closer to fully representing the exact structure of fair and unfair paths, for
which the non-violate approach is much more suitable.

Therefore we abandon the precondition approach for weak fairness here. In
some cases it may be useful to have a formula where only one action is treated
fairly, but that is not what this chapter is addressing. We will return to the concept
of expressing that only the r-action is treated fairly in Chapter 7.

4.3.2 Non-Violate Approach

Inspired by the justness formula in [7], we construct the following formulae for
global response under WFA1:

¬(⟨true⋆ · q⟩νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(([λ]ff ∧X) ∨ ⟨λ \ r⟩X ∨ ⟨λ ∪ r⟩Y)))))

(4.4)

This formula expresses that there does not exist a path such that, after the q action
is done, the remainder of the path satisfies WFA but the r-action never occurs

The idea behind this formula is that whenever an action λ is enabled, we must
within a finite number of steps reach a state where λ is no longer enabled (then
it is not perpetually enabled) or we must take the λ-action. We do not allow
taking the r-action at any point so that the resulting path is r-free. Whenever the
conditions for one λ are satisfied, we again check all enabled actions, so X needs
to hold again.

Since each action that is enabled must be treated fairly, we know that if this
formula is true then we can construct a path where, as long as actions are still
enabled, we can extend the path with sequences where these actions either occur
or are not perpetually enabled. Should we reach a deadlock state, then ⟨λ⟩tt is
false for all actions λ ∈ Act , and hence the implication is trivially true.

Proof

We prove that Formula 4.4 indeed expresses global response under WFA by adapt-
ing the proof given in [7] for their justness formula. Note that this proof specifically
relies on the set of action Act being finite, and we are assuming progress. While
the proofs in this section are quite thorough, we avoid going into extreme detail
here. In Chapter 6, we present more general formulae and those get highly de-
tailed correctness proofs in Appendix B. The proof here is a more specialised and
slightly less detailed version of the WFA proof given there.

1This formula was designed together with Bas Luttik while working on [44].

43

There are a few propositions and theorems we need for this proof. We do not
include the proofs of these propositions and theorems here, they are in Appendix A
instead.

Theorem 4.3. For all environments ϵ, states s ∈ S, modal µ-calculus formu-
lae ϕ that do not depend on Y , and action formulae α, it holds that: s is in
JµY .(ϕ ∨ ⟨α⟩Y)Kϵ if, and only if, s admits a finite, possibly partial, path on which
only actions in α occur and which ends in a state in JϕKϵ.

This proof is given in Appendix A.1.

Proposition 4.4. Let π be a WFA path , then s0t1s1...tnπ is a WFA path.

This is proven in Appendix A.2

Proposition 4.5. Let π = s0t1s1... be a finite or infinite path. If π satisfies WFA
then also any suffix of π satisfies WFA.

This is proven in Appendix A.3
We move on to proving things about the formula. We first break the formula

up into multiple parts.

violateWFA = ⟨true⋆ · q⟩invariantWFA

invariantWFA = νX .(
∧

λ∈Act

(⟨λ⟩tt ⇒ satisfyWFA(λ)))

satisfyWFA(λ) = µY .(([λ]ff ∧ X) ∨ ⟨λ \ r⟩X ∨ ⟨λ ∪ r⟩Y)

We want to identify states that admit an r-free, WFA path after a q-action has
been done. We prove the formula from the smaller scope to the larger scope,
starting with satisfyWFA(λ) and ending with violateWFA. We first prove that
satisfyWFA(λ) characterises all states that admit an r-free path where λ occurs
or becomes disabled, and that end in a state that is in the set of states represented
by X. The idea is as follows: if an action is enabled in some state s, then it
must either become disabled eventually, in which case the action is not enabled
perpetually; or it must be taken within a finite number of steps, in which case it
occurs in the suffix starting in s.

Lemma 4.6. For all environments ϵ, states s ∈ S and actions λ ∈ Act and sets
F ⊆ S, it holds that s ∈ JsatisfyWFA(λ)Kϵ[X:=F] if, and only if, s admits a finite,
possibly partial, path π that is r-free, ends in a state in F and either

1. π is λ-free and ends in a state where λ is disabled, or

44

2. the last transition of π is labelled with λ, and π is otherwise λ-free.

Proof. First, by Theorem 4.3, s ∈ JµY.(([λ]ff ∧X)∨⟨λ \ r⟩X∨⟨λ ∪ r⟩Y)Kϵ[X := F]
if, and only if, s admits a finite, possibly partial path π′ that ends in a state s′

such that only actions in λ ∪ r occur in π′ and s′ ∈ J([λ]ff ∧X)∨⟨λ \ r⟩XKϵ[X:=F].

Since only actions in λ ∪ r occur in π′, π′ is both λ-free and r-free. From s′ ∈
J([λ]ff ∧X)∨⟨λ \ r⟩XKϵ[X:=F], we know that s′ is either a state where λ is disabled
and s′ ∈ F , or s′ admits a λ-transition t to a state s′′ in F and, λ ̸= r. In the
former case, π′ is a finite, r-free path that ends in a state in F , is λ-free and ends in
a state where λ is disabled. In the latter case, π′ extended with t and s′′ is a finite,
r-free path ending in a state in F such that the last transition is labelled with λ
and the path is otherwise λ-free. Hence, the semantics of satisfyWFA are indeed
those states that admit a path meeting the requirements stated in the lemma.

Using Lemma 4.6, we prove that invariantWFA exactly characterises those states
that admit an r-free, WFA path. We call the set of all such states Sr,WFA. We do
this in two steps.

Lemma 4.7. The set of states admitting r-free, WFA paths, Sr,WFA, is a fixed
point of the following transformer TWFA:

TWFA(F) =
⋂

λ∈Act

{s ∈ S | s ∈ J⟨λ⟩ttKϵ[X:=F] ⇒ s ∈ JsatisfyWFA(λ)Kϵ[X:=F]}

for arbitrary environment ϵ.

Proof. We prove Sr,WFA is a fixed point of TWFA by showing that TWFA(Sr,WFA) =
Sr,WFA. We prove this through mutual set inclusion of Sr,WFA and TWFA(Sr,WFA).

• Let s be an arbitrary state in Sr,WFA. We prove s ∈ TWFA(Sr,WFA). Since
s ∈ Sr,WFA, we know s admits an r-free, WFA path. Let π be such a path
starting in s. We need to prove s ∈ TWFA(F) by showing that for all λ ∈ Act ,
if λ is enabled in s then s ∈ JsatisfyWFA(λ)Kϵ[X:=Sr,WFA]. Since the condition
in the transformer is an implication, s is trivially in the set associated with
any action not enabled in s. Let λ be an arbitrary action that is enabled in
s. We must show that s ∈ JsatisfyWFA(λ)Kϵ[X:=Sr,WFA] for this λ. We do a
case distinction on whether λ is perpetually enabled on π.

– If λ is perpetually enabled on π, then by definition of weak fairness of
actions λ must occur in π. Let s′ be the first state in π reached by
a λ-transition. The path from s to s′, π′ is finite and r-free because
π is r-free. Additionally, through our choice of s′ we know that none
but the last transition on this path are λ-transitions. To prove s ∈

45

JsatisfyWFAKϵ[X:=Sr,WFA], it only remains to prove that s′ ∈ Sr,WFA. We
can then apply Lemma 4.6.

By Proposition 4.5, the suffix π′′ of π starting in s′ satisfies WFA, and
since π is r-free so is π′′. Hence s′ admits an r-free, WFA path and
therefore s′ ∈ Sr,WFA. We conclude s ∈ JsatisfyWFA(λ)Kϵ[X:=Sr,WFA].

– If λ is not perpetually enabled on π, then in finitely many steps of π
a state s′ is reached where λ is disabled. None of these steps are r-
transitions, since π is r-free. We do a case distinction on whether there
is an occurrence of λ on π before s′.

∗ If there is such a transition, then we can apply the same argument
for s being in JsatisfyWFA(λ)Kϵ[X:=Sr,WFA] as we did in the case that λ
is perpetually enabled. After all, we only used λ being perpetually
enabled to conclude it must occur.

∗ If there is no occurrence of λ before s′, then then let π′ be the
prefix of π ending in s′. Not only is π′ r-free, it is also λ-free.
Additionally, λ is disabled in s′. To be able to apply Lemma 4.6
to conclude s ∈ JsatisfyWFA(λ)Kϵ[X:=Sr,WFA], we only need to prove
s′ ∈ Sr,WFA.
By Proposition 4.5, the suffix π′′ of π starting in s′ satisfies WFA,
and since π is r-free so is π′′. Hence s′ admits an r-free, WFA path
and therefore s′ ∈ Sr,WFA. Hence, s ∈ JsatisfyWFA(λ)Kϵ[X:=Sr,WFA].

We conclude that s ∈ JsatisfyWFA(λ)Kϵ[X:=Sr,WFA] and hence also that for
all actions enabled in s, s is in the associated set. We conclude that s ∈
TWFA(Sr,WFA).

• Let s be an arbitrary state in TWFA(Sr,WFA). We prove s ∈ Sr,WFA. From
s ∈ TWFA(Sr,WFA) we know that for all actions λ that are enabled in s,
s ∈ JsatisfyWFA(λ)Kϵ[X:=Sr,WFA]. If s is a deadlock state, then it admits the
path consisting of only itself. This path is trivially r-free and, since it is
finite, WFA. Hence, we have a witness for s ∈ Sr,WFA.

If s is not a deadlock, let λ be an arbitrary action that is enabled in s. Then
s ∈ JsatisfyWFA(λ)Kϵ[X:=Sr,WFA]. By Lemma 4.6, there must be a finite r-free
path π from s to some s′ such that s′ ∈ Sr,WFA. Since s′ ∈ Sr,WFA we know
s′ admits some r-free, WFA path π′. By Proposition 4.4, π extended with
π′ satisfies WFA and since both π and π′ are r-free, so is their combination.
Hence s admits an r-free, WFA path and therefore s ∈ Sr,WFA.

We conclude that the set of all r-free, WFA paths Sr,WFA is a fixed point of TWFA.

46

Note that the semantics of invariantWFA is the greatest fixpoint of the trans-
former TWFA. Hence, we need to prove this greatest fixpoint equals Sr,WFA.

Lemma 4.8. The set of all r-free, WFA paths Sr,WFA is the greatest fixed point of
TWFA as defined in Lemma 4.7.

Proof. We show that for any F satisfying TWFA(F) = F , we have that F ⊆ Sr,WFA.
Let F be an arbitrary subset of S that is a fixed point for TWFA. Let s ∈ F . We
prove s ∈ Sr,WFA. We do this by constructing an r-free, WFA path π from s.
Observe that since s ∈ F and F = TWFA(F), we also have s ∈ TWFA(F). If there
are no enabled actions in s, then trivially it admits an r-free, WFA path in the
path consisting only of s. We therefore assume that there are enabled actions in
s. Let L be the set of all enabled actions in s.

Consider an arbitrary but fixed order < on the actions in L and let λ be the
least of these actions. From s ∈ TWFA(F) we conclude that there exists some finite,
r-free path π′ from s to a state s′ such that s′ ∈ F and either λ is not enabled in
s′ or λ is the last action in π′. We will let π′ be the start of our constructed path
π.

Denote the set of actions enabled in s′ by L′. We next choose the least λ′ ∈
{λ′′ ∈ L∩L′ | λ < λ′′}, so the smallest action that is larger than λ and is enabled in
both s and s′. Since s′ ∈ F and F = TWFA(F) we can apply the same construction
to find a finite r-free path π′′ from s′ to s′′ such that either λ′ is not enabled in s′′

or λ′ is the last action in π′′. We add π′′ to our constructed path π.

We repeat this construction until there are no more actions that were enabled
in s as well as every final state of our path segments. This construction will
terminate, since there are finitely many actions. Once the construction stops in
a state sfinal , we continue extending the path constructed so far with the same
construction method, now letting L be the set of actions enabled in sfinal . This
leads to either an infinite path, or a finite path where there are no actions enabled
in the final state.

A path constructed in this manner is trivially r-free, since we only ever add
path segments that are r-free. It is less trivial to see that the resulting path
satisfies WFA. Let πcon be the final path we have constructed. If it is finite, it
is trivially WFA. Hence, we henceforth assume πcon is infinite. Consider a suffix
π′
con of πcon where an action α is enabled perpetually. Since π′

con is infinite and our
construction procedure is finite until we refresh the set of actions L that need to be
satisfied, we know that starting in the first state of π′

con there will be finitely many
steps until we reach a state in which the set of actions L is refreshed. Since α is
perpetually enabled in π′

con , α will be part of the new set L. During construction
of the next stretch of the path, we at some point add a path segment in which α
either becomes disabled or occurs. If α could become disabled, it would not be

47

perpetually enabled, hence we are sure we have added a path segment in which α
occurs. Hence, α occurs in π′

con .
We conclude that, since every action that is perpetually enabled in some suffix

of πcon is guaranteed to occur in that suffix, our constructed path satisfies WFA.
We have therefore proven we can construct a path from s which is both r-free and
satisfies WFA. Hence, s ∈ Sr,WFA and thus Sr,WFA is the greatest fixed point of
TWFA.

Lemma 4.9. For all environments ϵ and states s ∈ S, we have that s is in
JinvariantWFAKϵ if and only if s admits an r-free, WFA path.

Proof. As stated informally previously, the semantics of invariantWFA is exactly
the greatest fixpoint of TWFA. As proven in Lemma 4.8, the semantics of invariant
therefore equals Sr.WFA, the set of all states which admit r-free, WFA paths.

Next, we need to prove that violateWFA indeed characterises the existence of a
WFA path that violates global response.

Lemma 4.10. For all environments ϵ and states s ∈ S, we have that s is in
JviolateWFAKϵ if, and only if, s admits a WFA path that violates global response.

Proof. This follows directly from the definition of violateWFA and Lemma 4.9. By
the semantics of violateWFA, the states s ∈ JviolateWFAKϵ are exactly those states
that admit a finite, possibly partial, path π where the final transition is labelled
with a q-action, and the subsequent state is in JinvariantWFAKϵ, hence admits a
path π′ that is r-free and satisfies WFA. By Proposition 4.4, ππ′ satisfies WFA.
So we have a WFA path violating global response.

The final conclusion then follows quite directly.

Theorem 4.11. A state satisfies Formula 4.4 if, and only if, it satisfies global
response under weak fairness of actions.

Proof. The formula Formula 4.4 is the negation of violateWFA. By Lemma 4.10, a
state satisfies violateWFA if, and only if, it admits a WFA path that violates global
response. Hence, a state satisfies Formula 4.4 if, and only if, it does not admit
such a path.

4.4 Fair Reachability of Actions

Recall that the fair reachability of actions (FRA) assumption states that a path
is unfair if there is an action that is perpetually reachable on the path but occurs
finitely often.

48

4.4.1 Precondition Approach

The fair reachability formula from [35] is the example we used to identify the pre-
condition approach. It was not designed to be global response under fair reachabil-
ity of actions, it was instead designed as the “fair reachability” property. However,
it corresponds to global response under FRA. Indeed, it is given as global response
under fairness assumption in [41]. While it is not specified which fairness assump-
tion is made, at least for this formula it corresponds to our FRA assumption. In
fact, this is the formula from which we reverse-engineered the FRA assumption.
We give Remenska’s variant here:

[true⋆ · q · r ⋆]⟨true⋆ · r⟩tt (4.5)

This formula expresses that whenever a q is done, as long as no r has been done it
must always be the case that there exists a path along which r becomes enabled.
With the assumption that any action that perpetually reachable must occur, this
means r always occurs after q.

4.4.2 Non-Violate Approach

We also adapt our global response under WFA formula for a non-violate version
of global response under FRA. We do this by changing the condition for an action
to be a candidate for λ from it being enabled to it being reachable. Additionally,
an action is now only “satisfied” if it occurs or no longer reachable, rather than if
it occurs or no longer enabled.

¬(⟨true⋆ · q⟩νX.(
∧

λ∈Act

⟨true⋆ · λ⟩tt ⇒ (

µY.(([true⋆ · λ]ff ∧X) ∨ ⟨λ \ r⟩X ∨ ⟨λ ∪ r⟩Y))))

(4.6)

The proof that the semantics of Formula 4.6 indeed captures exactly those
states that admit a violating path satisfying fair reachability of actions is very
similar to the proof in Section 4.3.2. We therefore do not repeat it here.

Theorem 4.12. A state satisfies Formula 4.6 if, and only if, it satisfies global
response under fair reachability of actions.

In Appendix A.5, Theorem 4.12 is proven.

4.4.3 Comparison of Approaches

In the section of weak fairness of actions, we stated the precondition formula cor-
responds to only assuming r is treated fairly, whereas the non-violate formula

49

corresponds to assume all actions are treated fairly. At first glance, this is also
the case for the two fair reachability of action formulae: the precondition formulae
only has a requirement that r should be reachable, whereas the non-violate for-
mula considers all actions. However, we argue here that for this specific fairness
assumption, the two approaches actually result in equivalent formulae.

We first used the MLSolver tool, described in Section 2.3.2, to do an initial
check of our intuition that the two formulae are equivalent. In this case, we could
only go up to an alphabet of size 2, specifically {q, r}, since MLSolver threw an
error when we tried to go up to size 3. We could conclude that with an alphabet
of size 2, the two formulae are indeed equivalent. We would be more confident the
formulae are equivalent if we could test with a larger alphabet, but this still gave
an indication they are likely to be equivalent.

This gives us the confidence to manually prove the two formulae equivalent.

Theorem 4.13. The formulae Formula 4.5 and Formula 4.6 are equivalent, they
are satisfied by exactly the same models.

Proof. For this proof, we use Theorem 4.12: we know that Formula 4.6 exactly
describes the non-existence of FRA paths that violate global response. All we then
need to do is prove that when Formula 4.5 is satisfied in model M , that model
satisfies global response under FRA and that when Formula 4.5 is not satisfied,
M contains a fair violating path.

• Let M be an arbitrary model that satisfies Formula 4.5, we prove M must
then satisfy global response under FRA. Note that, as we previously de-
scribed, the formula states that after every q-action, as long as no r-action
has occurred, r must always be reachable. Towards a contradiction, assume
there exists a fair and complete path π in M which violates global response.
Then this path contains an occurrence of the action q that is never followed
by an occurrence of r. Since M satisfies Formula 4.5, we know that after the
occurrence of this q on π, as long as r does not occur, r will be reachable.
Since r does not occur after q on π at all, this means r is reachable in every
state on π after this occurrence of q. Consider the suffix π′ of π which starts
directly after this occurrence of q. We know r is perpetually reachable on π′,
and that there is no occurrence of r on π′. This violates the assumption that
π is a path that satisfies FRA. Hence, no such path π can exist and there
must not be any fair complete paths violating global response in M .

• Let M be an arbitrary model that does not satisfy Formula 4.5, we prove M
must then contain an FRA path violating global response. If M does not
satisfy the formula, we know there must be a path π on which a q occurs,
and after this q there is a sequence of zero or more non-r actions which take

50

us to a state s from which r is not reachable. This follows directly from
the formula. Now consider the possibly partial path π′ from the initial state
of M up to s: on π′, a q-action occurs and for the rest of π′ until its final
state, s, no r-actions occur. We know fair reachability is feasible, and so
there exists a complete fair path π′′ which extends the path π′. We know
no r occurs after the q on π′, and we also know that since r is unreachable
from s, that there cannot be any r-actions after s on π′′, regardless of how
the extension is done. Hence, we know there is a fair and complete path π′′

on which a q-action occurs which is not followed by an r-action.

We conclude that Formula 4.5 is satisfied in exactly those models that satisfy
global response under FRA, and hence its semantics are the same as Formula 4.6.
Hence, the two formulae are equivalent.

4.5 Unconditional Fairness of Actions

Unconditional fairness of actions is the assumption every action is taken infinitely
often. To our knowledge this is not a form of fairness that is often assumed in
practice, it seems strange to require every action occurs infinitely often without
taking into account if the action is even enabled. As discussed in Section 3.3,
unconditional fairness is also infeasible, which according to some means it can be
disregarded as a fairness assumption. In [22], for example, the choice is made
to only consider feasible fairness assumptions. We largely support the idea that
infeasible fairness assumptions are not sensible to use in most cases, so we will
not discuss unconditional fairness after this chapter, save for a handful of brief
remarks. We do present formulae for global response under UFA in this section,
mainly because the last of these formulae will form the basis for the SFA formula
presented in the next section.

It should be noted that the UFA assumption is certainly not much use for the
global response pattern. Consider that a path violating global response is a path
along which a q action is taken at some point, followed by either a finite r-free
path ending in a deadlock state or an infinite r-free path. Assuming UFA would
mean that every action is taken infinitely often along an infinite path, so under
this assumption there will never be an infinite path along which no r-action occurs.
Hence, if we assume UFA all infinite violating paths are disregarded as unfair. The
only valid violating paths for global response under UFA are therefore paths along
which, after some q-action, a deadlock can be reached without doing any r-actions.

The absence of such paths can be expressed as shown in Formula 4.7. This
formula is in neither the precondition nor non-violate style. We are describing
the absence of a violating path, as we do in the non-violate style; yet we are also

51

including the assumption that any infinite path will by assumption satisfy global
response, which is more similar to the precondition style.

¬(⟨true⋆ · q · r ⋆⟩[true]ff) (4.7)

We can rewrite this to be properly in the precondition style by moving the
negation inward, see Formula 4.8.

[true⋆ · q · r ⋆]⟨true⟩tt (4.8)

This expresses that after a q, as long as no r has occurred we are not in a deadlock.
More interesting is designing a proper non-violate style formula, in which we

explicitly encode that all actions must occur infinitely often on infinite paths. With
a least fixpoint operator, we can straightforwardly express that some action must
occur in finitely many steps. To express that the action λ can occur in finitely
many steps without taking an r-action, we use µY .(⟨r⟩Y ∨ ⟨λ \ r⟩tt). If we wish
to express both λ1 and λ2 must occur in finitely many steps, and we know λ1 must
occur first, we can nest the occurrence of λ2 inside the formula for the occurrence
of λ1 as follows:

µY .(⟨r⟩Y ∨ ⟨λ1 \ r⟩µW .(⟨r⟩W ∨ ⟨λ2 \ r⟩tt))

This expresses that after the λ1 has occurred, it must be possible to reach λ2
in finitely many steps. We can continue this nesting to an arbitrary depth, for
all actions in Act . This of course increases the number of formal variables used
linearly with respect to the number of actions, but since these are all least fixpoint
operators the alternation depth of the formula is constant.

The formula above does rely on knowing for sure that λ2 will occur after λ1.
Luckily, if we are describing an infinite path along which all actions will occur
infinitely often, then there will be some occurrence of λ2 after λ1, even if there is
also an occurrence of λ2 before λ1. This insight is what lets us keep the formula
relatively simple.

Expressing that there is no path such that, after a q, all actions occur but r
does not occur can be done as:

¬(⟨true⋆ · q⟩νX.infUFA)

Where infUFA is defined as follows, where we fix some arbitrary order on the actions
in Act such that α1 is the first and αn is the last:

infUFA = execUFA(n)

execUFA(0) = X

execUFA(k + 1) = µWk+1.(⟨r⟩Wk+1 ∨ ⟨αk+1 \ r⟩execUFA(k))

52

Here we use the same nesting we previously demonstrated with λ1 and λ2, now
applied to all actions α1, . . . , αn ∈ Act . The greatest fixpoint operator is used
so that whenever we have seen at least one occurrence of every action, the cycle
repeats.

The above formula is not quite correct to express global response under UFA,
however. Specifically, we have not allowed for the possibility that we reach a
deadlock without having done r, which would mean we have a fair, violating path.
This will need to be included explicitly as an option after the q has occurred. This
gives us the final non-violate style formula shown in Formula 4.9.

¬(⟨true⋆ · q⟩((⟨r ⋆⟩[true]ff) ∨ νX.infUFA)) (4.9)

With the same definition of infUFA as given previously.
We may wonder how does this, much more complicated-looking, formula com-

pares to the formulae we have presented previously in this section. We expect
them to be equivalent, since they all represent global response under UFA, but
we should confirm this. It turns out that not only is Formula 4.9 equivalent to
the other two formulae we have presented, we can quite easily reduce it to For-
mula 4.7. To do this, we note that νX .infUFA can never be true: it describes a
path along which all actions infinitely often occur, and yet simultaneously the r
action never occurs. This is an impossibility. Hence, νX .infUFA is always false,
and we can eliminate it from the disjunction in Formula 4.9. Doing this results
in ¬(⟨true⋆ · q⟩((⟨r ⋆⟩[true]ff))), which, after removing some unnecessary brackets
and using the fact that ⟨α⟩⟨β⟩ϕ = ⟨α · β⟩ϕ, is exactly the same as Formula 4.7.

We will not discuss unconditional fairness much in subsequent chapters. How-
ever, as we will see in the next section, the SFA formula can easily be turned into
the UFA formula. Should one ever need an unconditional fairness formula, the
strong fairness formulae we present throughout this thesis can easily be turned
into unconditional fairness formulae.

Theorem 4.14. A state satisfies Formula 4.9 if, and only if, it satisfies global
response under unconditional fairness of actions.

We do not provide a formal proof of this theorem: we have argued the correct-
ness of Formula 4.7, and its equivalence to Formula 4.9. Correctness of Formula 4.9
follows from this.

4.6 Strong Fairness of Actions

Recall that the strong fairness of actions assumption labels any path unfair for
which there is an action that is relentlessly enabled yet only occurs finitely of-
ten. In other words, on all fair paths all relentlessly enabled actions must occur

53

infinitely often. The formula for global response under SFA was by far the most
complex to design, and while we made many attempts at designing an elegant
and efficient formula, we had to settle for an inefficient one and rather ugly one.
Here, we present a formula in the non-violate style that is correct, but as will be
demonstrated in Chapter 8, is not usable in practical model checking scenarios
due to its inefficiency, at least not when there are many tasks. We do not have a
formula in the precondition style for SFA.

The main challenge in designing a formula for SFA is that when an action
is enabled along a path, SFA can be satisfied both by the action being taken
within finitely many steps, or by the action eventually never being enabled again.
This can be expressed for a single action in the non-violate style relatively easily.
Consider Formula 4.10, which expressed that there does not exist an r-free path
after a q-action, on which the λ-action is treated fairly. This formula is based on
a formula presented in [8].

¬(⟨true⋆ · q⟩νX.µY.νZ.(
⟨λ \ r⟩X ∨ (⟨λ⟩tt ∧ ⟨λ ∪ r⟩Y) ∨ ([λ]ff ∧ ⟨λ ∪ r⟩Z) ∨ [true]ff))

(4.10)

The triple-nested fixpoints in this formula make it difficult to understand intu-
itively. The core idea is that you may infinitely often do the λ-action (X), and
that you may only finitely often be in a state where λ is enabled but not taken
(Y). However, you may infinitely often go through a state where λ is simply not
enabled (Z), even while within the least fixpoint.

We have found extending this formula to cover a path along which all actions
are treated fairly to be rather difficult. The main problem we run into is the
following: when we are in an infinite trail along which some action λ is never en-
abled (Z), we must still consider all actions that may or may not be enabled along
this path and how often we have seen them, and maintain that information even
when λ becomes enabled again. We would conceptually need separate X, Y and
Z fixpoints for every action, but also nested together in every possible arrange-
ment. Even then, we would need to be very careful to not accidentally exclude
any scenarios, and correctly maintain all the information in the formula. We were
unable to make this work, and either way it was quite clear this approach would
not result in an elegant formula. Perhaps there exists a way to turn Formula 4.10
into a nice formula that covers all actions, but we are not aware of it.

Instead, we came upon the following idea: along a strongly fair path, there
are some actions that occur infinitely often and some actions that are only finitely
often enabled. In fact, every action in Act must fall into exactly one of those
two categories. After all, actions are either enabled finitely often or infinitely
often, and under SFA if they are enabled infinitely often they must also occur
infinitely often. Using Formula 4.9, the UFA formula, we already have a way of

54

expressing that some set of actions must occur infinitely often. To express that
some set of actions is enabled only finitely often, we need only observe that if an
action λ is finitely often enabled in a path π, then π has some suffix in which λ is
perpetually disabled. Combining these insights, we can conclude that for a strongly
fair path, there is a suffix on which some subset of Act occurs infinitely often and
the complement of that subset is perpetually disabled. Using this observation, we
design Formula 4.11.

¬(⟨true⋆ · q⟩(
∨

F⊆Act

(µY.(⟨r⟩Y ∨ νX.infSFA(F))))) (4.11)

Where infSFA(F) is defined as follows. For this definition, we fix an arbitrary order
on the actions in F such that α1 is the first action, α2 the second, etc. Let αn be
the last element of F .

infSFA(F) = execSFA(F, n)

execSFA(F, 0) = [F]ff ∧X
execSFA(F, k + 1) = µWk+1.([F]ff ∧

(⟨r⟩Wk+1 ∨ ⟨αk+1 \ r⟩execSFA(F, k)))

There are a few notable differences with Formula 4.9. Firstly, we obviously quantify
over all subsets F of Act . It is those actions that we require to occur infinitely
often with infSFA instead of requiring this for all of Act . Additionally, the definition
of execSFA contains that the actions in F may not ever be enabled. This way we
include the observation that Act is split into actions that occur infinitely often and
actions that are finitely often enabled.

Secondly, we do not require the greatest fixed point to be satisfied immediately
after the q, a finite sequence of non-r steps is allowed to be taken first. The reason
for this is that it may take some finite number of steps before all the actions in F
are perpetually disabled.

Lastly, the separate option for reaching a deadlock state has been removed.
This is because when F = ∅, infSFA(F) = execSFA(∅, 0) = [true]ff ∧X, which when
taking the greatest fixed point of X is satisfied in a deadlock state. Therefore, the
option of reaching a deadlock is already built into this formula and we do not need
to make a special exception for it.

We claim Formula 4.11 accurately captures exactly those states that satisfy
global response under SFA.

Theorem 4.15. A state satisfies Formula 4.11 if, and only if, it satisfies global
response under strong fairness of actions.

The proof of this theorem is included in Appendix A.6.

55

Efficiency

The formula we present here is exponential in size to the number of actions that
are treated fairly. More precisely, Formula 4.11 requires O(n · 2n) variables, where
n is the number of actions in Act : there are 2n subsets, and for each we need a
new variable for every action in the subset. This can be reduced to O(n · 2n−1) if
we note that r must always be outside of F , since it will obviously not be taken
infinitely often on an r-free path.

It should be noted that the alternation depth of the formula is still 3: infSFA(F)
consists of a sequence of |F | least fixed points, which together only contribute to
the alternation depth once. However, the quantification over all subsets of Act
is still extremely expensive. Consequently, this formula is not usable in most
practical applications. In Chapter 8, we will discuss a case study where even with
only 18 actions, computing global response under strong fairness of actions took
around 48 hours on our computer.

At the time of designing this formula, we had not encountered any other strong
fairness formulae that accounted for all actions being treated fairly along a single
path. However, we later came across [19, Chapter 6.3], which describes this exact
approach of allowing every action to either be taken infinitely often or be perpet-
ually disabled after some finite number of steps. This is a small indication that
this may indeed be the best we can do when it comes to expressing this property.

In doing research for this thesis, we have not found definite proof that this prop-
erty necessarily requires an exponential solution. However, it is not unreasonable
to think that this may very well be the best we can do. One thing we considered
was how this property could be expressed in a different logic, for example LTL.
LTL formulae express properties over all paths of a model. Say that we wish to
express the property that there is at least one fair path in the model – we ignore
the r-free aspect for now since it is irrelevant to the underlying complexity of the
problem – we would instead have to express the property that all paths are unfair.
If this property is false, there is at least one fair path. That a single action α is
treated unfairly is expressed in LTL as follows:

□ ⋄ enabled α ⇒ ⋄□¬(occurs α)

This formula expresses that α is infinitely often enabled, but that there is a suffix
of all paths on which α does not occur, hence α does not occur infinitely often.
LTL is a logic based on atomic propositions, rather than actions like the µ-calculus
is, so we treat enabledness of α and occurrence of α as atomic propositions, for
the sake of this example. A path is unfair if a single action is treated unfairly, so
we could extend this formula to cover all unfair paths by simply quantifying over

56

all actions.∨
α∈Act

□ ⋄ enabled α ⇒ ⋄□¬(occurs α)

The size of this formula grows linearly with respect to the number of actions in Act .
However, that does not mean computing whether a model satisfies this formula
is a linear problem. In fact, establishing if a model satisfies an LTL formula is
PSPACE-complete in the size of the formula [43]. There are ways of translating
LTL formulae to the modal µ-calculus, but once again doing model checking with
those formulae is exponential in the size of the resulting µ-calculus formula [13].

Of course, the above argument could also be applied to weak fairness of actions:
that too requires a linear number of variables to express in LTL, yet we found a
more efficient formula in Formula 4.4. So this observation on strong fairness is
not proof that there cannot exist a more efficient formula, it merely indicates that
finding this formula is not a trivial exercise and that translations from other logics
are unlikely to help us.

Remark. As we have stated repeatedly, the formula presented as Formula 4.11 is
far from elegant. In addition to being inefficient due to the quantification over
subsets of Act , it is also presented in a pretty clunky manner. After we finished
proving this formulae, we did think of a way to write it more elegantly. We were
unable to finish to proof for this prettier formula within the time allocated for this
thesis, so Formula 4.11 is the strong fairness formula we use throughout this thesis.
However, we do include a brief discussion of the unproven formula in Appendix D.
Note that this formula still has the quantification over subsets of Act , so it is still
very inefficient. This appendix also has slight variations on the weak fairness and
fair reachability formulae.

57

Chapter 5

Property Specification Patterns

We want to generalise our results from Chapter 4 to cover the other patterns from
[15] as well. To this end, we first introduce the patterns here.

Dwyer, Avrunin and Corbett noted in [15] that one of the barriers for the adop-
tion of formal methods and model checking in practical applications is that specify-
ing the system requirements is often quite difficult and requires expert knowledge
of the logic used. As a solution to this problem, they propose a specification
pattern system, which we here call the property specification patterns (PSP). The
system consists of a collection of high-level abstract descriptions of behaviour one
may wish to express. These abstract descriptions are independent of any specific
logic. These behaviours are then combined with a variety of scopes1, which indi-
cate where in a system execution (path) this behaviour must be satisfied. Formulae
for these patterns are then provided in a few different logics, so that someone who
wants to express a particular pattern in one of these logics need only copy the
given formula and fill in the placeholder variables appropriately.

The patterns provided in [15] are based on a survey of over 500 specifications
occurring in the literature, of which 92% are covered by the patterns given. In
[41], Remenska did another survey of 178 specifications, and found that the original
patterns by Dwyer et al. cover 70% of those specifications. She added extensions
to the patterns, which resulted in the coverage being raised to 80%.

Dwyer et al. provide formulae for their patterns in Linear Temporal Logic
(LTL), Computation Tree Logic (CTL), Graphical Interval Logic (GIL), Quanti-
fied Regular Expressions (QRE) and INCA Queries2. The CADP team, specifi-
cally Radu Mateescu and Mihaela Sighireanu, presented Action Computation Tree

1In [15], what we call behaviours are called patterns, which are then modified with pattern
scopes. We instead use the term pattern to refer to the combination of a behaviour and a scope.

2Dwyer et al.’s formulae can be found at https://web.archive.org/web/20230725153534/
https://matthewbdwyer.github.io/psp/patterns.html.

58

https://web.archive.org/web/20230725153534/https://matthewbdwyer.github.io/psp/patterns.html
https://web.archive.org/web/20230725153534/https://matthewbdwyer.github.io/psp/patterns.html

Logic (ACTL) formulae for the patterns3; Radu Mateescu also created formulae
in regular alternation-free µ-calculus4, which is a subset of the modal µ-calculus.
Remenska extended Mateescu’s µ-calculus formulae to also cover her newly intro-
duced patterns5.

Dwyer et al.’s patterns are intentionally quite generic, and can be instantiated
in a variety of contexts. In particular, the patterns do not specify whether the
observable information is state-information or event-information. Since we are
using the modal µ-calculus, which uses action labels (i.e. events) instead of atomic
propositions (i.e. state information), we interpret all the patterns over actions in
this thesis. This is in line with the formulae from Mateescu and Remenska.

We describe the different scopes and behaviours here. We in most cases use q
and r to represent behaviour actions. As a mnemonic, one can use “question” and
“response” although what actions are filled in for these is up to the user, it need
not be actions indicating a question or a response. For scope deliminators, we use
the variables a and b, which can be easily remembered as “after” and “before”.

5.1 Behaviours

From [15], we have the following behaviours:

• Absence: the r-action does not occur in the scope.

• Existence: the r-action occurs in the scope.

• Bounded Existence: the r-action must occur at most/at least/exactly k
times in the scope.

• Universality: the r-action occurs throughout the scope.

• Precedence: the r-action must always be preceded by the q-action within
a scope. Note that the q must fall within the same scope as the r.

• Response: the q-action must always be followed by the r-action within a
scope. Once again note the r must also occur within the same scope.

3Mateescu and Sighireanu’s ACTL formulae can be found at https://web.archive.org/

web/20230725154156/https://cadp.inria.fr/resources/evaluator/actl.html.
4Mateescu’s regular altnernation-free µ-calculus formulae can be found at https:

//web.archive.org/web/20230725153928/https://cadp.inria.fr/resources/evaluator/

rafmc.html.
5Sadly, the HTML page where Remenska’s patterns were publicly shared is unreachable and

has not been archived. Her Github page contains an HTML file which describes several patterns,
http://web.archive.org/web/20230901054952/https://raw.githubusercontent.com/

remenska/remenska.github.io/master/patterns/index.html. This is not an ideal source,
hence we will primarily refer to what is discussed in [41] explicitly.

59

https://web.archive.org/web/20230725154156/https://cadp.inria.fr/resources/evaluator/actl.html
https://web.archive.org/web/20230725154156/https://cadp.inria.fr/resources/evaluator/actl.html
https://web.archive.org/web/20230725153928/https://cadp.inria.fr/resources/evaluator/rafmc.html
https://web.archive.org/web/20230725153928/https://cadp.inria.fr/resources/evaluator/rafmc.html
https://web.archive.org/web/20230725153928/https://cadp.inria.fr/resources/evaluator/rafmc.html
http://web.archive.org/web/20230901054952/https://raw.githubusercontent.com/remenska/remenska.github.io/master/patterns/index.html
http://web.archive.org/web/20230901054952/https://raw.githubusercontent.com/remenska/remenska.github.io/master/patterns/index.html

• Chain-Precedence: the sequence r0, r1, . . . rn must always be preceded by
the sequence q0, q1, . . . , qm within a scope. It should be noted this behaviour
is on specific sequences, so if r1 occurs before r0 instead of after, for instance,
the behaviour does not apply. There may be other actions between the
actions that make up the sequences.

• Chain-Response: the sequence q0, q1, . . . , qm must always be followed by
the sequence r0, r1, . . . , rn within a scope. Here too, the order in the se-
quences is relevant and there may be actions in-between.

The first four are known as occurrence patterns, the latter four as order patterns.
There is a fifth order pattern that is not in [15] but is mentioned on Dwyer’s
Github page: the Constrained-Chain. This is a variant of the Chain-Precedence
and Chain-Response, where in addition to requiring certain sequences of actions
precede/follow other sequences, certain actions may not occur in between parts of
these sequences. This behaviour is the least clearly specified. An example of the
behaviour is given by Dwyer as: the p-action must be followed by an s-action and
subsequently a t action without a z-action occurring between the s and the t.

From [41] we have the following extensions:

• Always-Enabled: the r-action must always be enabled within a scope.

• Precedence-Variant: the r-action must always be preceded by the q-action
within a scope, and q must eventually occur within that scope.

• Response-Variant: the q action must always be followed by the r-action
within a scope, and q must occur within that scope.

For both existence and (variant and non-variant) response, Remenska also pro-
vides an “under fairness” alternative. It is not explicitly stated exactly which
fairness assumption is used. For global existence and response, it seems to cor-
respond to our fair reachability of actions assumption. However, for the other
patterns the formulae presented do not correspond to that fairness assumption. A
bit more discussion of her formulae for fairness is included in Appendix E, where
we compare her formulae to the formulae we propose for fair reachability of actions.

5.2 Scopes

From [15], we have the following scopes, which we visualise in Figure 5.1:

• Global: along the full path.

• Before: before the first occurrence of the b-action. If the b never occurs, the
behaviour need not hold anywhere.

60

• After-First: after the first occurrence of the a-action. This is called “after”
in [15]. If the a never occurs, the behaviour need not hold anywhere.

• Between-First: between any occurrence of a and b. If there is a sequence of
a-actions before the subsequent b, the behaviour needs to hold from the first
of those a’s onward. If an a is not eventually followed by a b, the behaviour
need not hold after that a. This is called “between” in [15].

• Until-First: after an a until the next b. If there is a sequence of a-actions
before the next b, the behaviour needs to hold from the first of those a’s
onward. If the a is not followed by a b, the behaviour still needs to hold after
that a. This is called “until” in [15].

b b

Global

Before

After-First

a a

Between-First

a a ab b a

Until-First

a a ab b a

a

Figure 5.1: The scopes from Dywer et al. visualised.

Remenska proposed the following variants of some of these scopes, we visualise
these in Figure 5.2.

• Before-Variant: like the before scope but if the b never occurs, the be-
haviour needs to hold for the entire path.

• After-Last: the behaviour only needs to hold after the last a-action. This
can be seen as the scope resetting every time an a occurs. Matching this
new interpretation of after, we also get Between-Last and Until-Last, in
which if there is a sequence of a’s until the subsequent b, the behaviour only
needs to hold from the last of those a’s.

Regarding the ⋆-last scopes, one may wonder what happens if we have an
infinite path along which the a occurs infinitely often. In such cases, there is no

61

“last”. Indeed, in this case the behaviour simply need not hold anywhere: the
infinite a’s keep resetting the scope.

b b

Before-Variant

After-Last

a a

Between-Last

a a ab b a

Until-Last

a a ab b a

a

Figure 5.2: The scopes from Remenska visualised.

Given the introduction of the ⋆-first and ⋆-last versions of after, between and
until, we ourselves add a third variant, visualised in Figure 5.3:

• After-Any: the behaviour must hold after any a along the path. Corre-
spondingly, we get Between-Any and Until-Any which say that if there
is a sequence of a’s before the next b, the behaviour must hold from any of
those a’s onward.

After-Any

a a

Between-Any

a a ab b a

Until-Any

a a ab b a

a

Figure 5.3: The scopes newly added here visualised.

5.3 Notes on the Patterns

There are a few observations we wish to make on the interpretation and usefulness
of some patterns. These are mainly included for the interested reader, and are not
required to use the patterns.

62

Firstly, we observe that the combination of behaviour and scope can lead to
some confusion. We found this in particular with global existence: does it mean
that the r-action must occur at least once on every path, or that the r-action must
eventually occur after every state on the path? In other words, must the occurrence
of r be in the scope global, or must every state in the global scope satisfy that r
eventually occurs? This question is answered if we carefully read the description
of existence: the r-action must occur in the scope, and the scope is the whole
path. Therefore, global existence means that r must occur at least once on every
path. Should one wish to express that from every state on every path, r eventually
occurs, this an be done by combining existence after-any and global existence, by
filling in r for a. This results in the following property: r must occur once on every
path, and after every occurrence of r there must eventually be an occurrence of r.
Together this states that r occurs infinitely often. A more direct way to express
that on all paths r must occur infinitely often is νX .(µY .([r]X ∧ [r]Y ∧ ⟨true⟩tt)),
which is equivalent to the formula you get if you combine the global existence r with
existence of r after-any r formulae we present in Chapter 6. The direct formula
is more elegant, but since it is also expressible without adding a new pattern we
leave it as a combination of existence patterns.

Secondly, we note that not all behaviours are equally useful for us. For example,
the universality behaviour is not very useful in an event-based logic such as the
modal µ-calculus. Global universality would mean that only the r-action is allowed
to occur on the whole path, and there do not seem to be very many practical
situations where such a specification would need to be written. It makes more sense
in an state-based logic, where you may specify that some atomic proposition must
be true consistently. This observation is why Remenska introduced an alternate
interpretation of the universality pattern, which depends on data parameters in
action labels. We do not consider action labels that contain data parameters, so we
do not provide this behaviour. The always-enabled behaviour is another variant
of the universality behaviour, that makes more sense in an event-based logic.

Finally, we said that the scopes presented by Dwyer et al. are all of the ⋆-first
variety, but this is not quite accurate. Take the CTL formulae on their Github
page, for example. Absence of r after a is given as AG(a ⇒ AG(¬r)), which
corresponds to after-any. Existence of r after a on the other hand, is given as
A[¬a W (a ∧ AF(r))] which corresponds to after-first. Of course, it is trivial
to see that in the case of the absence behaviour, after-any and after-first are the
same: if r never occurs after the first a, it never occurs after any a. This is not
the case for existence however: if the r occurs after the first a but not after the
second, then existence after-first holds but existence after-any does not. Hence
why we present the scopes of Dwyer et al. as the ⋆-first variant, since where it
matters this approach is taken.

63

Chapter 6

Formulae for Patterns

In this chapter, we will consider the remaining property specification patterns. As
we will discuss in the subsequent section, fairness is only relevant for a small subset
of these. We only give formulae for those patterns where it makes sense to include
fairness. For µ-calculus formulae without fairness, we point to the translations by
Mateescu and Remenska, as linked in the previous chapter.

In Section 6.2, we will generalise the formulae from Chapter 4 so that they can
easily be adapted to other behaviours and scopes. We will give a brief overview
of the modifications required for the main patterns where fairness is relevant. We
do not discuss every pattern, since some are generalisations of each other (i.e.,
chain response generalises response). In the remaining parts of this chapter, we
will discuss these modifications in more detail. In Appendix E, we compare our
formulae for fair reachability of actions to Remenska’s formulae for fairness.

Recall that we are still considering only fairness assumptions over actions.
Hence, all our definitions in Chapter 2 that concern tasks apply to actions here.
Similar to Chapter 4, we assume progress in all our arguments.

6.1 Relevance of Fairness

In Chapter 3, we stated that fairness assumptions only limit what infinite paths are
considered valid. Consequently, regardless of what fairness assumptions are made,
all finite paths are fair. Additionally, recall from Section 3.3 that weak fairness,
strong fairness and fair reachability are all feasible: any finite partial path can
be extended to a fair complete path. For some properties, it turns out feasible
fairness assumptions have no effect because violations of this property can always
be observed within finitely many steps. Take for example the absence behaviour:
a violation of r not being allowed will always be a path on which r occurs. Such
a path must have a finite prefix up to the first occurrence of r, this is a partial

64

path. And since, under a feasible fairness assumption, we know for certain such a
partial path can be extended fair and complete path where r still occurs, we can
can conclude that there must exist fair violating paths.

This same argument can be applied to any other property where violations can
always be observed in finitely many steps: if there exists a violating path for the
property without making a fairness assumption, then there exists a finite partial
path violating the property, and thus there exists a fair complete path violating the
property under a feasible fairness assumption. This is why fairness assumptions are
usually only made for liveness properties (“something good eventually happens”,
violating paths may be infinite) and not safety properties (“something bad never
happens”, violations are always observable within finitely many steps).

So for many of the behaviours, regardless of scope, feasible fairness is irrele-
vant. We have already argued this is the case for absence. The same goes for
universality of r: a violation comes in the form of any action other than r oc-
curring in the appropriate scope, which can be observed in a finite partial path.
Similarly, always-enabled is observable in the finitely many steps it takes for r
to become disabled. It is less immediately obvious for precedence, yet there too
fairness does not contribute. Consider that a violation of the property that r must
be preceded by q will always be an occurrence of r when q has not occurred yet.
This occurrence of r will be observed within finitely many steps. Finally, consider
bounded existence. If the action r must occur at most k times, then any violating
path contains r at least k+1 times so we have a finite partial path to the k+1’th
occurrence. For at least k times and exactly k times, fairness does play a role.

Next, we consider what scopes are relevant with fairness. In its standard form,
the before scope is not affected by fairness: in the description of the scopes in [15],
it is made explicit that if some behaviour needs to be satisfied before the b action
occurs, and b never occurs, then the property is trivially true even if the conditions
of the behaviour are not satisfied. For example, existence of r before b is true in
a system where neither r nor b is ever enabled. With this interpretation, the
only violating paths that exist all have a finite prefix that ends with the b-action
occurring. Remenska noted that this was not the only reasonable interpretation of
the concept of “before”, and proposed before-variant, where if b never occurs, the
behaviour must be satisfied on the whole path. Here, fairness is relevant. There
is a similar situation with the between scope. Once again, [15] makes it clear that
if some behaviour must be satisfied between occurrences of the a and b actions,
then if an a-action occurs which is never followed by a b the pattern need not be
satisfied after that a. This means the behaviour only needs to be satisfied in a
finite stretch of any path and hence fairness is irrelevant. We can here make the
same variant as we did with before-variant, stating that if no b occurs after an a
the behaviour still needs to hold. However, this exactly describes the until scope,

65

so we simply give formulae for until and do not discuss the between scope further.
We do not cover all the behaviours for which fairness is relevant in this thesis,

primarily due to time constraints. We discuss response and existence, these two are
the most commonly occurring behaviours of those for which fairness is relevant.
This means we do not discuss bounded existence for at least or exactly, chain-
response, constrained chain, precedence-variant or response-variant. This is less
bad than it may seem. Note that bounded existence is a variant of existence,
which we do cover. Similarly, chain response and constrained chain (response) are
variants of response. As for precedence-variant and response-variant, these are
basically combinations of existence and precedence/response respectively. Hence,
while we do not cover all behaviours, we do cover the most important ones. An
overview of what we do and do not cover is given in Table 6.1.

Behaviour Relevant Covered Scope Relevant Covered

Absence × × Global ✓ ✓
Existence ✓ ✓ Before × ×
Existence (Most) × × After-First ✓ ✓
Existence (Least) ✓ × Between-First × ×
Existence (Exactly) ✓ × Until-First ✓ ✓
Universality × × Before-Variant ✓ ✓
Precedence × × After-Last ✓ ✓
Response ✓ ✓ Between-Last × ×
Chain-Precedence × × Until-Last ✓ ✓
Chain-Response ✓ × After-Any ✓ ✓
Always-Enabled × × Between-Any × ×
Precedence-Variant ✓ × Until-Any ✓ ✓
Response-Variant ✓ ×
Constrained-Chain ✓ ×

Table 6.1: Overview of the different behaviours and scopes, whether (feasible)
fairness is relevant for them, and whether we cover them.

Remark. We previously discussed that unconditional fairness is not feasible. Hence,
unconditional fairness does have an impact on properties even when all violations
of that property can be observed within finitely many steps. The arguments given
above for why certain behaviours and scopes are not affected by fairness therefore
do not apply to UFA. Consider for example Figure 3.2, the LTS we previously
showed in which, if we assume progress and UFA, there are no valid paths at all.
Any property will vacuously hold under UFA on this LTS, even global absence
of r, even though r is the only enabled action in the initial state. We can think

66

of very few scenarios where this would be the intended consequence of making a
fairness assumption. This is the primary reason we do not cover unconditional
fairness much in this thesis, and we do not present UFA versions of every PSP
pattern. For those patterns we do cover, our SFA formulae can be adapted to
UFA formulae by instantiating F as Act and explicitly adding the possibility of
ending in a deadlock, should one need UFA variants.

6.2 Formula Structures

In this section, we present pattern-agnostic “base” versions of the non-violate
formulae from Chapter 4. We focus on the non-violate style formulae for two
reasons: firstly, we have formulae in this style for all three fairness assumptions
we discuss here; and secondly, because formulae in this style clearly show the
shape of fair, violating paths. In Appendix E, we also give a base version of the
precondition FRA formula to facilitate comparison with Remenska’s formulae. We
do not further discuss the precondition approach in this section.

Recall that the non-violate formulae in Chapter 4 all take the form “there does
not exist a fair path on which a q is not followed by an r”. When we want to make
formulae for other patterns in this same style, we need to define exactly what makes
a path a violating path for that pattern. We can then specify that there is no fair
path that has those characteristics. From the global response formulae we already
know how to include that a violating path must have a specific prefix: it comes
at the very start of the formula in the place where global response has true⋆ · q.
Additionally, we see in the global response formulae how to say some action(s)
may not occur anymore after the prefix: this is where global response excludes the
r-action from some box and diamond operators. Examining the patterns we have
decided to cover, it turns out these two things are enough to cover many patterns.
For the remainder, we need a third modification: in the case of the before-variant
and until scopes, we need to include that if the scope ends before the behaviour
has been satisfied, we have found a violating path. Since scopes are delimited by
actions, a scope can end when the action that ends the scope is enabled.

Changing these three parts of the formulae from Chapter 4 allows us to cre-
ate formulae for all the patterns we cover. Instead of presenting those, rather
repetitive, formulae separately, we present base versions that include placeholder
variables and then provide an overview of how these variables must be filled in to
represent different patterns. We use the following placeholder variables:

• δ1 is a regular formula which gives a prefix every violating path should have.
This might, for example, be true⋆ if a property needs to hold at every point
in a path. If a property only needs to hold from the initial state, this will be
ε. This part of the prefix reflects the scope.

67

• δ2 is another regular formula, and also part of the prefix, but we separate
it from δ1 because it reflects behaviour rather than scope. For instance, for
all response properties we will have δ2 = ?⋆ · q, where the ? reflects which
actions are allowed to occur between the δ1 and q.

• δ3 is an action formula that, if it ever becomes enabled, means a violating
path exists. For example, if a particular behaviour is required to hold be-
fore b, and b becomes enabled without the behaviour being satisfied, then a
violating path can be constructed by taking this b-transition. This variable
reflects part of the scope.

• δ4 is an action formula capturing actions that are not allowed to occur after
the prefix characterised by δ1 · δ2. This placeholder is for actions excluded
based on the behaviour. For example, if the property requires r to occur after
the prefix then a violating path may not include the action r after δ1 · δ1.

• δ5 is similar to δ4: an action formula that represents actions that are not
allowed to occur after δ1 · δ2. We use δ5 for actions that are disallowed by
the scope. For example, if we wish to specify something occurs after the last
a, then no more a’s are allowed to occur after the prefix.

Using these variables, we want our non-violate formulae to express the follow-
ing: there does not exist a path π that meets all of the following requirements:

1. π is complete and fair according to our chosen fairness assumption, and

2. π has a prefix matching δ1 · δ2, and

3. on π, there is no occurrence of any action in δ4∪ δ5 after the prefix matching
δ1 · δ2 and before the occurrence of any action in δ3.

The word “before” should be interpreted like the before-variant scope: if there is
no occurrence of δ3 after the δ1 · δ2-prefix, there may never be an occurrence of the
actions in δ4 ∪ δ5 after that prefix. We visualise these requirements in Figure 6.1.

δ1 • δ2 δ3δ4-free

and δ5-free

δ1 • δ2 δ4-free

and δ5-free
or

Figure 6.1: Visualisations of the shape of a violating path. The prefix matching
δ1 · δ2 is visualised in solid grey, the part that should be δ4 ∪ δ5-free is visualised
with crosshatching. The path should also be complete and fair.

68

The absence of a violating path according to the three requirements is captured
for WFA by Formula 6.1:

¬(⟨δ1 · δ2 ⟩νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([λ]ff ∧X)∨
⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨λ ∪ δ4 ∪ δ5 ⟩Y)))))

(6.1)

Compared to the global response formula, we have swapped true⋆ ·q for δ1 ·δ2, and
we have replaced the explicit references to r with δ4∪ δ5. Finally, we added that if
δ3 becomes enabled after δ1 · δ2, then a violating path has been found. This works
because the formula already enforces that after δ1 · δ2, no actions in δ4 or δ5 may
have occurred. So if δ3 becomes enabled, a partial path exists where after δ1 · δ2,
δ3 occurs without there first being an occurrence of any of the actions in δ4 or δ5.
Since WFA is feasible, this partial path can be extended to a complete fair path
that meets the requirements to be a violating path.

For SFA, we use Formula 6.2:

¬(⟨δ1 · δ2 ⟩(
∨

F⊆Act

(µY.(⟨δ4 ∪ δ5 ⟩Y ∨ ⟨δ3 ⟩tt ∨ νX.inf (F))))) (6.2)

Where inf (F) is defined as follows. We fix an arbitrary order on the actions in F
such that α1 is the first action, α2 the second, etc. Let n = |F |.

inf (F) = exec(F, n)

exec(F, 0) = [F]ff ∧X
exec(F, k + 1) = µWk+1.([F]ff ∧

(⟨δ4 ∪ δ5 ⟩Wk+1 ∨ ⟨αk+1 \ (δ4 ∪ δ5)⟩exec(F, k)))

For the SFA formula, δ3 is not incorporated in the greatest fixpoint, which is how
we do it for WFA. Instead, recall that the SFA formula already allows there to
be a finite sequence of actions before the greatest fixpoint needs to be satisfied.
We add δ3 there: if we can reach a state where δ3 is enabled within finitely many
non-δ4 and non-δ5 steps, then a violating path exists. Once again, feasibility is
important here: if a partial path exists where δ3 occurs after δ1 · δ2 without any
actions from δ4 or δ5 occurring in-between, then this partial path can be extended
into a complete and fair violating path.

We have previously remarked in Section 4.6 that there is no point in allow-
ing the actions that should not occur to be in F . Hence, to slightly reduce the
complexity of the formula in practice we could exclude all actions in δ4 and δ5
from being in F without affecting correctness of the formula. In that case, it is
important to note that δ4 and δ5 are both still subsets of F .

69

Finally, for FRA we have Formula 6.3:

¬(⟨δ1 · δ2 ⟩νX.(
∧

λ∈Act

(⟨true⋆ · λ⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([true⋆ · λ]ff ∧X)∨
⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨λ ∪ δ4 ∪ δ5 ⟩Y)))))

(6.3)

There is nought to be said about the FRA formula that we have not already said
about the WFA formula: fairness applies to reachable actions instead of enabled
actions, but otherwise the two formulae are identical.

For global response, the variables are filled in as: δ1 = ε, δ2 = true⋆ · q, δ4 = r
and δ3 = δ5 = false. Indeed, filling in these values will result in the formulae
from Chapter 4. To observe this, we need to keep in mind that ⟨ε⟩ϕ = ϕ, so
⟨ε · true⋆ · q⟩ = ⟨true⋆ · q⟩. Additionally, δ3 = false does not contribute to the
semantics of the formulae: ⟨false⟩tt =

∨
α∈∅⟨α⟩tt , which is equivalent to false.

Thus, adding ⟨false⟩tt to a disjunction does not affect the semantics of the formula.
We present how the placeholders should be filled in for the patterns we have

chosen to cover in Table 6.2. These assignments work with Formula 6.1, For-
mula 6.2 and Formula 6.3.

In the table we can observe that δ1, δ3 and δ5 are identical for existence and
response. This is because these are only dependent on scope; they are not affected
by behaviour. Even though both δ2 and δ4 are dependent on behaviour, δ4 is still
the same for both existence and response as both behaviours have violating paths
when r does not occur after after the prefix. Consequently, existence and response
behaviours only differ in their assignment to δ2, which is the q action and what
actions are allowed to precede the q.

Behaviour Scope δ1 δ2 δ3 δ4 δ5

None true⋆ ε false false false

Response Global ε true⋆ · q false r false

Before-Var ε b
⋆ · q b r false

After Any true⋆ · a true⋆ · q false r false
First a⋆ · a true⋆ · q false r false
Last true⋆ · a a⋆ · q false r a

Until Any true⋆ · a b
⋆ · q b r false

First (a⋆ · a) + b
⋆ · q b r false

(true⋆ · b · a⋆ · a)
Last true⋆ · a a ∪ b

⋆ · q b r a

70

Behaviour Scope δ1 δ2 δ3 δ4 δ5

Existence Global ε ε false r false
Before-Var ε ε b r false
After Any true⋆ · a ε false r false

First a⋆ · a ε false r false
Last true⋆ · a ε false r a

Until Any true⋆ · a ε b r false
First (a⋆ · a) + ε b r false

(true⋆ · b · a⋆ · a)
Last true⋆ · a ε b r a

Table 6.2: The different assignments to the variables in the base formulae to
represents the various properties and scopes. Before-Var is Before-Variant.

6.3 Correctness Claims

For each of the base formulae, we claim they exactly characterise that there does
not exist a violating path that satisfies the chosen fairness assumption.

Theorem 6.1. A state s ∈ S satisfies Formula 6.1 if, and only if, it does not
admit a path π meeting the following requirements:

1. π is complete and satisfies weak fairness of actions, and

2. there is a prefix of π that matches δ1 · δ2, and

3. there is no occurrence of any action in δ4 or δ5 in π after δ1 · δ2 and before
the first occurrence of an action in δ3.

This theorem is proven in Appendix B.1.

Theorem 6.2. A state s ∈ S satisfies formula Formula 6.2 if, and only if, it does
not admit a path π meeting the following requirements:

1. π is complete and satisfies strong fairness of actions, and

2. there is a prefix of π that matches δ1 · δ2, and

3. there is no occurrence of any action in δ4 or δ5 in π after δ1 · δ2 and before
the first occurrence of any action in δ3.

The proof for this theorem is given in Appendix B.2.

71

Theorem 6.3. A state s ∈ S satisfies Formula 6.3 if, and only if, it does not
admit a path π meeting the following requirements:

1. π is complete and satisfies fair reachability of actions, and

2. there is a prefix of π that matches δ1 · δ2, and

3. there is no occurrence of any action in δ4 or δ5 in π after δ1 · δ2 and before
the first occurrence of an action in δ3.

Finally, the FRA proof is given in Appendix B.3.

6.4 Formula Details

In this section, we discuss the contents of Table 6.2 in more detail. We do not have
full proofs for every variant, but we use this section to provide intuitive arguments
as to why the choices we made in Table 6.2 are correct. Detailed comparisons with
Remenska’s formulae are provided in Appendix E.

We already discussed global response under all three fairness assumptions in
detail in Chapter 4. We here explain the choices made for the other patterns
we covered in Table 6.2. We will primarily focus on the response behaviour, since
there we can cover both the impact of different scopes as well as our choice in what
actions may come before q in δ2. Once all the response formulae are discussed,
most of the existence formulae need not be discussed anymore since they are very
similar. Hence, we only make a few brief remarks on existence.

6.4.1 Response Before-Variant

For this combination of behaviour and scope, we need to express that every q
action that occurs before the first b must eventually be followed by an r. This r
must also come before the first b. Since this is the before-variant scope, if the b
never occurs the response behaviour must be satisfied by the entire path.

The following is a formula expressing this property without fairness, which is
due to Remenska:

[b
⋆ · q]µY .(⟨true⟩tt ∧ [b]ff ∧ [r]Y) (6.4)

Recall the global response without fairness formula from Chapter 4:

[true⋆ · q]µY .(⟨true⟩tt ∧ [r]Y)

We can observe two differences between the two formulae:

72

1. Instead of considering every q that occurs, Remenska only considers those
that occur before any b has occurred.

2. When defining the finite path until r is the only enabled action, Remenska
adds that b may never be enabled along this path. Consider that if the b
becomes enabled before the r has been taken, there would exist a path where
the b is done before the r that responds to the q.

We can see these modifications directly reflected in Table 6.2 when looking at the
global response and response before-variant rows. The first change is reflected by
replacing true⋆ · q with b

⋆ · q in δ2. For the second change, we add δ3 = b.

6.4.2 Response After

We consider the after-any, after-first and after-last variants separately.

Any

For response after-any, we wish to express that after any a-action, any subsequent
q must eventually be followed by an r. Without fairness assumptions, this would
be expressed as follows:

[true⋆ · a · true⋆ · q]µY .(⟨true⟩tt ∧ [r]Y) (6.5)

Which expresses that whenever an a is done, any subsequent occurrence of q
must lead to a state from which one always in finitely many steps reaches a state
where only r is enabled, without encountering a deadlock. The difference between
Formula 6.5 and the global response without fairness formula (Formula 4.1) is that
we have stuck [true⋆ · a] in front to indicate it only has to hold after an a-action.
This change can also be seen in Table 6.2, where the only difference between global
response and response after-any is δ1 = true⋆ · a.

First

Specifying that r must respond to q after the first occurrence of a, is done in a
manner similar to after-any. Instead of using true⋆ · a we instead use a⋆ · a to
specify it must be the first a.

It should be noted however that for the response pattern, there is no difference
between the after-any scope and the after-first scope semantically. We argue this
informally: after-any always subsumes after-first because the first occurrence of
a is an occurrence of a. In the case of the response behaviour, after-first also
subsumes after-any. This is because any q that comes after an arbitrary a must
also come after the first a on a path, so if we know that every q that comes after

73

the first a is followed by an r, then we can conclude this is also the case for every
q that comes after an arbitrary a.

The observation above only applies to the response behaviour. For existence,
after-any is not equivalent to after-first. Consider a path on which first an a occurs,
then an r, and then an a again which brings us to a deadlock state. On this path,
there is an r after the first a, but it is not the case that there is an r after any a.
Hence, separating the two scopes is valuable. The change from true⋆ · a to a⋆ · a
works for the existence behaviour as well, as is shown in Table 6.2.

Last

While there is no difference between after-any and after-first for the response
behaviour, there is a difference with after-last. Consider a complete path consisting
of the sequence of actions aqa. Since there is a q after some a which is never followed
by an r, response after-any obviously does not hold. However, since after the last
a there are no more q-actions, response after-last does hold.

For the after-last scope, a violating path must have the following shape: there
is at some point an a, which is followed by a q, after which there is no occurrence
of r. That part is standard for response after-⋆. The key with the after-last scope
is that after this a, there may not be any more occurrences of a. If there were, it
would not be the last a. Comparing the response after-any and response after-last
variable assignments in Table 6.2, the observation above explains all differences:

• For δ2, there is no longer allowed to be an a before the q, hence true⋆ · q is
replaced by a⋆ · q1.

• δ5 has gone from false to a, because just like no r is allowed to occur after
the q on a violating path, the action a is also not allowed to occur.

We described in Chapter 5 that the after-last scope means the behaviour need
not be satisfied if there is no last a. Indeed, because δ5 = a, if after every a and
subsequent q, another a is guaranteed to occur, we cannot construct a violating
path even if r never occurs.

6.4.3 Response Until

For response until, we wish to express that after any/the first/the last a before
the next b, any q-action must be followed by an r. The matching r must also fall

1Technically this change is not needed: if there is an a after δ1 but before q, then that a
becomes the last a. If the q is then followed by an a-free and r-free path, we still have a violating
path. So true⋆ · q could still be used for δ2. However, we prefer to have the a in the formula
be the last a on the path we are describing, so that the correspondence between formula and
pattern is clear.

74

before the next b. If there is an a without subsequent b, the response condition
must still be satisfied after that a.

The until-⋆ scope is a combination of the before-variant and after-⋆ scopes. For
the most part, we simply need to combine the modifications for before-variant and
after-⋆ to make the until-⋆ formulae. In fact, we see this directly with until-any
and until-last in Table 6.2.

For until-any, δ1 combines the ε (i.e. nothing) from before-variant and the
true⋆ · a from after-any into true⋆ · a. Before-variant has b⋆ · q for δ2 and after-any
has true⋆ · q. Not being allowed to do b before q is a stronger condition than
being allowed to do any action before q, so until-any inherits b

⋆ · q. Until-any also
inherits δ3 = b from before-variant. Finally, δ4 = r and δ5 = false match both
before-variant and after-any.

The values for until-last are found in a similar manner. The only thing of note
is that for δ2, b

⋆ · q and a⋆ · q get combined as a ∪ b
⋆ · q, since here both the a and

the b are not allowed to occur before the q.
Until-first requires more explanation, however. In Table 6.2, the until-first

scope is the only place where we use a + in the regular formulae.
Filling in the values for response until-first for the WFA formula, we get

¬(⟨((a⋆ · a) + (true⋆ · b · a⋆ · a)) · b⋆ · q⟩

νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(⟨b⟩tt ∨ ([λ]ff ∧X)∨
⟨λ \ r⟩X ∨ ⟨λ ∪ r⟩Y)))))

(6.6)

Recall from Section 2.2.5 that ⟨R +Q⟩ϕ = ⟨R⟩ϕ ∨ ⟨Q⟩ϕ. Hence, Formula 6.6
corresponds to

¬(

(⟨a⋆ · a · b⋆ · q⟩νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(⟨b⟩tt ∨ ([λ]ff ∧X)∨
⟨λ \ r⟩X ∨ ⟨λ ∪ r⟩Y)))))

∨

(⟨true⋆ · b · a⋆ · a · b⋆ · q⟩νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(⟨b⟩tt ∨ ([λ]ff ∧X)∨
⟨λ \ r⟩X ∨ ⟨λ ∪ r⟩Y))))))

We can see this formula as describing the absence of two types of violating paths:
paths where the response behaviour is violated between the first a on the path and

75

the first subsequent b; and paths where the response behaviour is violated between
the first a after some b on the path and the first subsequent b. The first part
follows directly from combining before-variant with after-first. The reason for the
second part is that the until-first scope requires that after the any a-until-b slice of
the path, the behaviour again needs to hold after the next a, until the subsequent
b. Hence, after every b we need to consider the next “first” a. This is why we
add the second type of violating path. If either type of violating path occurs, the
property is violated.

A more concise way of expressing both types of violating path is to use δ1 =
(true⋆ · b)⋆ · a⋆ · a. It depends on personal preference which notation one finds
easier to understand. Here, we found the separated approach easier to explain.

Remark. Just like the after-any and after-first scopes are equivalent for the response
behaviour, so are until-any and until-first. Hence, this complicated formula is not
actually required, since the until-any formula can be used instead. However, once
again this argument does not apply to existence behaviour, so we still give a scope-
specific formula which can be used more generally with other behaviours as well.

6.4.4 Existence

Most of the existence formulae are not worth discussing again, since our approach
for representing scopes is the same as with the response formulae. However, there
are a few interesting observations to be made that are specific to the existence
behaviour: “r must occur in the scope”.

Firstly, for the after scopes, it is interesting to note that existence after-any
corresponds to global response. Existence of r after any a means that violations
consist of paths where there is at some point an a action and there subsequently is
an r-free path that either ends in a deadlock or is infinite and fair. Replace the a in
this description with a q, and this is a violating path for global response. Indeed,
in Table 6.2 replacing the a in δ1 with a q results in δ1 ·δ2 for global response being
the same as δ1 · δ2 for existence after-any.

Secondly, regarding existence after-last: we want to briefly note why this for-
mula is required. We previously discussed that for response behaviour, after-any
and after-first are equivalent, and that this is not the case for existence behaviour.
One may wonder if existence after-any is equivalent to existence after-last, then.
After all, if an r occurs after the last a then it also occurs after any a. However,
any behaviour under the after-last scope can also be satisfied if there are infinitely
many a’s on a path, since there is no “last” then. This is not the case for after-any.
Hence, we do require a separate formula.

76

Chapter 7

Generalising Formulae

In the previous chapter, we gave several base formulae for representing different
PSP patterns under fairness assumptions in the modal µ-calculus. So far, we have
covered three fairness assumptions: weak fairness of actions, strong fairness of
actions and fair reachability of actions. In this chapter, we present a few ways to
modify these formulae to cover a broader range of fairness assumptions.

In Section 7.1, we consider how to specify that only some actions need to
be treated fairly. In Section 7.2, we explore how arbitrary tasks can be used in
formulae. We present formulae that work with the global fairness definitions from
Section 3.2, as well other task definitions. We do need to account for some of the
limits of the µ-calculus, which we discuss in this section.

We do not provide formal proofs for the formulae in this chapter, since we did
not have the time to finish these. However, we do provide arguments for why the
modifications we make to the formulae from Chapter 6 are correct.

7.1 Fair and Unfair Actions

In Chapter 4, we stated that the precondition weak fairness of actions formula
expresses that only the r-action is treated fairly. So far, our interest has been in
formulae that express all actions are treated fairly. After all, if you are assuming
your system has some form of fair scheduling implemented then it makes sense
to say all actions in the model of this system must be treated fairly. However,
there may be cases where only a subset of actions should be treated fairly. For
example, one may model two systems that communicate with each other, where
the behaviour of each system independently is fair but their communication is not.

We here present variants of the base formulae from Chapter 6 under a fairness
assumption where only a subset of actions is treated fairly. For these formulae, we
divide the set Act into two sets: C and N so that C ∩N = ∅ and C ∪N = Act .

77

The set C contains those actions that we have chosen to treat fairly, N those we
do not treat fairly. We still assume progress on all actions, not just those in C.

7.1.1 Generalised Weak Fairness of Actions (GWFA)

Let us first consider the base weak fairness of actions formula from Section 6.2:

¬(⟨δ1 · δ2 ⟩νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([λ]ff ∧X)∨
⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨λ ∪ δ4 ∪ δ5 ⟩Y)))))

The conjunction over actions says that for all actions λ that are enabled, there must
exist a sequence of actions along which a few conditions are respected (depending
on δ3, δ4 and δ5) and which leads to λ either being disabled or occurring, and
then the condition needs to hold again. Crucially, the least fixpoint requires λ to
be treated fairly regardless of how the variables are filled in. A reasonable first
step towards generalising this formula is then to replace λ ∈ Act with λ ∈ C,
so that only the fairly-treated actions have this requirement. This alone is not
satisfactory however, since too many traces may be accepted. When discussing
the WFA formula for global response, we stated that the way the WFA formula
accounts for a path being allowed to end in a deadlock state is because in those
states, ⟨λ⟩tt will be false for all λ ∈ Act and so the implication is trivially true for
all actions. If we only take λ ∈ C, however, the formula says any path that ends in
a state where no fairly treated actions are enabled forms a valid counterexample.
This contradicts the progress assumption: if there are actions in N that are still
enabled, the path is not yet complete. We must therefore explicitly incorporate
that if no actions in C are enabled but we are not in a deadlock, then there must
be an action in N that can be taken that leads to a violating, fair path. Of course,
the action that is taken may not be in δ4 or δ5. We also still need to consider δ3.

These modifications together result in Formula 7.1.

¬(⟨δ1 · δ2 ⟩νX.(∧
λ∈C

(⟨λ⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([λ]ff ∧X)∨
⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨λ ∪ δ4 ∪ δ5 ⟩Y)))

∧ ([C]ff ⇒ ([true]ff ∨ ⟨δ3 ⟩tt ∨ ⟨δ4 ∪ δ5 ⟩X))))

(7.1)

One may wonder if this formula accounts for the possibility that, in order to
construct the violating path, at some point an action in N needs to be taken while

78

there are actions in C still enabled. While it may not be immediately obvious
from reading the formula, this is indeed considered. Note that if an action λ ∈ C
is enabled, then it will need to be satisfied either by being taken eventually or by
eventually no longer being enabled. However, as long as it is a finite sequence, it
may take transitions of any action other than λ or those in δ4 and δ5 to get to this
point, including those actions in N . This is covered by the ⟨λ ∪ δ4 ∪ δ5 ⟩Y -part.

If C is empty, i.e. no actions are being treated fairly, this formula reduces to

¬(⟨δ1 · δ2 ⟩νX .([true]ff ∨ ⟨δ3 ⟩tt ∨ ⟨δ4 ∪ δ5 ⟩X))

If we fill in the global response values, we get exactly Formula 4.2, the global
response without fairness formula in the non-violate style. This indicates we are
handling the actions in N correctly.

7.1.2 Generalised Strong Fairness of Actions (GSFA)

We restate the SFA formulae, Formula 6.2, here:

¬(⟨δ1 · δ2 ⟩(
∨

F⊆Act

(µY.(⟨δ4 ∪ δ5 ⟩Y ∨ ⟨δ3 ⟩tt ∨ νX.inf (F)))))

Where inf (F) is defined as follows. We fix an arbitrary order on the actions in F
such that α1 is the first action, α2 the second, etc. Let n = |F |.

inf (F) = exec(F, n)

exec(F, 0) = [F]ff ∧X
exec(F, k + 1) = µWk+1.([F]ff ∧

(⟨δ4 ∪ δ5 ⟩Wk+1 ∨ ⟨αk+1 \ (δ4 ∪ δ5)⟩exec(F, k)))

Recall that the strong fairness of actions formula works by considering for every
action both the possibility that in some suffix of the violating path the action is
taken infinitely often (in which case it is in F), and that in some suffix of the
violating path the action is never enabled (in which case it is in F). Actions
that need not be treated fairly do not fall into either category: it is alright if
they are relentlessly enabled and yet taken only finitely often. So F only needs
to be some subset of C, rather than of Act . The actions in F should then still
be taken infinitely often eventually, but along this path it is no longer the case
that all actions in F need to remain disabled, since the actions in N are also in F .
Instead, it is only the actions in C \F that need to remain disabled. We do need to
consider how to handle finite paths ending in a deadlock. In the original formula,
this was covered by F = ∅. In this case, the part of the formula dependent on F

79

reduces to whether it is possible to reach a deadlock in finitely many steps, without
taking actions in δ4 or δ5. However, now that F is a subset of C rather than Act ,
this is no longer the case. Hence, we need to explicitly include the possibility of
reaching a deadlock. This could be done as a separate formula, but can also be
incorporated directly into the definition of the least fixpoint with variable Y . We
take this latter approach.

There is one final factor we need to consider, which also came up with the
weak fairness formula: are actions in N still allowed to occur freely? It turns out
that while exec(F, k + 1) handles this correctly, since any action not in δ4 or δ5 is
allowed to occur until αk+1 occurs, the way exec(F, 0) is defined causes problems
when we generalise the formula to allow non-fair actions. Similar to the issue we
had with the GWFA formula, [C \ F]ff ∧ X may be true in states that are not
deadlock states, and hence do not indicate we have found a fair and complete
violating path. We fix this by adding ⟨δ4 ∪ δ5 ⟩ in front of the X, which ensures
that even when F = ∅, the formula checks for the existence of complete violating
paths. This change has no negative impact on the semantics of the formula: since
inf ensure the actions in C \ F will be disabled in the states where X holds, we
are not accidentally allowing a state that violates this condition to be on the path.
Additionally, inf says every action occurs infinitely often, which actions occur in-
between does not matter (except they are not in δ4 ∪ δ5), so the extra transition
included in the path by placing ⟨δ4 ∪ δ5 ⟩ before X is fine.

The modified formula for GSFA is given as Formula 7.2.

¬(⟨δ1 · δ2 ⟩(
∨
F⊆C

(µY.(⟨δ4 ∪ δ5 ⟩Y ∨ [true]ff ∨ ⟨δ3 ⟩tt ∨ νX.infG(F))))) (7.2)

With

infG(F) = execG(F, n)

execG(F, 0) = [C \ F]ff ∧ ⟨δ4 ∪ δ5 ⟩X
execG(F, k + 1) = µWk+1.([C \ F]ff ∧

(⟨δ4 ∪ δ5 ⟩Wk+1 ∨ ⟨αk+1 \ (δ4 ∪ δ5)⟩execG(F, k)))

Where α1 is the first action in F , α2 the second, etc. until αn, for some arbitrary
order on the actions in F .

Let us again consider what this formula looks like when C = ∅. We expect
that if we fill in the variables for global response, we get Formula 4.2. There is
only a single F possible when C = ∅, namely F = ∅. We get the following formula
for global response with C = ∅:

¬(⟨true⋆ · q⟩µY.(⟨r⟩Y ∨ [true]ff ∨ νX.(⟨r⟩X)))

80

Syntactically, this is different from Formula 4.2: instead of νX .([true]ff ∨ ⟨r⟩X)
we have µY .(⟨r⟩Y ∨ [true]ff ∨ νX .(⟨r⟩X)). But semantically, they are equivalent.
We do not provide a formal proof of this, due to time constraints. However,
informally it obvious that both express that there either exists a finite r-free path
ending in a deadlock, or an infinite r-free path. MLSolver also confirms they are
equivalent, at least up to an alphabet of size 8.

7.1.3 Generalised Fair Reachability of Actions (GFRA)

The GFRA formula is designed in much the same way as the GWFA formula.
Unsurprising, given the similarities in the base formulae. We just need to ensure
that now, the option to ignore the actions in C and take an action in N should only
be available when none of the actions in C are reachable, rather than whenever
none of them are enabled. The result is Formula 7.3.

¬(⟨δ1 · δ2 ⟩νX.(∧
λ∈C

(⟨true⋆ · λ⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([true⋆ · λ]ff ∧X)∨
⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨λ ∪ δ4 ∪ δ5 ⟩Y)))

∧ ([true⋆ · C]ff ⇒ ([true]ff ∨ ⟨δ3 ⟩tt ∨ ⟨δ4 ∪ δ5 ⟩X))))

(7.3)

7.1.4 Combining All Generalised Formulae

Out of interest, we also present a formula that combines all of the formulae previ-
ously presented in this chapter. The idea is to have a formula that states different
actions fall under different fairness assumptions. We do not account for one ac-
tions falling under multiple fairness assumptions; there is a strict hierarchy between
these assumptions, see Lemma 3.6, so if an action falls under multiple assumptions
it is sufficient to only consider it affected by the strongest of those assumptions.

Let S be the set of actions that should be treated strongly fairly, W the set of
actions that should be treated weakly fairly, R the set of fair reachability actions,
and finally N for actions that need not be treated fairly at all. These sets should
be pairwise disjoint, and we require that the union of all of them equals Act .

The basis for the combined formula is the GSFA formula. We still need to
consider all possible subsets S ′ of S to determine which strongly fair actions are
enabled finitely often and which are taken infinitely often.

Next, consider that for all actions in W , they must either be infinitely often
taken, or infinitely often disabled. After all, if they are only finitely often disabled
on an infinite path, then there is some suffix of that path on which they are

81

perpetually enabled and hence should occur infinitely often. A similar observation
can be made about the actions in R: they either occur infinitely often or are
unreachable infinitely often. We can use these observations to handle W and R
similarly to how S is handled, running down all the actions in the sets. Except in
this case, they are satisfied if we can, in finitely many steps, either take the action
or observe it is disabled or unreachable respectively. Of course, the elements of S
that are not in S ′ need to remain disabled during these sections.

¬(⟨δ1 · δ2 ⟩(
∨
S′⊆S

(µY.(⟨δ4 ∪ δ5 ⟩Y ∨ [true]ff ∨

⟨δ3 ⟩tt ∨ νX.infC (S ′,W ,R)))))

(7.4)

Let the elements in S ′ be α1, α2, . . . , αs, the elements in W β1, β2, . . . , βw, and the
elements in R γ1, γ2, . . . , γr. We define the following functions:

infC (S
′,W ,R) = strong(S ′,W,R, s)

strong(S ′,W,R, k + 1) = µAk+1.([S \ S ′]ff ∧
(⟨δ4 ∪ δ5 ⟩Ak+1∨

⟨αk+1 \ (δ4 ∪ δ5)⟩strong(S ′,W,R, k)))

strong(S ′,W,R, 0) = [S \ S ′]ff ∧ weak(S ′,W,R,w)

weak(S ′,W,R, k + 1) = µBk+1.([S \ S ′]ff ∧
(⟨δ4 ∪ δ5 ⟩Bk+1∨

([βk+1]ff ∧ weak(S ′,W,R, k))∨
⟨βk+1 \ (δ4 ∪ δ5)⟩weak(S ′,W,R, k)))

weak(S ′,W,R, 0) = [S \ S ′]ff ∧ reach(S ′,W,R, r)

reach(S ′,W,R, k + 1) = µCk+1.([S \ S ′]ff ∧
(⟨δ4 ∪ δ5 ⟩Ck+1∨

([true⋆ · γk+1]ff ∧ reach(S ′,W,R, k))∨
⟨γk+1 \ (δ4 ∪ δ5)⟩reach(S ′,W,R, k)))

reach(S ′,W,R, 0) = [S \ S ′]ff ∧ ⟨δ4 ∪ δ5 ⟩X

These definitions are somewhat overwhelming to read through, but they boil down
to considering every action that is not in N in turn, and ensuring that the action
is treated as appropriate for the fairness assumption that applies to that action.

We have not addressed unconditional fairness since Chapter 4. It may be
interesting to note here that should there be a set of actions U that one wishes
to be treated unconditionally fair, these actions can simply be added to S ′. This
enforces that these actions must occur infinitely often in a violating path.

82

7.2 Tasks

The formulae presented thus far have been for fairness assumptions based on ac-
tions. In fact, we have not considered sets of transitions at all in our formulae,
only action labels. This is for a very simple reason: with the modal µ-calculus as
defined in Section 2.2 the only information of an LTS we can reference is the action
labels of transitions. There is no state information in this version of the modal
µ-calculus, although variants of the µ-calculus that include atomic propositions
similar to LTL or CTL do exist.

There certainly is no information available about individual transitions. That
such information can never be known follows from the modal µ-calculus not be-
ing able to distinguish bisimilar LTSs. We have not discussed notions of LTS
equivalence in this thesis, so we will not go into the specifics of this argument.
It suffices to say that there is a notion of equivalence between labelled transition
systems known as bisimulation equivalence and that it is a known fact that two
LTSs satisfy exactly the same modal µ-calculus formulae if, and only if, they are
bisimulation equivalent [9]. Consider the two LTSs in Figure 7.1. These two are
bisimulation equivalent and we therefore know that it is impossible to construct a
modal µ-calculus formula that is satisfied by one but not the other. However, if we
could reference transitions directly, distinguishing the two would be trivial. For
example, t1 can occur infinitely often in the left system, but there is no transition
that can occur infinitely often in the right system.

Actions are the only thing we can reference, and so it may seem that all other
task-based definitions are impossible to represent in the modal µ-calculus. To some
extent, this is true. Information about transitions, components and instructions
is not directly available in the modal µ-calculus and so we do not have a solution
to this problem that can work for arbitrary transition systems. Yet, if we have
the ability to construct or modify the LTS we are analysing ourselves, then there
are often methods for encoding such information in the action labels. In effect,
we are translating the other task definitions back to the action-based setting. We
might annotate the action label of each transition with which component(s) are
responsible for that transition, for example. We could also add information about
which instruction(s) gave rise to a transition in the same way. If there are finitely
many transitions in the system, we may even give them all a unique label so that

s0 t1: a s'0 s'1 s'2
t'2: at'1: a t'3: a

Figure 7.1: The two LTSs in this image are bisimulation equivalent. The one on
the right represents an infinite sequence of transitions labelled with the a-action.

83

we can distinguish individual transitions.
Of course, all these methods only work if we have access to this information and

the ability to modify the action labels in the LTS. Additionally, we have assumed
Act is finite and several of our proofs depend on this assumption, so this approach
does not work if our label modification would result in an infinite set of actions.

In cases where the relabelling trick is possible, we only need to turn each task,
which is a set of transitions, into a set of actions that these transitions are labelled
with. We can then analyse fairness with respect to these new tasks over actions.
For the remainder of this section, when we discuss tasks we are talking about sets
of actions rather than sets of transitions.

The formulae over actions that have been presented in previous chapters can
be turned into formulae over sets of actions without much difficulty. Recall from
Section 2.2 that we already allow for the box and diamond modalities to be applied
to sets of actions, rather than individual actions only. Applying this modification
directly, the base weak fairness for arbitrary set of tasks T becomes

¬(⟨δ1 · δ2 ⟩νX.(
∧
t∈T

(⟨t⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([t]ff ∧X)∨
⟨t \ (δ4 ∪ δ5)⟩X ∨ ⟨t ∪ δ4 ∪ δ5 ⟩Y)))))

We have not changed how the variables δ1 to δ5 are incorporated, since we are only
modifying the fairness assumption, not the property that is being represented. For
global response, we still have δ4 = r and the other assignments from Table 6.2.

Note that ⟨t \ (δ4 ∪ δ5)⟩X excludes specifically the actions in δ4 and δ5 from
being taken. It is not the case that a task that happens to include actions from δ4
or δ5 is not allowed to occur in its entirety, other actions in such a task may still
occur. Here we are again making a distinction between the parts of the formula that
reflect the fairness assumption, and the parts that reflect the expressed pattern.

There are a couple of factors we need to consider carefully before we can declare
the above formula correct. Specifically, what if an action is in several tasks? And
what if an action is in no tasks?

It turns out that the formula works just fine if an action is in several tasks. It
merely means each of those tasks is enabled whenever that action is enabled. Each
of those tasks will need to be satisfied, either by no longer being enabled within
finitely many steps, or by having one of the actions in the task (but not δ4 or δ5)
occur within finitely many steps. It is therefore correct that the right-hand side of
the implication needs to be true for all tasks an enabled action is in.

Things are more complicated if there is an action that is in no task. First, it
may be worthwhile to consider if this can even occur. The global fairness defini-
tions presented in Section 3.2 all guarantee every transition is in some task. At

84

least, this is the case if instr and comp never map a transition to the empty set,
which according to the definitions in [22] should never occur. Hence for all these
global fairness definitions, every transition – and therefore every action that is ever
enabled in the system – will be in some task.

In the case of local fairness assumptions on the other hand, we could encounter
a scenario where some action is not in any task. In those cases, we run into the
same problem we encountered several times in Section 7.1: the progress assumption
says a finite violating path is only valid if it ends in a deadlock state, but without
further changes this formula would considers paths valid that end in states where
the actions that are not in any task are still enabled. Luckily, we have solved this
problem already in Section 7.1. Let T be the set of tasks, and let C be the set of
actions that appears in some task in T , then Formula 7.5 is the formula for weak
fairness with tasks.

¬(⟨δ1 · δ2 ⟩νX.(∧
t∈T

(⟨t⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([t]ff ∧X)∨
⟨t \ (δ4 ∪ δ5)⟩X ∨ ⟨t ∪ δ4 ∪ δ5 ⟩Y)))

∧ ([C]ff ⇒ ([true]ff ∨ ⟨δ3 ⟩tt ∨ ⟨δ4 ∪ δ5 ⟩X))))

(7.5)

These same modifications can be made for all formulae presented in this thesis:
quantify over tasks instead of actions, and if there are actions that are not in any
task then the generalised version should be adapted rather than the base version.

Since the changes are minimal, do not show the the strong fairness of tasks and
fair reachability of tasks formulae here, instead they are presented in Appendix F.

85

Chapter 8

Fairness Formulae in mCRL2

In this thesis, we have presented modal µ-calculus formulae which can be used
to express a number of properties under a variety of fairness assumptions. In
this chapter, we discuss one method for using these formulae for model checking
in practice. Calculating whether a model satisfies a given formula is not a task
anyone wishes to do by hand, so we will need tool support. This requires our
formulae to be in a shape our chosen tool can use.

There exist several tools for model checking with modal µ-calculus formulae.
We will here focus on the mCRL2 toolset, introduced in Section 2.3.1, which is the
primary tool used at the TU/e and has been used in a number of practical model
checking projects [16, 27, 37, 42]. One great benefit of the mCRL2 toolset is that
it admits the entire modal µ-calculus, and even incorporates extensions with data
parameters for the fixpoint operators. For comparison, the CADP toolset primarily
supports the regular alternation-free subset of the modal µ-calculus. This is not
enough to represent our formulae: all three of the base formulae in Section 6.2
contain a least fixpoint nested inside a greatest fixpoint in such a way that the
formal variable bound by the greatest fixpoint occurs within the least fixpoint.
This violates alternation-freedom [35]. The CADP toolset does have some support
for specific fairness properties with alternation depth two, through an operator for
describing infinite loops [36]. Using this operator, it may be possible to translate
some or all of our formulae to a form that can be understood by CADP. We did
not further explore this possibility, since the mCRL2 toolset allows us to use our
formulae directly with very little modification.

This chapter will explain how to modify an mCRL2 model in such a way that
the formulae presented throughout this thesis can be used. We will also present
how the formulae themselves should be written in the mCRL2 toolset. Finally,
we will give a brief case study of verifying starvation freedom under various fair-
ness assumptions for Dekker’s mutual exclusion algorithm. We will pay particular
attention on the difficulty of using the SFA formula in practice, and some ways

86

of mitigating the problem. Throughout this chapter, we will focus primarily on
the formulae from Chapter 4 and Chapter 6, i.e. fairness of actions. However, we
will also briefly discuss how arbitrary tasks can be used, using the formulae from
Section 7.2.

8.1 The Model

The mCRL2 toolset [11] uses the mCRL2 modelling language [24], a process al-
gebra, to describe models. These can then be interpreted as labelled transition
systems. We here only explain the language as far as needed to understand the spe-
cific modifications required to allow our formulae to be used. For more information
and tutorials please refer to the cited works as well as the tool’s website1.

For the most part, a model does not need to have a special structure or design to
work with our formulae. The only issue we run into is that all our formulae quantify
over Act . Actions, optionally with parameters, form the primitive elements of an
mCRL2 model and they are specifically defined as part of a model. The issue
for us is that the language has no support for quantifying over these actions. We
could circumvent this by manually unwinding the quantifications in the formulae,
but that would mean changing our formulae whenever we change the model. Not
to mention, it would be rather tedious work. Instead we use a trick, inspired by
[7], which allows us to keep the quantification in the formulae.

The idea is that while we cannot quantify over actions directly, we can quantify
over parameters of actions. We therefore turn action labels into parameters. To
this end, we define an action l, for “label”, which gets one parameter of a newly
defined data type Label . The specifics of this data type depend on the model in
question, but there should be a unique label for every action that appears in the
LTS described by the model. For this discussion, let α′ be the label associated
with an arbitrary action α. Everywhere in the model where an action α is used,
we replace it with the multi-action α | l(α′). A multi-action represents several
actions that occur simultaneously. We then hide the action α using the mCRL2
keyword hide to tell the model that when α occurs, it should not be shown in the
generated LTS. Once we have done this for every action in the model, we get an
LTS that is the exact same as the LTS we got before we made our changes, but for
every action α every occurrence has been replaced with l(α′). These changes only
need to be made to actions that are actually visible in the final LTS. For large
models, where checking the LTS manually is difficult, the mCRL2 tool ltsinfo with
command – –action–label can be used to list all the actions that occur in the LTS2.

1The mCRL2 website can be found at https://www.mcrl2.org/web/index.html.
2For reasons outside the scope of this thesis, the action tau will always be included in the list

of actions. This can be ignored.

87

https://www.mcrl2.org/web/index.html

We demonstrate the addition of labels with an example.

Example 8.1. Say we have a simple mCRL2 model of a person playing catch
with their dog. The person throws the ball, then waits for their dog to return it.
The dog waits until it sees the ball being thrown, catches it and then returns it
to their owner. Then they both repeat their actions. In mCRL2, we could model
this as follows:
act

throw_s , throw_r , throw;

return_s , return_r , return;

catch;

proc

Person = throw_s . return_r . Person;

Dog = throw_r . catch . return_s . Dog;

init

allow ({

throw , return , catch},

comm ({

throw_s | throw_r -> throw ,

return_s | return_r -> return},

Person || Dog));

The actions in the model are listed under act . We model two recursive processes:
the person and their dog, both under the keyword proc. We only use the operator
., which represents the sequential composition of actions. Under init , we list which
actions are allowed to occur and the communication rules for how the synchroni-
sation between the processes should work. Communication happens between the
person and their dog: when the person throws the ball (throw s , for “send”) the
dog has to see it (throw r , for “receive”). Those two actions together are repre-
sented by the single action throw in the final LTS. A similar rule is introduced
for the action return. Finally, we state that we want the model to show us the
behaviour of Person and Dog in parallel. See Figure 8.1a for the LTS generated
by mCRL2 based on this model.

Adding the labels to this model results in:
sort

Label = struct Throw | Return | Catch;

act

throw_s , throw_r , throw;

return_s , return_r , return;

catch;

l: Label;

proc

Person = throw_s|l(Throw) . return_r . Person;

Dog = throw_r . catch|l(Catch) . return_s|l(Return) . Dog;

init

hide ({

throw , return , catch},

allow ({

throw|l, return|l, catch|l},

comm ({

throw_s | throw_r -> throw ,

return_s | return_r -> return},

Person || Dog)));

88

(a) The LTS for the basic model. (b) The same LTS, with labels.

Figure 8.1: The LTSs generated for the two catch models.

We add the Label data type as a structured sort with three constructors. In this
case, the constructors do not get any parameters. We add the action l, and define
it with a single parameter of type Label . The action l is added to all three actions
that are visible in the LTS. The left-hand side of communication rules can only
be a single action, not a multi-action, so we cannot add l(Throw) and l(Return)
there. Instead, we add these labels to the corresponding s-action. Finally, we
included in the initialisation that the old actions should be hidden, and that the
throw , return and catch actions are only allowed to occur together with the the l
action. See Figure 8.1b for the resulting LTS.

In addition to needing to quantify over actions for all formulae, the strong
fairness formula also requires us to have some fixed order on the actions in F .
There are a number of ways we could include an ordering; the one we have chosen
to use is to create a mapping from natural numbers to the labels that end up in the
final model. This means we create a global ordering on all the actions that occur
in the LTS, rather than a local ordering on F . This leads to a slight modification
of the strong fairness formula, which we will detail in the next section. For now,
we only focus on how to modify the model to include this ordering.

We use the keyword map to add a mapping order from natural numbers to
the data type Label . In order to keep our µ-calculus formulae generic, we also
introduce the constant N for the total number of action labels that we map to.
We always start the mapping at order(0), and end it at order(N − 1). In mCRL2,
mappings are specified using a system of equations under the keyword eqn. These
allow for a lot of flexibility, including using variables in the equations and having
conditional equations. In this case, we do not need such features and can simply
state for every natural number to which label it is mapped explicitly.

Example 8.2. Expanding on Example 8.1, we add an ordering on actions to the
second model:

89

map

order: Nat -> Label;

N: Nat;

eqn

order (0) = Throw;

order (1) = Return;

order (2) = Catch;

N = 3;

The order of the labels is arbitrary, all that matters is that it is fixed.

These are all the changes that need to be made to a standard mCRL2 model
to allow us to use the formulae with action-based fairness.

If we want to have formulae with arbitrary tasks, we will need to define those
tasks in the model as well. We need to add a mapping task from natural numbers
to sets of labels, as well as a constant T for the number of tasks. If there are any
labels that do appear in the LTS but not in any of the tasks, then we need the
formulae that take this into account as described at the end of Section 7.2. In
that case, we also need a constant set of labels C which contains every label that
also appears in a task. We have found in practice that when defining C and the
tasks, it is best to define these by explicitly listing all the labels instead of using set
comprehension. Set comprehension works, but seems to make verification slower.

Example 8.3. Say we want a task containing Throw and one containing Return,
but Catch does not appear in any tasks. Once again expanding on Example 8.1,
we add the following to the model:

map

task: Nat -> Set(Label);

T: Nat;

C: Set(Label);

eqn

task (0) = {Throw };

task (1) = {Return };

T = 2;

C = {Throw , Return };

8.2 The Formulae

The modal µ-calculus used in the mCRL2 toolset is very similar to the one we
present in Section 2.2. There is, however, an additional feature that we will make
use of: the ability to add parameters to the formal variables used in fixpoint
operators. We will use this feature to write down the strong fairness formula
compactly. Besides that, we can represent the formulae pretty much exactly as
they have been presented so far, save for some changes in syntax. Instead of · we
use ., in place of ν and µ we use nu and mu,

∧
is replaced with forall , etc. For the

specifics of the µ-calculus syntax used by mCRL2, we once again refer to the tool’s

90

website3. We here merely show how the base formulae presented in Section 6.2 are
represented in the tool. We use δ′i as variable δi where every action α has been
replaced with l(α′).

For weak fairness of actions, we use:

!(<δ′1.δ
′
2>nu X.(forall a:Label. (<l(a)>true => (

mu Y.(

<δ′3>true
|| ([l(a)]false && X)

|| <l(a) && !(δ′4 || δ′5)>X
|| <!(l(a) || δ′4 || δ′5)>Y

)))))

The strong fairness of actions formula requires a bit more introduction. Firstly,
we move the quantification over sets of actions to the outside of the formula. Note
that ¬(⟨δ1 · δ2 ⟩(

∨
F⊆Act(. . .) is equivalent to

∧
F⊆Act(¬(⟨δ1 · δ2 ⟩ . . .)). This is not

due to any limitations on the part of mCRL2, since the exists keyword can be used
to represent a

∨
. Rather, this will make it easier for us to separate this formula

into many smaller formulae, which we will use in the case study section.
Secondly, there is the matter of how to incorporate the global order on action

labels into the SFA formula. As previously mentioned, mCRL2 allows parameters
to be included with fixpoint operators. We can use this to representW0 toWn from
the SFA formula with the single formal variable W , which gets a natural number
num as a parameter . We initialise num with 0, and then increment it whenever
the order(num) action is taken. Once num hits N , we require X to hold again,
which corresponds to starting W again with num = 0. This means we are moving
up through this list of actions rather than down as we did in Formula 6.2. This
does not affect the correctness of the formula, since the effect is the same as if we
had inverted the arbitrary order we have chosen. This way happens to be easier
to write down. The fixpoint operator with formal variable W corresponds to inf
from Formula 6.2. Since we are dealing with a global order on actions rather than
one specific to F , if we simply run num from 0 to N repeatedly we will encounter
situations where order(num) is not in F . We need to explicitly include in our
formula that in those cases, the associated action need not occur and num should
immediately be incremented.

Finally, we must consider how F is represented. The most straightforward
approach is to quantify over all possible sets of Label . This indeed works, but
only if the data type Label is finite. In Example 8.1, this is the case: Label has
three constructors and those constructors do not have any parameters. Hence,
quantifying over all possible sets of elements of the type Label means quantifying

3The specific page on the µ-calculus has been archived at https://web.archive.org/save/
https://www.mcrl2.org/web/user_manual/language_reference/mucalc.html#

91

https://web.archive.org/save/https://www.mcrl2.org/web/user_manual/language_reference/mucalc.html#
https://web.archive.org/save/https://www.mcrl2.org/web/user_manual/language_reference/mucalc.html#

over just 23 options. However, if Label is infinite this approach will not work.
If we try, mCRL2 will throw an error. Using finite sets instead of normal sets
does not seem to resolve the issue either, at least not with the June 2022 release
of mCRL2. We can, however, quantify over lists, which we use to solve this
problem: we quantify over all Boolean lists of length exactly N . This effectively
gives us bitmap representations of the sets we actually want: the ones over just
those actions that actually occur in the LTS. We can check whether order(num)
is included in F by checking if F at num equals true.

These modifications gives us the following mCRL2 version of the SFA formula:

forall F: List(Bool). (val(#F == N) => (

!(<δ′1.δ
′
2>mu Y.(<!(δ′4 || δ′5)>Y || <δ′3>true || nu X.(

mu W(num: Nat = 0).(

(val(num == N) => (

(forall i:Nat.(val(i < N && !(F.i)) =>

[l(order(i))] false)) && X))

&& (val(num < N && F.num) => (

(forall i:Nat.(val(i < N && !(F.i)) =>

[l(order(i))] false))

&& (<!(δ′4||δ
′
5)>W(num)

|| <l(order(num)) && !(δ′4||δ
′
5)>W(num +1))))

&& (val(num < N && !(F.num)) => (

W(num + 1)))

))))))

For fair reachability of actions, we could just use the WFA formula again with
true⋆ inserted in a few places. However, in practice mCRL2 has trouble determin-
ing for which labels α′ the condition ⟨true⋆ · l(α′)⟩tt is satisfied when Label is an
infinite data type. Determining which labels satisfy ⟨l(α′)⟩tt is not a problem even
when Label is infinite, hence why the WFA formula does not have this issue. To
solve this problem, we use the order mapping again to ensure we are quantifying
over a finite set, namely the natural numbers up to but not including N . The
resulting FRA formula is:

!(<δ′1.δ
′
2>nu X.(forall i: Nat. (val(i < N)

&& <true*.l(order(i))>true => (

mu Y.(

<δ′3>true
|| ([true*.l(order(i))] false && X)

|| <l(order(i)) && !(δ′4 || δ′5)>X
|| <!(l(order(i)) || δ′4 || δ′5)>Y

)))))

Each of these formulae above need to be slightly modified if we want to reference
tasks explicitly. In those cases, quantification happens over tasks instead of action

92

labels, and we need to add the special case for when all the tasks are disabled but
there are still actions enabled. The main complication is that we cannot directly
replace l(a) or l(order(i)) in the above formulae with tasks instead of labels. After
all, the action l has as parameter a label, not a set of labels. We must therefore
use the exists (in case of diamond) and forall (in case of box) keywords to quantify
over all labels in a task. Since they do not differ much from the formulae we have
already presented, we do not include the task variants here. Instead, they are
shown in Appendix G.

8.3 Case Study

In Section 4.6 we mentioned that the strong fairness of actions formula is signifi-
cantly less efficient than the weak fairness and fair reachability formulae. In this
section, we illustrate this observation with a case study of Dekker’s mutual exclu-
sion algorithm. This section serves the secondary purpose of demonstrating how
the steps described in the rest of this chapter can be applied in practice to analyse
a property under multiple fairness assumptions.

In [23], Groote and Keiren present a tutorial on how to model distributed soft-
ware with mCRL2. As an example, they model and analyse Dekker’s algorithm.
They present a counterexample showing that Dekker’s algorithm does not sat-
isfy starvation freedom4 without fairness assumption. The authors determine the
counterexample to starvation freedom is unfair. They do not state explicitly which
fairness assumption they use, but based on their descriptions of why this path is
unfair, weak fairness of components seems to fit. Instead of adding a generic fair-
ness assumption to their formula, the authors modify the formula to exclude the
specific violating path they observed. They subsequently get a new counterexam-
ple, which they judge to still be unfair. Instead of further altering the starvation
freedom formula they move on to analysing Peterson’s algorithm instead.

We here build on their work to analyse starvation freedom for Dekker’s algo-
rithm with WFA, FRA and SFA. We focus on the action-based fairness assump-
tions since we want to compare the efficiency of these three. Since the original
paper gives arguments based on a form of fairness of components, we also briefly
address WFC, FRC and SFC. Fortunately for us, the model of Dekker’s algorithm
used by Groote and Keiren is included with the mCRL2 distribution5, so we use

4In [23], starvation freedom is referred to as eventual access. These two terms refer to the
same property.

5The model of Dekker’s algorithm can be found at https://github.com/mCRL2org/mCRL2/
blob/master/examples/academic/mutex_models/Dekker/Dekker_spec.mcrl2. Archived:
https://web.archive.org/web/20230901054435/https://raw.githubusercontent.com/

mCRL2org/mCRL2/master/examples/academic/mutex_models/Dekker/Dekker_spec.mcrl2.

93

https://github.com/mCRL2org/mCRL2/blob/master/examples/academic/mutex_models/Dekker/Dekker_spec.mcrl2
https://github.com/mCRL2org/mCRL2/blob/master/examples/academic/mutex_models/Dekker/Dekker_spec.mcrl2
https://web.archive.org/web/20230901054435/https://raw.githubusercontent.com/mCRL2org/mCRL2/master/examples/academic/mutex_models/Dekker/Dekker_spec.mcrl2
https://web.archive.org/web/20230901054435/https://raw.githubusercontent.com/mCRL2org/mCRL2/master/examples/academic/mutex_models/Dekker/Dekker_spec.mcrl2

it as the base of our model. We do need to make a few modifications, in addition
to the changes outlined in Section 8.1.

Firstly, the actions in the original model contain the minimum amount of in-
formation required. For example, when thread i reads value t in the register turn,
this is represented with the action get turn(t). That thread i is the one reading
is not included in the action. When Groote and Keiren observe that the coun-
terexample they get for starvation freedom is unfair, they say it is unfair because
process 1 repeatedly reads flag [0] and turn without process 0 getting a chance to
read turn, even though process 0 is always able to do so. The action labels for
process 1 reading the value 1 in turn and process 0 doing the same are the same
action, however. Consequently, while the action get turn(1) is indeed perpetually
enabled after a point on this path, it also infinitely often occurs, so weak or strong
fairness of actions would not deem this path unfair. This is why it seems more
likely that Groote and Keiren intended a form of fairness of components. We are
analysing fairness of actions and so to distinguish these two events we add the id
of the responsible process to each action. Note that for the analysis of fairness of
components, we also need represent this information in the action labels, else we
could not assign the actions by different processes to different tasks.

Secondly, we replace the wish, enter and leave actions from the model with
the noncrit and crit actions. Starvation freedom can also be expressed with these
actions, and having one action less makes analysing SFA much faster. Since the
complexity of the SFA formula is exponential in the number of actions that could
be in F , even reducing the number of actions by just one makes a big difference.

We also add the modifications described in Section 8.1 to create the final version
of the model we analyse, see Appendix H.1. We ensure a one-to-one correspondecne
between the LTS of the model without labels and the one with labels, similar to
Figure 8.1, by ensuring the Label data type has the same parameters for every label
as the matching actions have. We use ltsinfo to check exactly which combination
of parameters actually occurs in the model, so that we can add only those actions
to the order mapping. We end up needing to include 18 actions. The order we
choose is arbitrary, although we ensure that order(0) is Crit(0) and order(1) is
Crit(1), for reasons that will soon become apparent.

We construct the formulae for starvation freedom under WFA, FRA and SFA,
using the templates from Section 8.2. The starvation freedom property corresponds
to the global response pattern, with the added factor that we need to check it twice,
once for each process. For starvation freedom of process i, the global response
pattern is instantiated with q = noncrit(i) and r = crit(i). Using this information,
we can fill in the formulae using Table 6.2. We do not include each of the formulae
here, since there is little new information. We do show the SFA formula, because
it has one small extra change: we already observed in Section 4.6 that we know

94

that r can never be in F when using the global response property. We add this
to the SFA formula as well, to reduce the complexity. To do this, we use that
order(i) corresponds to Crit(i), so we simply need to include !(F.i) as part of the
conditions of the lists we consider.

forall i: Nat. (val(i < 2) => (

forall F: List(Bool). (val(#F == N && !(F.i)) => (

!(<true*.l(Noncrit(i))>mu Y.(<!l(Crit(i))>Y || nu X.(

mu W(num: Nat = 0).(

(val(num == N) => (

(forall j:Nat.(val(j < N && !(F.j)) =>

[l(order(j))] false)) && X))

&& (val(num < N && F.num) => (

(forall j:Nat.(val(j < N && !(F.j)) =>

[l(order(j))] false))

&& (<!l(Crit(i))>W(num)

||<l(order(num))&&!l(Crit(i))>W(num +1))

))

&& (val(num < N && !(F.num)) => (

W(num +1)))

))))))))

We do the verification by first turning the mCRL2 model into a linear process
specification (LPS) using mcrl2lps, then into an LTS using lps2lts, which we com-
bine with the appropriate formula into a parameterised Boolean equation system
(PBES) using lts2pbes. Finally, we using pbessolve to solve the PBES. We do this
for starvation freedom under WFA, FRA and SFA.

The WFA formula takes less than a second to check, and reports starvation
freedom is satisfied. If our primary goal was to draw conclusions about Dekker’s
algorithm, rather than experimenting with our formulae, we could stop here. Weak
fairness is the weakest of the fairness types we consider, so we can conclude directly
that FRA and SFA will also be sufficient. We are interested in the formulae,
however, so we still check the other two.

The FRA formula takes slightly longer to calculate than the WFA formula, but
still under a second. It reports starvation freedom is satisfied, as expected.

The SFA formula, however, poses some difficulties. On our computer, after
about an hour and a half and with 3 million BES equations generated, mCRL2
reports it has run out of memory. This is partially due to the computer we used
being mid-range, but it does illustrate a broader issue: this formula is far too big
and expensive to calculate as soon as the number of actions goes into the double
digits. Having 18 actions is not uncommon for a model, in fact many practical
models have many more. Being unable to run the calculation with a model at
this scale is therefore an issue. There is a way of circumventing this problem,

95

however. We use that the calculation for a single i and a single F is not expensive.
The problem with the SFA formula is that this single formula has to represent
all possible choices of i and F . Even using the trick of excluding the r = Crit(i)
action from F , there are still 2 ·217 = 262144 combinations of i and F that need to
be checked. We can deal with this by separating out those parts. This is why we
moved the quantification over Act to the outside of the formula in Section 8.2. All
we need is a script that automatically generates the µ-calculus formula for a specific
i and F : this formula then represents that there is no path where Noncrit(i) is not
followed by Crit(i) while the actions in F occur infinitely often and those outside
F are enabled finitely often. The script then checks whether the model satisfies
that formula and saves the result. An added benefit is that if any of the small
formulae are not satisfied, then a fair violating path exists and we do not need to
keep searching. With limited scripting skills, we wrote a batch script to do this
which we include in Appendix H.3. Using this script, the computation is possible
but still takes a very long time, on our computer about 48 hours. As expected, it
reports no violating paths exist.

This demonstrates that the SFA formula is not practical to use for most mod-
els. A more targeted approach is better, for example first assuming WFA. If the
property holds under WFA, it also holds under SFA. If the property is violated
under WFA, the mCRL2-produced counterexample can give insight into which ac-
tions need to be treated strongly fairly. Then the formulae from Chapter 7 can be
used to hone in on those actions specifically, which reduces the number of options
that need to be considered for F .

Alternatively, a form of fairness other than fairness of actions can be used.
The issue of the formula is purely that we need to consider every possible way
F can be chosen. If we use a form of fairness that results in fewer tasks, then
there are far fewer choices of F and the formula becomes much more reasonable
to check. When we analyse SFC, for instance, there are only two tasks and so the
formula can be checked in a matter of seconds. In fact, in our experiment with
starvation freedom under WFC, FRC and SFC it was FRC that was the slowest
to verify, taking about 5 seconds. We are uncertain why FRC seems to become
slower, possibly it is somewhat expensive to check for reachability of some or all of
the labels in a task. As was to be expected, starvation freedom is satisfied under
all three assumptions.

The full model, the formulae and the script used in this case study are included
in Appendix H, as well as on https://github.com/MSpronck/FairnessInMucalc.

96

https://github.com/MSpronck/FairnessInMucalc

Chapter 9

Conclusion

In this thesis, the greater-scope problem we wished to address was the difficulty
of designing correct modal µ-calculus formulae in practice. We narrowed our fo-
cus down to a specific type of formulae: those that describe properties that can
be captured by the property specification patterns, evaluated under a fairness as-
sumption. We have designed these modal µ-calculus formulae, and have provided
proofs of the semantics of the base formulae that all others are based on, so that
users can be confident they express what we claim we express. We have also
demonstrated how our formulae can be used in practical model checking projects.

In this chapter, we recap our research questions and provide a summary of the
answers we have given to these questions in this thesis. Since many of our results
are formulae and proofs, we will not restate these in full, but instead reference
where they can be found when appropriate.

While we have largely achieved our goals, time limitations have forced us to
prioritise certain parts of the project in favour of others. For example, while
correctness proofs are given for the global response formulae and base formulae,
no such proofs are provided for the different instantiations of the base formulae
for the remaining patterns. We also do not have proofs that the way we generalise
the fairness assumptions to cover tasks is fully correct, although we do provide
arguments why we believe this method to be correct. This is an aspect of our
thesis that could be expanded on in future work. In Section 9.2, the final section
of this thesis, we include some additional suggestions for future work.

9.1 Research Questions

Our first research question was RQ1: Which fairness assumptions exist in the lit-
erature, and of those which are the most interesting and relevant for us to cover?
Most of this question is addressed in Chapter 3. Based on several papers and

97

books, we determined that for event-based logics such as the modal µ-calculus the
assumptions of weak fairness, strong fairness and unconditional fairness are the
most commonly discussed. Hence, we decided to cover these at least. Addition-
ally, previous work by Remenska [41] suggests µ-calculus formulae for a type of
fairness we named fair reachability, also known as hyperfairness or ∞-fairness in
the literature. Since there is precedent for this type of fairness being used in modal
µ-calculus formulae, we cover it as well. We give definitions for our chosen fairness
assumptions in Section 3.1. A brief overview of some of the fairness assumptions
from the literature we chose not to cover is included in Section 3.4.

We defined our fairness assumptions over tasks and restated the global task
definitions from [22]. For the majority of this thesis, we focused on fairness of
actions. We briefly argued why in Section 3.5 and expanded on this argument
in Section 7.2: the syntax of the modal µ-calculus lends itself best to expressing
properties over actions. In fact, without lifting other aspects of a model, such
as individual transitions, component information and instruction information, to
the action-domain, we cannot express fairness assumptions on these at all. We
discussed how to do this lifting to the action labels in Section 7.2, since we believe
it useful to cover task definitions other than fairness of actions as well.

Our second research question was RQ2: How can our chosen fairness assump-
tions be integrated into modal µ-calculus formulae following the global response
pattern? Chapter 4 is dedicated to answering this question specifically for fairness
of actions. We discussed a few different approaches for adding fairness assumptions
to modal µ-calculus formulae we observed in the literature. We called these ap-
proaches model-specific, precondition and non-violate. We dismissed model-specific
as an approach because it, as the name suggests, is an approach that depends on
the specific model being checked. Since our goal was to present generic formulae,
this was not the right approach for us. We discussed formulae in both the precon-
dition and non-violate styles, although after Chapter 4 we mostly disregarded the
precondition approach, due to the non-violate approach being much more flexible

We ultimately presented the following formulae for global response under fair-
ness: Formula 4.4 for weak fairness of action in the non-violate style; Formula 4.5
and Formula 4.6 for fair reachability of actions in the precondition and non-violate
styles respectively; Formula 4.9 for unconditional fairness of actions (plus some
equivalent variations); and Formula 4.11 for strong fairness of actions. We proved
the correctness for the weak and strong fairness formulae, as well as the fair reach-
ability formula. The unconditional fairness formula is so straightforward we re-
stricted ourselves to an informal argument. While we are mostly satisfied with
the formulae presented here, the strong fairness formula is quite inefficient, being
exponential in the number of actions in the model. We argued why this is not
an entirely unexpected issue with strong fairness in Section 4.6, but could not

98

definitively prove no more efficient formula exists.

The only part of RQ2 that is not answered in Chapter 4 is how to generalise
these formulae to other choices of tasks. This is indirectly addressed in Section 7.2,
where we argued how to do this generalisation for the pattern-agnostic formulae,
which can be adapted to cover global response.

This brings us to RQ3: How can our chosen fairness assumptions be integrated
into modal µ-calculus formulae following the property specification patterns? To
answer this question, we set out to provide formulae for all the different patterns
of PSP. Instead of providing these all separately, we presented base formulae that
include placeholder variables: Formula 6.1 for weak fairness of actions, Formula 6.2
for strong fairness of actions and Formula 6.3 for fair reachability of actions. We
then showed in Table 6.2 how the variables should be filled in to express response
and existence under the following scopes: global, before-variant, after-any, after-
first, after-last, until-any, until-first, and until-last.

This does not cover all the behaviours and scopes that are part of PSP, or
unconditional fairness at all. As argued in Section 6.1, there are several scopes
and behaviours that are not affected by feasible fairness assumptions. If a formula
in such a pattern is violated by a model, no fairness assumption can eliminate
all violating paths. This is because for these patterns, the violation is observable
within finitely many steps, and we can extend an arbitrary partial path to a fair
complete path for any feasible fairness assumption. Since weak fairness, strong
fairness and fair reachability are feasible, which we showed in Section 3.3, there was
no point in us giving special fairness formulae for such patterns with these fairness
assumptions. For these, we instead pointed to the fairness-free translations by
Mateescu and Remenska. While formulae would still be required for the infeasible
unconditional fairness assumption, we considered there to be few practical reasons
why one would want to make an infeasible fairness assumption, a sentiment that
is echoed in the literature. Hence, we chose to disregard unconditional fairness.

For the base formulae, we prove their semantics are what we claim they are.
While no proofs are provided for the formulae with the placeholders filled-in, save
for global response which was proven earlier, the reader can fill in the variables in
the semantics to conclude what the filled-in formulae represent.

Similar to RQ2, RQ3 is only fully answered after Section 7.2, where we explain
how these formulae can be modified to cover more than just fairness of actions.

Our final research question was RQ4: What is required for our designed formu-
lae to be used in the model checking tool mCRL2? This question is answered in
Chapter 8, where we explained how our formulae can be represented and used in
mCRL2. Due to our formulae quantifying over actions, and referring to orders on
actions, models are required to be modified a bit for the verification to be possible,
but this is all possible within the mCRL2 language itself. We gave templates for

99

the formulae in mCRL2, and demonstrated the application of these formulae with
a case study on Dekker’s mutual exclusion algorithm.

9.2 Future Work

There is still plenty of work to be done on this topic. For one, there are still
other fairness assumptions that can be considered, such as those mentioned in
Section 3.4. In particular, it may be interesting discuss state-based fairness as-
sumptions for the modal µ-calculus with atomic propositions.

Another obvious area of expansion is considering other properties. We focused
the property specification patterns because it gave us a stronger foundation than
considering every possible property one may write simultaneously, and surveys such
as those in [15] and [41] indicate that the patterns cover most of the properties
that are used in practice. They do not cover everything, however, and there it is
still an open question if and how fairness assumptions can be added to arbitrary
properties.

Additionally, we did not actually cover all behaviours from PSP: the chains and
bounded existence still need to be discussed, although we suspect our formulae can
be quite easily generalised to cover these behaviours as well. Another extensions
of our formulae that is likely not too difficult is to account for blocking actions.
Under alternative progress assumptions, paths are also complete if they end in
states where only blocking actions are enabled. The justness formula from [7], on
which our weak fairness and fair reachability formulae are based, includes this.

A question that arose during this project was if the complexity of a µ-calculus
formula incorporating the strong fairness assumption is necessarily exponential in
the number of tasks. We could not find definitive proof that no better formula
is possible. A further exploration of this topic would be interesting. Even if the
modal µ-calculus indeed requires exponential formulae for strong fairness, it may
be interesting to consider if more efficient formulae are possible in some extension
of the µ-calculus such as the polyadic µ-calculus [32] or the hybrid µ-calculus [28].

The future work that we ourselves are the most interested in is formalising
our proofs using a proof assistant. At the start of this project, we planned on
putting all our proofs in Isabelle/HOL. We did start this process, including putting
the modal µ-calculus syntax and semantics into Isabelle files. However, lack of
experience with the tool and language made the process very slow, so we did
not have enough time to formalise any of our proofs. We would still like to do
this; any written proof, no matter how carefully constructed, carries the risk of
oversights and errors. While we are quite convinced of the correctness of the
formulae presented, confirming the proofs with a proof assistant will guarantee
their correctness.

100

Bibliography

[1] Apt, K.R., Francez, N., Katz, S.: Appraising fairness in languages for dis-
tributed programming. Distributed Computing 2, 226–241 (1988)

[2] Apt, K.R., Olderog, E.R.: Proof rules and transformations dealing with fair-
ness. Science of Computer Programming 3(1), 65–100 (1983)

[3] Arts, T., Benac Earle, C., Derrick, J.: Development of a verified Erlang
program for resource locking. International Journal on Software Tools for
Technology Transfer 5, 205–220 (2004)

[4] Baeten, J.C.M., Weijland, W.P.: Process Algebra, chap. 4 - Communication,
p. 91–118. Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press (1990). https://doi.org/10.1017/CBO9780511624193.005

[5] Bellini, P., Nesi, P., Rogai, D.: Expressing and organizing real-time specifi-
cation patterns via temporal logics. Journal of Systems and Software 82(2),
183–196 (2009)

[6] Best, E.: Fairness and conspiracies. Information Processing Letters 18(4),
215–220 (1984)

[7] Bouwman, M., Luttik, B., Willemse, T.A.C.: Off-the-shelf automated analysis
of liveness properties for just paths. Acta Informatica 57(3-5), 551–590 (2020)

[8] Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction. In:
Handbook of process algebra, pp. 293–330. Elsevier (2001)

[9] Bradfield, J., Stirling, C.: Modal mu-calculi. Studies in logic and practical
reasoning 3, 721–756 (2007)

[10] Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. In:
Handbook of Model Checking, pp. 871–919. Springer (2018)

101

[11] Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing
concurrent systems. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. pp. 21–39. Springer (2019)

[12] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: Nusmv 2: An OpenSource tool for sym-
bolic model checking. In: Computer Aided Verification: 14th International
Conference, CAV 2002 Copenhagen, Denmark, July 27–31, 2002 Proceedings
14. pp. 359–364. Springer (2002)

[13] Cranen, S., Groote, J.F., Reniers, M.: A linear translation from CTL⋆ to the
first-order modal µ-calculus. Theoretical Computer Science 412(28), 3129–
3139 (2011)

[14] Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM 18(8), 453–457 (1975)

[15] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifica-
tions for finite-state verification. In: Proceedings of the 21st international
conference on Software engineering. pp. 411–420 (1999)

[16] van Eekelen, M., ten Hoedt, S., Schreurs, R., Usenko, Y.S.: Analysis of a
session-layer protocol in mCRL2. In: Leue, S., Merino, P. (eds.) Formal Meth-
ods for Industrial Critical Systems. pp. 182–199. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)

[17] Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propo-
sitional mu-calculus. In: IEEE Symposium on Logic in Computer Science. pp.
267–278. IEEE Computer Society Press (1986)

[18] Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences 18(2), 194–211 (1979).
https://doi.org/https://doi.org/10.1016/0022-0000(79)90046-1, https:

//www.sciencedirect.com/science/article/pii/0022000079900461

[19] Francez, N.: Fairness. Springer Science & Business Media (1986)

[20] Friedmann, O., Lange, M.: A solver for modal fixpoint logics. Electronic Notes
in Theoretical Computer Science 262, 99–111 (2010)

[21] Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for
the construction and analysis of distributed processes. International Journal
on Software Tools for Technology Transfer 15(2), 89–107 (2013)

102

https://www.sciencedirect.com/science/article/pii/0022000079900461
https://www.sciencedirect.com/science/article/pii/0022000079900461

[22] van Glabbeek, R.J., Höfner, P.: Progress, Justness, and Fairness. ACM Com-
puting Surveys (CSUR) 52(4), 1–38 (2019)

[23] Groote, J.F., Keiren, J.J.: Tutorial: designing distributed software in mcrl2.
In: Formal Techniques for Distributed Objects, Components, and Systems:
41st IFIP WG 6.1 International Conference, FORTE 2021, Held as Part of
the 16th International Federated Conference on Distributed Computing Tech-
niques, DisCoTec 2021, Valletta, Malta, June 14–18, 2021, Proceedings. pp.
226–243. Springer (2021)

[24] Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Sys-
tems. MIT Press Ltd. (2014)

[25] Grumberg, O., Francez, N., Katz, S.: A complete rule for equifair termination.
Journal of Computer and System Sciences 33(3), 313–332 (1986)

[26] Grunske, L.: Specification patterns for probabilistic quality properties. In:
Proceedings of the 30th international conference on Software engineering. pp.
31–40 (2008)

[27] Hwong, Y.L., Keiren, J.J.A., Kusters, V.J.J., Leemans, S., Willemse,
T.A.C.: Formalising and analysing the control software of the
compact muon solenoid experiment at the large hadron collider.
Science of Computer Programming 78(12), 2435–2452 (2013).
https://doi.org/https://doi.org/10.1016/j.scico.2012.11.009, https:

//www.sciencedirect.com/science/article/pii/S0167642312002365

[28] Kernberger, D., Lange, M.: The fully hybrid mu-calculus. In: 24th Interna-
tional Symposium on Temporal Representation and Reasoning (TIME 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

[29] Kozen, D.: Results on the propositional µ-calculus. Theoretical computer
science 27(3), 333–354 (1983)

[30] Kwiatkowska, M.Z.: Survey of fairness notions. Information and Software
Technology 31(7), 371–386 (1989)

[31] Lamport, L.: Fairness and hyperfairness. Distributed Computing 13(4), 239–
245 (2000)

[32] Lange, M.: The arity hierarchy in the polyadic µ-calculus. EPTCS 191 p. 105
(2015)

103

https://www.sciencedirect.com/science/article/pii/S0167642312002365
https://www.sciencedirect.com/science/article/pii/S0167642312002365

[33] Lehmann, D., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: The
ethics of concurrent termination. In: Automata, Languages and Program-
ming: Eighth Colloquium Acre (Akko), Israel July 13–17, 1981 8. pp. 264–277.
Springer (1981)

[34] Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety.
Springer Science & Business Media (2012)

[35] Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming 46(3), 255–
281 (2003)

[36] Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: FM 2008: Formal Methods: 15th International Sympo-
sium on Formal Methods, Turku, Finland, May 26-30, 2008 Proceedings 15.
pp. 148–164. Springer (2008)

[37] Mathijssen, A., Pretorius, A.J.: Verified design of an automated parking
garage. In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) Formal
Methods: Applications and Technology. pp. 165–180. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2007)

[38] Niwiński, D.: On fixed-point clones. In: International Colloquium on Au-
tomata, Languages, and Programming. pp. 464–473. Springer (1986)

[39] Pnueli, A.: On the extremely fair treatment of probabilistic algorithms. In:
Proceedings of the fifteenth annual ACM symposium on Theory of computing.
pp. 278–290 (1983)

[40] Queille, J.P., Sifakis, J.: Fairness and related properties in transition sys-
tems—a temporal logic to deal with fairness. Acta informatica 19, 195–220
(1983)

[41] Remenska, D.: Bringing Model Checking Closer To Practical Software Engi-
neering. Ph.D. thesis, Vrije U., Amsterdam (2016)

[42] Remenska, D., Willemse, T.A.C., Verstoep, K., Templon, J., Bal, H.: Us-
ing model checking to analyze the system behavior of the LHC produc-
tion grid. Future Generation Computer Systems 29(8), 2239–2251 (2013).
https://doi.org/https://doi.org/10.1016/j.future.2013.06.004, https://www.

sciencedirect.com/science/article/pii/S0167739X13001180

[43] Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal
logics. Journal of the ACM (JACM) 32(3), 733–749 (1985)

104

https://www.sciencedirect.com/science/article/pii/S0167739X13001180
https://www.sciencedirect.com/science/article/pii/S0167739X13001180

[44] Spronck, M.S.C., Luttik, B.: Process-algebraic models of multi-writer multi-
reader non-atomic registers. In: 34th International Conference on Concur-
rency Theory (CONCUR 2023). vol. 279 (2023), to appear

[45] Völzer, H.: On conspiracies and hyperfairness in distributed computing. In:
Distributed Computing: 19th International Conference, DISC 2005, Cracow,
Poland, September 26-29, 2005. Proceedings 19. pp. 33–47. Springer (2005)

105

Appendix A

Miscellaneous Proofs

This appendix contains the proofs for those lemmas, propositions and theorems
where the proof took up too much space or was not relevant enough to be included
in the main text. The proofs for the base formulae from Chapter 6 are given in
Appendix B instead.

In the proofs in this appendix, as well as in Appendix B, we do use some new
notation. Specifically, we on a few occasions need to do calculations on semantics
for ⟨α⟩ϕ or [α]ϕ where α is an action formula. We want to use the s

α−→ s′ notation in
those cases when there is a transition labelled with one of the actions in α between
states s and s′, but this notation has only been defined for actions, not action
formulae. We therefore introduce the notation s

α−→ s′ to represent ∃a∈α.s
a−→ s′ .

For all proofs, we fix the model M = (S, sinit ,Act ,Trans)

A.1 Proof of Theorem 4.3

Here we prove how the commonly used formula-shape µY.(ϕ∨ ⟨α⟩Y) can be inter-
preted. This is used in many of our proofs. We prove a few lemmas first.

Lemma A.1. For any environment ϵ and modal µ-calculus formulae ϕ and ψ,
where ϕ does not depend on Y , it is the case that JϕKϵ ⊆ JµY .(ϕ ∨ ψ)Kϵ.

Proof. This follows from the semantics presented in Section 2.2.

JµY .(ϕ ∨ ψ)Kϵ =
⋂

{S ′ ⊆ S | S ′ ⊇ Jϕ ∨ ψKϵ[Y :=S′]}

=
⋂

{S ′ ⊆ S | S ′ ⊇ JϕKϵ[Y :=S′] ∪ JψKϵ[Y :=S′]}

We stated that ϕ does not depend on Y , therefore JϕKϵ[Y :=S′] = JϕKϵ. Note the
semantics of µY .(ϕ ∨ ψ) are the intersection of all S ′ such that Jϕ∨ψKϵ[Y :=S′] ⊆ S ′.
Since JϕKϵ ⊆ JϕKϵ∪ JψKϵ[Y :=S′] = Jϕ∨ψKϵ[Y :=S′], we know that JϕKϵ ⊆ S ′ for all such
S ′. Hence, we can conclude that JϕKϵ is a subset of JµY .(ϕ ∨ ψ)Kϵ.

106

Lemma A.2. If s′ ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ and s admits an α-transition to s′, then
s ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ, for all environments ϵ, states s, s′ ∈ S, modal µ-calculus
formulae ϕ and action formulae α.

Proof. We can calculate the semantics of µY .(ϕ ∨ ⟨α⟩Y) as follows:

JµY .(ϕ ∨ ⟨α⟩Y)Kϵ

=
⋂

{S ′ ⊆ S | S ′ ⊇ Jϕ ∨ ⟨α⟩Y Kϵ[Y :=S′]}

=
⋂

{S ′ ⊆ S | S ′ ⊇ JϕKϵ[Y :=S′] ∪ J⟨α⟩Y Kϵ[Y :=S′]}

=
⋂

{S ′ ⊆ S | S ′ ⊇ JϕKϵ[Y :=S′] ∪ {s ∈ S | ∃s′∈S .s
α−→ s′ ∧ s′ ∈ JY Kϵ[Y :=S′]}}

=
⋂

{S ′ ⊆ S | S ′ ⊇ JϕKϵ[Y :=S′] ∪ {s ∈ S | ∃s′∈S .s
α−→ s′ ∧ s′ ∈ S ′}}

Note that since s′ ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ, we know that for all S ′ ⊆ S that satisfy
S ′ ⊇ JϕKϵ[Y :=S′] ∪ {s ∈ S | ∃s′∈S .s

α−→ s′ ∧ s′ ∈ S ′}, s′ ∈ S ′. If s′ ∈ S ′, then since s

has an α-transition to s′, s ∈ {s ∈ S | ∃s′∈S .s
α−→ s′ ∧ s′ ∈ S ′} and hence if s′ is in

S ′, so is s. From this we conclude that s ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ.

For this next theorem and proof, we need to use an alternate characterisation
of the semantics of least fixpoints than the one we presented in Section 2.2. We
do not use this characterisation outside of this proof, hence why it is given here
rather than in the preliminaries. We also only give the definitions that we require
for our proofs. We base ourselves on [8, 9]. Let Y be an arbitrary formal variable,
ϕ be an arbitrary modal µ-calculus formula and ϵ an arbitrary environment. Let
Tϕ be the transformer associated with ϕ, defined as

Tϕ(F) = {s ∈ S | s ∈ JϕKϵ[Y :=F]}

And define

T 0
ϕ(F) = F

T i+1
ϕ (F) = Tϕ(T

i
ϕ(F))

Then we can calculate the semantics of µY .(ϕ) under ϵ as:

JµY .(ϕ)Kϵ =
⋃

0≤i≤|S|

T i
ϕ(∅)

Note that this definition only works for finite systems, since it uses |S|. We call
T i
ϕ(∅) the i’th approximation of ϕ.

107

Lemma A.3. For all environments ϵ, states s ∈ S, modal µ-calculus formulae ϕ
that do not depend on Y , action formulae α, and natural numbers 0 ≤ i ≤ |S|, it
holds that: s is in the i’th approximation of µY .(ϕ ∨ ⟨α⟩Y) under ϵ if, and only
if, s admits a finite, possibly partial, path of length at most i − 1 on which only
actions in α occur and which ends in a state in JϕKϵ.

Proof. Let T be the transformer of µY .(ϕ ∨ ⟨α⟩Y). We prove that s is in T i(∅)
if, and only if, s admits a finite, possibly partial, path π of length at most i − 1
on which only actions in α occur and which ends in a state s′ ∈ JϕKϵ. We do this
by induction on i.

For the first base, take i = 0. Note that s is in the i’th approximation if
s ∈ T 0(∅). However, T 0(∅) = ∅, so s cannot be in the 0’th approximation. Indeed,
we cannot have a path of length at most −1. So in both directions of the bi-
implication, the left side of the implication does not hold.

For the second base, take i = 1.

• First, assume s is in the first approximation. Then s ∈ T 1(∅) = {s ∈ S | s ∈
Jϕ∨ ⟨α⟩Y Kϵ[Y :=∅]}. Hence, s ∈ Jϕ∨ ⟨α⟩Y Kϵ[Y :=∅]. Since ϕ does not depend on

Y , this reduces to s ∈ JϕKϵ ∨ s ∈ {s ∈ S | ∃s′∈S .s
α−→ s′ ∧ s′ ∈ ∅}. It is not

possible for a state s′ to exist that is in ∅, hence s ∈ JϕKϵ. We conclude that
s admits a finite, possibly partial, path of length at most 0 on which only
actions in α occur and which ends in a state in JϕKϵ; a witness to this is the
path consisting of only s.

• Second, assume s admits a path of length at most 0 on which only actions
on α occur and which ends in a state in JϕKϵ. The only path starting in
s of length at most 0 is the path consisting of only s. Hence, s ∈ JϕKϵ.
Since ϕ does not depend on Y , we also have s ∈ JϕKϵ[Y :=∅]. Hence we also

have s ∈ JϕKϵ ∨ s ∈ {s ∈ S | ∃s′∈S .s
α−→ s′ ∧ s′ ∈ ∅}. We finally conclude

s ∈ {s ∈ S | s ∈ Jϕ ∨ ⟨α⟩Y Kϵ[Y :=∅]} = T 1(∅) and hence s is in the first
approximation.

The induction hypothesis we use is that a state s′ is in the k’th approximation
of µY.(ϕ∨ ⟨α⟩Y) if, and only if, s′ admits a finite, possibly partial, path of length
at most k − 1 on which only actions in α occur and which ends in a state in JϕKϵ.
This is for all k ≥ 1.

For the step case, we prove the claim for k + 1. Let S be the set of states that
admit finite, possibly partial, paths of length at most k−1 on which only actions in
α occur and which end in a state in JϕKϵ. By the induction hypothesis, S = T k(∅).
Since this lemma is a bi-implication, we prove both directions separately.

• We assume s ∈ T k+1(∅). We need to prove s admits a path π that is of
length at most k + 1 − 1 = k, on which only actions in α occur and which

108

ends in a state in JϕKϵ. We have s ∈ T k+1(∅) = T (T k(∅)) = T (S) Hence,
s ∈ {s ∈ S | s ∈ Jϕ ∨ ⟨α⟩Y Kϵ[Y :=S]}. This reduces to s ∈ JϕKϵ ∨ s ∈ {s ∈ S |
∃s′∈S .s

α−→ s′ ∧ s′ ∈ S}. We do a case distinction on whether s ∈ JϕKϵ.

– If s ∈ JϕKϵ, then the path π consisting of only s is a path of length 0 on
which only actions in α occur and which ends in a state in JϕKϵ, namely
s itself. Since we assumed k ≥ 1, we know 0 ≤ k, hence s admits a
path meeting the requirements of length at most k.

– If s ̸∈ JϕKϵ, then s ∈ {s ∈ S | ∃s′∈S .s
α−→ s′ ∧ s′ ∈ S}. Hence, there

exists a state s′ such that that there exists an α-transition t from s to
s′ and s′ is in S. Since s′ ∈ S, we know s′ admits a path π′ of length
at most k − 1, on which only actions in α occur and which ends in a
state satisfying JϕKϵ. Let π = stπ′. Since π′ has length at most k − 1
and we added one transition, π has length at most k. Additionally, t
is an α-transition, as are all transitions in π′, so all transitions in π are
labelled with actions in α. Finally, since π′ ends in a state satisfying
JϕKϵ, so does π. Hence, π is a witness that s admits a path meeting all
requirements.

In both cases s admits such a path π of length at most k.

• We assume s admits a path π of length at most k such that all transitions
on π are labelled with actions in α and π ends in a state satisfying JϕKϵ. We
prove s ∈ T k+1(∅) = T (T k(∅)) = T (S) = {s ∈ S | s ∈ Jϕ ∨ ⟨α⟩Y Kϵ[Y :=S]}.
We do a case distinction on whether the length of π is zero.

– If the length of π is zero, then π = s and s ∈ JϕKϵ. Since ϕ does
not depend on Y , we also have s ∈ JϕKϵ[Y :=S] and hence also s ∈ Jϕ ∨
⟨α⟩Y Kϵ[Y :=S]. Thus, s ∈ T (S) = T k+1(∅).

– If the length of π is greater than zero, then there is at least one transition
in π. Let t be the first transition of π. Since there are only α-transitions
in π, t is an α-transition. Let s′ be the target of t, and let π′ be the
suffix of π starting in s′. Then since the length of π is at most k, the
length of π′ is at most k−1. Hence, π′ witnesses that s′ admits a path of
length at most k− 1 on which only α-transitions occur and which ends
in a state satisfying JϕKϵ. Hence, s ∈ S. So s admits an α-transition,
namely t, to a state in S, namely s′. Therefore s ∈ J⟨α⟩Y Kϵ[Y :=S] and
hence also s ∈ Jϕ∨⟨α⟩Y Kϵ[Y :=S]. We conclude that s ∈ T (S) = T k+1(∅).

In both cases we demonstrate that s is in the k + 1’th approximation.

109

We have proven both sides of the bi-implication that s is in the k + 1’th approxi-
mation of µY.(ϕ∨ ⟨α⟩Y) if, and only if, s admits a finite, possibly partial, path of
length at most k on which only α actions occur and which ends in a state satisfying
JϕKϵ. This proves the step case.

By induction, we have proven the claim for all 0 ≤ i ≤ |S|.

Finally, we restate Theorem 4.3:

Theorem A.4. For all environments ϵ, states s ∈ S, modal µ-calculus formu-
lae ϕ that do not depend on Y , and action formulae α, it holds that: s is in
JµY .(ϕ ∨ ⟨α⟩Y)Kϵ if, and only if, s admits a finite, possibly partial, path on which
only actions in α occur and which ends in a state in JϕKϵ.

Proof. There are two sides to this proof.

• First, we assume s ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ and prove that s admits a finite,
possibly partial, path on which only actions in α occur and which ends in
a state satisfying ϕ. The transformer for this least fixpoint is T (F) = {s ∈
S | s ∈ Jϕ ∨ ⟨α⟩Y Kϵ[Y :=F]}. By the alternative semantics definition, s ∈
JµY.(ϕ∨⟨α⟩Y)Kϵ[X:=F] implies s ∈

⋃
0≤i≤|S| T

i(∅), where T is the transformer

matching µY.(ϕ ∨ ⟨α⟩Y). Hence, there exist one or more natural numbers i
such that s ∈ T i(∅). Let i be the smallest such number. Then by Lemma A.3,
s admits a finite, possibly partial, path of length at most i−1 on which only
actions in α occur and which ends in a state in JϕKϵ. This path is a witness
for s admitting such a path of arbitrary length.

• Secondly, we assume s admits a finite, possibly partial, path on which only
actions in α occur and which ends in a state satisfying ϕ and prove that
s ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ. Let π be the finite path admitted by s on which only
actions in α occur and which ends in a state satisfying ϕ. We do induction
on the number of transitions in π.

For the base, we assume that ϕ contains zero transitions and hence is made
up of only the state s. Since π ends in a state satisfying ϕ, we conclude that s
satisfies ϕ. The semantics of µY .(ϕ ∨ ⟨α⟩Y) are a superset of the semantics
of ϕ, hence s ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ, see Lemma A.1.

For the step, we assume that π contains k + 1 transitions. Our induction
hypothesis is that for every state s′ that admits a possibly partial path con-
sisting of k transitions in which only actions in α occur and which ends in a
state satisfying ϕ, s′ ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ. Consider the states s0 = s to sk+1

on π. The state s1 admits a path consisting of k transitions in which only
actions in α occur and which ends in a state satisfying ϕ, namely the suffix of
π starting in s1. Hence by the induction hypothesis, s1 ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ.

110

We also know, since π is a path of only α-actions and s1 is the state directly
after s on π, that s admits an α-transition to s1. Therefore, we conclude
using Lemma A.2 that s ∈ JµY .(ϕ ∨ ⟨α⟩Y)Kϵ.

We conclude by induction that, if s admits a finite path on which only α
actions occur and which ends in a state satisfying ϕ, then we have s ∈
JµY .(ϕ ∨ ⟨α⟩Y)Kϵ.

We have proven both sides of the bi-implication, and thus the lemma.

A.2 Proof of Proposition 4.4

We restate the proposition here.

Proposition A.5. Let π be a WFA path , then s0t1s1...tnπ is a WFA path.

Proof. Let π′ = s0t1s1...tnπ be a path where π is a WFA path. Consider an
arbitrary suffix of π′, π′′ and an arbitrary action λ that is enabled perpetually in
π′′. We prove that λ occurs in π′′. Since π is a suffix of π′, π′′ will either contain
π in full or π′′ will also be a suffix of π.

• If π′′ contains π, then λ is also perpetually enabled in π. Hence, λ is perpet-
ually enabled in any suffix of π. Since π is a WFA path, this means λ occurs
in any suffix of π, meaning λ occurs in π itself and since π is part of π′′, λ
also occurs in π′′.

• If π′′ is also a suffix of π, then since π satisfies WFA and λ is perpetually
enabled in π′′, we can directly conclude λ occurs in π′′.

We have shown that in both cases, λ occurs in π′′. We can conclude that for every
suffix of π′, any action that is enabled perpetually in that suffix must occur in that
suffix. Hence, π′ satisfies WFA.

A.3 Proof of Proposition 4.5

We restate the proposition:

Proposition A.6. Let π = s0t1s1... be a finite or infinite path. If π satisfies WFA
then also any suffix of π satisfies WFA.

Proof. Let π be a WFA path. Let π′ be a suffix of π. Trivially, any suffix of π′

is also a suffix of π. Hence, for any suffix of π′ it holds that any action that is
perpetually enabled on this suffix occurs in this suffix. We conclude π′ satisfies
WFA.

111

A.4 Proof of Lemma 3.13

Recall we had made the assumption that T is always finite.

Lemma A.7. Fair reachability is feasible.

Proof. To prove this, we need to show that any finite partial path π0 can be
extended to a complete path π that satisfies fair reachability for an arbitrary choice
of tasks. We will construct π in steps, let πi with i ≥ 0 be the paths constructed
in each step. Let si be the last state of πi. For this construction we use a queue Q,
which is initialised with exactly one copy of every task in the chosen set of tasks
T in some arbitrary order. At each step i, we do the following:

Take the head of Q, and assign it to variable T . If T is not reachable from si,
remove T from Q. Repeat until either Q is empty or T is reachable from si.

• If Q is empty, then si is a state from which no tasks are reachable. If si
is a deadlock state, then πi is a complete finite path and therefore trivially
satisfies fair reachability. If si is not a deadlock state, then all transitions
reachable from si are labelled in actions that are not in any task in T . We
can extend si with arbitrary transitions to construct π: either a deadlock
state is eventually reached or we build an infinite path.

• If we find a T that is reachable from si, then we know that there exists some
t ∈ T such that there exists a path π′

i starting in si which ends in a state s′i
such t is enabled in s′i. Let s′′i = target(t). We take πi+1 to be πi appended
with π′

its
′′
i . Thus, πi+1 is πi extended with a sequence of steps ending with

executing an action in T . We now add T to the end of queue Q and continue
the construction. Note that s′′i will be si+1.

We sketch three different scenarios:

1. We reach a point where Q is empty and we either are in a deadlock state or
can reach a deadlock state in finitely many steps.

2. We reach a point where Q is empty and then construct an infinite path by
taking arbitrary transitions.

3. Q is never empty.

We prove that in each of the cases, the constructed path π satisfies fair reachability
and is complete.

The first case is trivial, any finite path is fair under each of our fairness as-
sumptions and we have constructed a complete and finite path.

112

For both the second and third case, it is important to note that if a task T is
not reachable from si for any i ≥ 0, then it is also not reachable from any state in
π after si. This is the case because the suffix of π starting at si is a path admitted
by si, if T were reachable from a state on this suffix it would also be reachable from
si. Hence, whenever we remove a task from Q during the construction because we
observed it was not reachable, this task will never again be reachable

This means that if we reach a state where Q is empty, even if there are still
transitions enabled that are not in any task, we can arbitrarily take transitions
without ever seeing a task become enabled again. This means no tasks in T
are perpetually reachable in any suffix of π according to the second construction
scenario. Since for none of the tasks in T there is any suffix of π in which that
task in perpetually reachable, fair reachability is trivially satisfied on π.

Lastly, there is the third scenario. In this case, we also construct an infinite
path. After all, if a deadlock was ever reached then no tasks would be reachable
and Q would be empty. Note that we still remove tasks from Q when they become
unreachable. We also temporarily remove tasks that are still reachable, but then
they are added back in after the path has been extended. Hence, Q eventually
contains exactly the set of task that is perpetually reachable on π. We previously
pointed out that, due to the fact we are working with modal µ-calculus formulae
and we have assumed Act is always finite, we can be sure that T is finite. Hence,
Q will be finite. This means that, once Q has stabilised to exactly those tasks that
are perpetually reachable on π, we will infinitely often select each task in Q to
be T . Whenever we select a task as T , we ensure a transition in that task occurs
as part of π. Hence, every task that is perpetually reachable on π will also occur
infinitely often. We conclude π satisfies fair reachability.

A.5 Proof of Theorem 4.12

Similar to the proof of the WFA global response formula, this proof relies on Act
being finite, and we assume progress. This proof is extremely similar to the WFA
proof.

We start with a few relevant propositions.

Proposition A.8. Let π be an FRA path, then s0t1s1 . . . tnπ is an FRA path.

Proof. Let π′ = s0t1s1 . . . tnπ be a path, where π is an FRA path. Consider an
arbitrary suffix π′′ of π′, and an arbitrary action λ that is perpetually reachable in
π′′. To prove π′ is FRA, we must prove that λ occurs in π′′. Since π is a suffix of
π′, π′′ wil either contain π in full or π′′ will also be a suffix of π.

• If π′′ contains π, then λ is also perpetually reachable in π. Hence, λ is
perpetually reachable on any suffix of π. Because π is FRA, we know λ must

113

occur in every suffix of π, meaning λ occurs in π itself and hence occurs in
π′′.

• If π′′ is also a suffix of π, then since π is FRA and π′′ is a suffix of π on which
λ is perpetually reachable, λ must occur in π′′.

In both cases, λ occurs in π′′. From this we conclude that for every suffix of π,
any action that is perpetually reachable in that suffix must occur in that suffix.
Hence, π satisfies FRA.

Proposition A.9. Let π = s0t1s1 . . . be a finite or infinite path. If π satisfies
FRA then also any suffix of π satisfies FRA.

Proof. Let π′ be a suffix of the FRA path π. Any suffix of π′ will also be a
suffix of π, hence any action that is perpetually reachable on a suffix of π′ is
also perpetually reachable on a suffix of π. Since π is FRA, any action that is
perpetually reachable on a suffix of π must occur on that suffix. It follows that
any action that is perpetually reachable on a suffix of π′ must occur on that suffix.
Hence, π′ satisfies FRA.

We now move on to proving the semantics of Formula 4.6. For this, we start
with breaking the formula up into parts.

violateFRA = ⟨true⋆ · q⟩invariantFRA

invariantFRA = νX .(
∧

λ∈Act

(⟨true⋆ · λ⟩tt ⇒ satisfyFRA(λ)))

satisfyFRA(λ) = µY .(([true⋆ · λ]ff ∧ X) ∨ ⟨λ \ r⟩X ∨ ⟨λ ∪ r⟩Y)

We first prove that satisfyFRA(λ) characterises all states that admit an r-free
path where λ occurs or becomes unreachable, and that end in a state that is in
the set of states represented by X.

Lemma A.10. Let ϵ be an environment, s a state in S, λ an action in Act and
F a subset of S. It holds that s ∈ JsatisfyFRA(λ)Kϵ[X:=F] if, and only if, s admits a
finite, possibly partial, path π that is r-free, ends in a state in F and either

1. π is λ-free and ends in a state where λ is unreachable, or

2. the last transition of π is labelled with λ and π is otherwise λ-free.

Proof. First, we apply Theorem 4.3 to determine that s ∈ JµY.(([true⋆ · λ]ff ∧
X) ∨ ⟨λ \ r⟩X ∨ ⟨λ ∪ r⟩Y)Kϵ[X := F] if, and only if, s admits a finite, possibly
partial path π′ that ends in a state s′ such that only actions in λ ∪ r occur in π′

114

and s′ ∈ J([true⋆ · λ]ff ∧X) ∨ ⟨λ \ r⟩XKϵ[X:=F]. Since only actions in λ ∪ r occur
in π′, π′ is both λ-free and r-free. From s′ ∈ J([true⋆ · λ]ff ∧X)∨⟨λ \ r⟩XKϵ[X:=F],
we know that s′ is either a state where λ is unreachable and s′ ∈ F , or s′ admits a
λ-transition t to a state s′′ in F and, λ ̸= r. In the former case, π′ is a finite, r-free
path that ends in a state in F , is λ-free and ends in a state where λ is unreachable.
In the latter case, π′ extended with t and s′′ is a finite, r-free path ending in a
state in F such that the last transition is labelled with λ and the path is otherwise
λ-free. Hence, the semantics of satisfyFRA are indeed those states that admit a
path meeting the requirements stated in the lemma.

Subsequently, we prove that invariantFRA exactly characterises those states
that admit an r-free, FRA path. We call the set of all such states Sr,FRA. For this,
we first prove the following lemma:

Lemma A.11. The set of states admitting r-free, FRA paths, Sr,FRA, is a fixed
point of the following transformer TFRA:

TFRA(F) =
⋂

λ∈Act

{s ∈ S | s ∈ J⟨true⋆ · λ⟩ttKϵ[X:=F] ⇒ s ∈ JsatisfyFRA(λ)Kϵ[X:=F]}

For arbitrary environment ϵ.

Proof. We prove Sr,FRA is a fixed point of TFRA by showing that TFRA(Sr,FRA) =
Sr,FRA. We prove this through mutual set inclusion of Sr,FRA and TFRA(Sr,FRA).

• Let s be an arbitrary state in Sr,FRA. We prove s ∈ TFRA(Sr,FRA). Since s ∈
Sr,FRA, we know s admits an r-free, FRA path. Let π be such a path starting
in s. We need to prove s ∈ TFRA(F) by showing that for all λ ∈ Act , if λ is
reachable from s then s ∈ JsatisfyFRA(λ)Kϵ[X:=Sr,FRA]. Since the condition in
the transformer is an implication, s is trivially in the set associated with any
action not reachable from s. Let λ be an arbitrary action that is reachable
from s. We must show that s ∈ JsatisfyFRA(λ)Kϵ[X:=Sr,FRA] for this λ. We do
a case distinction on whether λ is perpetually reachable on π.

– If λ is perpetually reachable on π, then by definition of fair reachability
of actions λ must occur in π. Let s′ be the first state in π reached by
a λ-transition. The path from s to s′, π′ is finite and r-free because
π is r-free. Additionally, through our choice of s′ we know that none
but the last transition on this path are λ-transitions. To prove s ∈
JsatisfyFRAKϵ[X:=Sr,FRA], it only remains to prove that s′ ∈ Sr,FRA. We
can then apply Lemma A.10.

By Proposition A.9, the suffix π′′ of π starting in s′ satisfies FRA, and
since π is r-free so is π′′. Hence s′ admits an r-free, FRA path and
therefore s′ ∈ Sr,FRA. We conclude s ∈ JsatisfyFRA(λ)Kϵ[X:=Sr,FRA].

115

– If λ is not perpetually reachable on π, then in finitely many steps of π
a state s′ is reached where λ is unreachable. None of these steps are
r-transitions, since π is r-free. We do a case distinction on whether
there is an occurrence of λ on π before s′.

∗ If there is such a transition, then we can apply the same argument
for s being in JsatisfyFRA(λ)Kϵ[X:=Sr,FRA] as we did in the case that λ
is perpetually reachable. After all, we only used λ being perpetually
reachable to conclude it must occur.

∗ If there is no occurrence of λ before s′, then then let π′ be the prefix
of π ending in s′. Not only is π′ r-free, it is also λ-free. Additionally,
λ is unreachable from s′. To be able to apply Lemma A.10 to
conclude s ∈ JsatisfyFRA(λ)Kϵ[X:=Sr,FRA], we only need to prove s′ ∈
Sr,FRA.
By Proposition A.9, the suffix π′′ of π starting in s′ satisfies FRA,
and since π is r-free so is π′′. Hence s′ admits an r-free, FRA path
and therefore s′ ∈ Sr,FRA. Hence, s ∈ JsatisfyFRA(λ)Kϵ[X:=Sr,FRA].

We conclude that s ∈ JsatisfyFRA(λ)Kϵ[X:=Sr,FRA] and hence also that for all
actions reachable from s, s is in the associated set. We conclude that s ∈
TFRA(Sr,FRA).

• Let s be an arbitrary state in TFRA(Sr,FRA). We prove s ∈ Sr,FRA. From
s ∈ TFRA(Sr,FRA) we know that for all actions λ that are reachable from s,
s ∈ JsatisfyFRA(λ)Kϵ[X:=Sr,FRA]. If there are no actions reachable from s then
s is a deadlock state. And if s is a deadlock state, then it admits the path
consisting of only itself. This path is trivially r-free and, since it is finite,
FRA. Hence, we have a witness for s ∈ Sr,FRA.

If s is not a deadlock, let λ be an arbitrary action that is reachable from
s. Then s ∈ JsatisfyFRA(λ)Kϵ[X:=Sr,FRA]. By Lemma A.10, there must be a
finite r-free path π from s to some s′ such that s′ ∈ Sr,FRA. Since s′ ∈
Sr,FRA we know s′ admits some r-free, FRA path π′. By Proposition A.8, π
extended with π′ satisfies FRA and since both π and π′ are r-free, so is their
combination. Hence s admits an r-free, FRA path and therefore s ∈ Sr,FRA.

We conclude that the set of all r-free, FRA paths Sr,FRA is a fixed point of TFRA.

Note that the semantics of invariantFRA is the greatest fixpoint of the trans-
former TFRA. Hence, we need to prove this greatest fixed point equals Sr,FRA.

Lemma A.12. The set of all r-free, FRA paths, Sr,FRA, is the greatest fixed point
of TFRA as defined in Lemma A.11.

116

Proof. We show that for any F satisfying TFRA(F) = F , we have that F ⊆ Sr,FRA.
Let F be an arbitrary subset of S that is a fixed point for TFRA. Let s ∈ F . We
prove s ∈ Sr,FRA. We do this by constructing an r-free, FRA path π from s.
Observe that since s ∈ F and F = TFRA(F), we also have s ∈ TFRA(F). If there
are no reachable actions from s, then trivially it admits an r-free, WFA path in
the path consisting only of s, because s is a deadlock. We therefore assume that
there are reachable actions from s. Let L be the set of all reachable actions in s.

Consider an arbitrary but fixed order < on the actions in L and let λ be the
least of these actions. From s ∈ TFRA(F) we conclude that there exists some finite,
r-free path π′ from s to a state s′ such that s′ ∈ F and either λ is not reachable
from s′ or λ is the last action in π′. We will let π′ be the start of our constructed
path π.

Denote the set of actions reachable from s′ by L′. Consider that L′ must be a
subset of L: any action that is reachable from s′ would also be reachable from s.
We next choose the least λ′ ∈ {λ′′ ∈ L′ | λ < λ′′}, so the smallest action that is
larger than λ and is reachable from both s and s′. Since s′ ∈ F and F = TFRA(F)
we can apply the same construction to find a finite r-free path π′′ from s′ to s′′

such that either λ′ is not reachable s′′ or λ′ is the last action in π′′. We add π′′ to
our constructed path π.

We repeat this construction until there are no more reachable actions that are
larger than the actions we have already added segments for. This construction
will terminate, since there are finitely many actions. Once the construction stops
in a state sfinal , we continue extending the path constructed so far with the same
construction method, now letting L be the set of actions reachable sfinal . This leads
to either an infinite path, or a finite path where there are no actions reachable from
the final state.

A path constructed in this manner is trivially r-free, since we only ever add
path segments that are r-free. It is less trivial to see that the resulting path
satisfies FRA. Let πcon be the final path we have constructed. If it is finite, it is
trivially FRA. Hence, we henceforth assume πcon is infinite. Consider a suffix π′

con

of πcon where an action α is perpetually reachable. Since π′
con is infinite and our

construction procedure is finite until we refresh the set of actions L that need to be
satisfied, we know that starting in the first state of π′

con there will be finitely many
steps until we reach a state in which the set of actions L is refreshed. Since α is
perpetually reachable in π′

con , α will be part of the new set L. During construction
of the next stretch of the path, we at some point add a path segment in which α
either becomes unreachable or occurs. If α could become unreachable, it would
not be perpetually reachable, hence we are sure we have added a path segment in
which α occurs. Hence, α occurs in π′

con .

We conclude that, since every action that is perpetually reachable in some

117

suffix of πcon is guaranteed to occur in that suffix, our constructed path satisfies
FRA. We have therefore proven we can construct a path from s which is both
r-free and satisfies FRA. Hence, s ∈ Sr,FRA and thus Sr,FRA is the greatest fixed
point of TFRA.

Lemma A.13. For all environments ϵ and states s ∈ S, we have that s ∈
JinvariantFRAKϵ if, and only if, s admits an r-free, FRA path.

Proof. The semantics of invariantFRA is exactly the greatest fixed point of TFRA.
As we have shown in Lemma A.12 that the greatest fixed point of TFRA is Sr,FRA,
we can conclude that invariantFRA exactly captures those states that admit r-free,
FRA paths.

Next, we need to prove that violateWFA indeed characterises the existence of
an FRA path that violates global response.

Lemma A.14. For all environments ϵ and states s ∈ S, we have that s ∈
JviolateFRAKϵ if, and only if, s admits an FRA path that violates global response.

Proof. This follows directly from the definition of violateFRA and Lemma A.13. By
the semantics of violateFRA, the states s ∈ JviolateFRAKϵ are exactly those states
that admit a finite, possibly partial, path π where the final transition is labelled
with a q-action, and the subsequent state is in JinvariantFRAKϵ, hence admits a
path π′ that is r-free and satisfies WFA. By Proposition A.8, ππ′ satisfies FRA.
So we have an FRA path violating global response.

We can now restate and prove Theorem 4.12:

Theorem A.15. A state satisfies Formula 4.6 if, and only if, it satisfies global
response under fair reachability of actions.

Proof. The formula Formula 4.6 is the negation of violateFRA. By Lemma A.14, a
state satisfies violateFRA if, and only if, it admits an FRA path that violates global
response. Hence, a state satisfies Formula 4.6 if, and only if, it does not admit
such a path.

A.6 Proof of Theorem 4.15

The proof for the SFA global response formula differs from the WFA and FRA
proofs somewhat, because the formula has such a different structure. However, we
still need to prove the same propositions before we can get to the formula itself.

Proposition A.16. Let π be an SFA path, then s0t1s1 . . . tnπ is an SFA path.

118

Proof. Let π′ = s0t1s1 . . . tnπ be a path, where π is an SFA path. Let π′′ be an
arbitrary suffix of π′ and let λ be an action that is relentlessly enabled on π′′. We
prove that λ occurs in π′′. We do a case distinction on whether π′′ is also a suffix
of π, or π is a suffix of π′′.

• If π′′ is a suffix of π, then since π is strongly fair of actions and λ is relentlessly
enabled on π′′, we know λ occurs in π′′.

• If π is a suffix of π′′, then since λ is relentlessly enabled on π′′ it is also
relentlessly enabled on π. All of π is a suffix of π, and π is SFA, so since λ
is relentlessly enabled on π it must occur in π. And since π is a suffix of π′′,
λ occurs in π′′.

We conclude that λ occurs in π′′. Hence, for every suffix of π, every action that is
relentlessly enabled in that suffix occurs in that suffix. Hence, π′ is strongly fair
of actions.

Proposition A.17. Let π = s0t1s1 . . . be a finite or infinite path. if π satisfies
SFA then also any suffix of π satisfies SFA.

Proof. Let π′ be a suffix of the SFA path π. Any suffix of π′ will also be a suffix
of π. Hence, any action λ that is relentlessly enabled on a suffix π′′ of π′ is also
relentlessly enabled on that same suffix π′′ of π. Since π is SFA, we know that λ
must occur in π′′. Hence, any action that is relentlessly enabled on a suffix of π′

occurs in that suffix, so π′ is SFA.

To prove Formula 4.11 indeed expresses that there does not exist an SFA path
violating global response, we once again divide the formula up into several smaller
parts.

violateSFA = ⟨true⋆ · q⟩disjunctSFA
disjunctSFA =

∨
F⊆Act

finprefixSFA(F)

finprefixSFA(F) = µY .(⟨r⟩Y ∨ satisfySFA(F))

satisfySFA(F) = νX .(infSFA(F))

We also restate the definitions of inf and exec here, for completeness. Recall that
we fix an arbitrary order on the actions in F such that α1 is the first action, α2

the second, etc. and |F | = n.

infSFA(F) = execSFA(F, n)

execSFA(F, 0) = [F]ff ∧X
execSFA(F, k + 1) = µWk+1.([F]ff ∧

(⟨r⟩Wk+1 ∨ ⟨αk+1 \ r⟩execSFA(F, k)))

119

We would like to directly prove the semantics of satisfySFA, but this requires
first proving the semantics of the infSFA function.

Lemma A.18. Let F be an arbitrary set of actions of size n, on which an arbitrary
order has been fixed so that α1 is the least action, α2 the second least, etc. For an
arbitrary environment ϵ, set F ⊆ S and state s ∈ S, s ∈ JinfSFA(F)Kϵ[X:=F] if, and
only if, s admits a finite, possibly partial, path π that is r-free and on which all
actions in F are perpetually disabled. Additionally, there is a subsequence of the
transitions of π on which every action in F occurs exactly once, in reverse order.
Finally, the final state of π must be in F , and the final transition of π is labelled
with α1 if α1 exists.

The proof for this lemma is highly involved due to the nuances in the way
infSFA is defined. A more general version of this lemma is given as Corollary B.9,
which is a corollary to Lemma B.8. In this one case, we do not prove the more
specific case here and instead point directly to the generalised case that is given
later, simply due to the complexity of the proof.

We use Lemma A.18 to prove the semantics of satisfySFA. For this proof, we
define the set of states that admit an r-free path on which all actions in F occur
infinitely often and all actions in F are perpetually disabled to be Sr,F,SFA.

Lemma A.19. Let F be an arbitrary subset of Act of size n, on which there
exists an arbitrary ordering such that α1 is the least action, α2 the second-least,
etc. and let ϵ be an arbitrary environment. The set Sr,F,SFA is a fixed point of the
transformer TF,SFA where

TF,SFA(F) = {s ∈ S | s ∈ JinfSFA(F)Kϵ[X:=F]

Proof. We prove Sr,F,SFA is a fixed point of this transformer my proving Sr,F,SFA =
TF,SFA(Sr,F,SFA) through mutual set inclusion.

• Let s be an arbitrary state in Sr,F,SFA, we prove s ∈ TF,SFA(Sr,F,SFA). For this,
we need to prove that s ∈ JinfSFAKϵ[X:=Sr,F,SFA]. Since s ∈ Sr,F,SFA, we know s
admits a path π that is r-free on which all actions in F occur infinitely often
and all actions in F are perpetually disabled.

If n = 0, then F = ∅ and π is guaranteed to be a path of length 0 containing
only s itself, since all actions in Act must be perpetually disabled. In this
case, π witnesses that s admits a path that is r-free, on which all actions
in F are perpetually disabled and which ends in a state satisfying Sr,F,SFA.
Since F = ∅, it is also the case that on π any condition on all actions in F
is vacuously satisfied. By Lemma A.18, s ∈ JinfSFAKϵ[X:=Sr,F,SFA].

If n > 0, then the proof is a bit more complex. However, π can still be used
to construct a witness to s ∈ JinfSFAKϵ[X:=Sr,F,SFA] by Lemma A.18. Consider

120

that since all actions in F occur infinitely often in π, π is infinitely long
and there are infinitely many ways to find a subsequence of the transitions
in π such that all actions in F occur exactly once in the subsequence and
do so in reverse order. Take an arbitrary subsequence l that meets these
requirements. The last transition in l is a transition t in π that is labelled
with α1. Let π′ be the prefix of π of which t is the last transition. Then π′

is r-free and every action in F is perpetually disabled on π′, both because
π′ is a prefix of π. Since l is also a subsequence of π′, π′ contains such a
subsequence, and since t is the last transition of π′ the final transition of π′

is labelled with α1.

To be able to conclude s ∈ JinfSFAKϵ[X:=Sr,F,SFA] with π′ as a witness, we
only need to establish that the final state of π′, s′ is in Sr,F,SFA. The suffix
of π starting in s′, π′′, is a witness to this fact. Hence, we can conclude
s ∈ JinfSFAKϵ[X:=Sr,F,SFA] and thus s ∈ TF,SFA(Sr,F,SFA).

• Let s be an arbitrary state in TF,SFA(Sr,F,SFA). We prove s ∈ Sr,F,SFA.
From s ∈ TF,SFA(Sr,F,SFA) we conclude s ∈ Jinf (F)Kϵ[X:=Sr,F,SFA]. From
Lemma A.18, we can therefore conclude that s admits a path π such that π
is r-free, all actions in F are perpetually disabled on π and the final state
of π, s′ is in Sr,F,SFA. There are other things we know about π as well, but
these are the only facts we care about.

Since s′ ∈ Sr,F,SFA, s
′ admits a path π′ that is r-free, on which all actions

in F occur infinitely often and on which the actions in F are perpetually
disabled. We use ππ′ as a witness for s ∈ Sr,F,SFA.

We conclude that Sr,F,SFA = TF,SFA(Sr,F,SFA).

Since the semantics of satisfySFA(F) are the greatest fixed point of TF,SFA, we
still need to prove that Sr,F,SFA is the greatest fixed point of this transformer.

Lemma A.20. Let F be an arbitrary subset of Act of size n, and ϵ be an arbitrary
environment. Let there be an arbitrary ordering on F and let α1 be the least action
of F , followed by α2, etc. until αn. The set Sr,F,SFA is the greatest fixed point of
the transformer TF,BSFA, defined in Lemma A.19.

Proof. We prove this by showing that any state in an arbitrary fixed point of TF,SFA
is also in Sr,F,SFA. Let F be an arbitrary fixed point of TF,BSFA and let s be an
arbitrary state in F . We proceed to prove s ∈ Sr,F,BSFA. To this end, we must
demonstrate that s admits a path π that is r-free, and on which all actions in F
occur infinitely often and all actions in F are perpetually disabled.

Since s ∈ F and, because F is a fixed point of TF,SFA, F = TF,BSFA(F),
we know that s ∈ TF,BSFA(F). By definition of TF ,SFA, we conclude that s ∈

121

JinfSFA(F)Kϵ[X:=F]. By applying Lemma A.18, we conclude that s must admit a
finite, possibly partial, path π′ such that π′ is r-free, all actions in F are perpetually
disabled on π′, all actions in F occur in π′ at least once, and the final state
of π′ must be in F . There are other things we could conclude about π′ from
Lemma A.18, but we will not need them.

We start our construction of π with π′.
If F is the empty set, then π′ will consist of only the state s since all states on π′

are deadlock states because all actions in F are perpetually disabled. Consequently,
π′ cannot contain transitions and is only the state s, which is a deadlock state. In
this case, π = π′ is a witness of s ∈ Sr,F,BSFA, since this path is r-free by virtue of
not having any transitions, and all actions in F = ∅ occur infinitely often because
there are no such actions. Since s is a deadlock state, it is also the case that on
all states in π, all actions in F are perpetually disabled.

Henceforth, we assume F ̸= ∅. In this case, π′ contains at least n transitions
since all actions in F occur at least once in π′. Let s′ be the final state of π′. By
definition of π′, s′ ∈ F . Since F is a fixed point of the transformer, we also have
s′ ∈ TF,SFA,(F) and hence, by definition of the transformer, s′ ∈ JinfSFA(F)Kϵ[X:=F].
We can apply Lemma A.18 again to conclude s′ admits a path π′′ satisfying all
the conditions that must be satisfied by π′. Append π′′ to the path π we have
constructed so far.

This construction can be repeated infinitely often: every time we add a partial
path to the path π we have constructed so far, the final state is in F and so there
is always a next partial path to append. This way, we construct the infinite path
π.

To use π as a witness for s ∈ Sr,F,SFA, we need to prove π is r-free, all actions
in F are perpetually disabled on it, and all actions in F occur infinitely often on
it. The first two points follow directly from our construction: every path segment
we add meets those two conditions. Additionally, π is constructed from infinitely
many segments, and on each of those segments all actions in F occurs at least once.
Hence, every action in F occurs infinitely often in π. This proves s ∈ SBSFA,F .

As noted previously, the semantics of satisfySFA(F) are exactly the greatest
fixed point of TF,SFA. Hence:

Corollary A.21. . For all environments ϵ, sets F ⊆ Act and states s ∈ S,
s ∈ JsatisfySFA(F)Kϵ if, and only if, s admits an r-free path π on which all actions
in F occur infinitely often and all actions in F are perpetually disabled.

Note that since F ∪ F = Act and F ∩ F = ∅, a path on which all actions in
F occur infinitely often and all actions in F are perpetually disabled is a path on
which any action that is enabled infinitely often must be part of F and therefore
also occurs infinitely often. Hence, it is an SFA path.

122

Corollary A.22. For all environments ϵ, sets F ⊆ Act and states s ∈ S, s ∈
JsatisfyBSFA(F)Kϵ if, and only if, s admits an SFA and δdis-free path π on which
all actions in F occur infinitely often and all actions in F are perpetually disabled.

We can now finish the remainder of the proof.

Lemma A.23. Let ϵ be an environment, s a states in S and F a subset of Act.
Then s ∈ JfinprefixSFA(F)Kϵ if, and only if, s admits an r-free, finite path ending
in a state s′ such that s′ ∈ JsatisfySFA(F)Kϵ.

Proof. This follows directly from Theorem 4.3. We use ϕ = satisfyBSFA(F) and
α = r .

Lemma A.24. Let ϵ be an environment and s a states in S. Then we have
s ∈ JdisjunctSFAKϵ if, and only if, it admits an r-free, SFA path.

Proof. In Corollary A.22, we established that a state satisfies satisfySFA(F) if, and
only if, it admits an r-free, SFA path on which the actions in F occur infinitely
often and the actions in Act \ F are never enabled.

The formula finprefixSFA(F) extends satisfySFA(F) with a finite-length, r-free
prefix. By Proposition A.16, we know that an addition of a prefix to an SFA path
results in an SFA path. Hence, a state satisfies finprefixSFA(F) if, and only if, it
admits an r-free, SFA path on which the actions in F occur infinitely often and
the actions in Act \ F are not relentlessly enabled. The latter set of actions may
be enabled during the finite prefix, but are not enabled afterwards.

Consider that any path contains actions that are relentlessly enabled and ac-
tions that are not relentlessly enabled. In an SFA path, all relentlessly enabled
actions occur infinitely often. Hence, any SFA path can be seen as dividing Act
into two sets: a set of actions that occur infinitely often and a set of actions that
are not relentlessly enabled. In disjunctSFA, all possible ways of dividing Act into
these two sets are considered.

We show both directions of this theorem.

• If a state s admits an r-free, SFA path π, then this path induces the set
F of actions that are infinitely often taken, and its complement which are
actions that are not relentlessly enabled. Then s will satisfy finprefixSFA(F)
and hence it will satisfy disjunctSFA.

• If a state s satisfies disjunctSFA, then there is some F ⊆ Act such that s
satisfies finprefixSFA(F). Hence, s admits an r-free, SFA path. Specifically, a
path along which the actions in F are taken infinitely often and the actions
in Act \ F are not relentlessly enabled.

123

Hence, disjunctSFA exactly characterises those states that admit r-free, SFA paths.

Lemma A.25. Let ϵ be an environment and s ∈ S. Then s ∈ JviolateSFAKϵ if, and
only if, it admits an SFA path violating global response.

Proof. By construction, a state s satisfies violateSFA if, and only if, it admits a
finite path ending with a q-action, to a state s′ which satisfies disjunctSFA. From
Lemma A.24, we know s′ therefore admits and r-free, SFA path. Hence, s satisfies
violateSFA if, and only if, it admits a path π that contains a q-action, such that
the suffix of π after that q is an r-free, SFA path. By Proposition A.17, π is an
SFA path. If s admits an SFA path on which a q is not followed by an r, then it
admits a path violating global response under the assumption of strong fairness of
actions.

We can now restate and prove Theorem 4.15.

Theorem A.26. A state satisfies Formula 4.11 if, and only if, it satisfies global
response under strong fairness of actions.

Proof. The formula Formula 4.11 is the negation of violateSFA. By Lemma A.25, a
state satisfies violateSRA if, and only if, it admits an SFA path that violates global
response. Hence, a state satisfies Formula 4.11 if, and only if, it does not admit
such a path.

124

Appendix B

Proofs of Base Formulae

This appendix specifically contains the proofs for the claims made in Section 6.3.
These proofs are similar to the proofs we give for the global response formulae,
but contain more detailed arguments.

For all proofs, fix the model M = (S, sinit ,Act ,Trans) Additionally, since for
the purposes of the proofs we do not care about what parts of the formulae come
from behaviour and what parts from scope, we simplify some of the placeholder
variables. In these proofs, we rename δ1 · δ2 to δpre , δ3 to δen and δ4 ∪ δ5 to δdis .

B.1 Proof of Theorem 6.1

This proof concerns Formula 6.1.

¬(⟨δ1 · δ2 ⟩νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([λ]ff ∧X)∨
⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨λ ∪ δ4 ∪ δ5 ⟩Y)))))

After renaming the placeholder variables, this formula becomes:

¬(⟨δpre⟩νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(⟨δen⟩tt ∨ ([λ]ff ∧X) ∨ ⟨λ \ δdis⟩X ∨ ⟨λ ∪ δdis⟩Y)))))

We largely follow the same proof approach as we do for the global response

125

formulae. We begin by splitting the formula into multiple parts

violateBWFA = ⟨δpre⟩invariantBWFA

invariantBWFA = νX .(
∧

λ∈Act

(⟨λ⟩tt ⇒ satisfyBWFA(λ)))

satisfyBWFA(λ) = µY .(⟨δen⟩tt ∨ ([λ]ff ∧ X) ∨ ⟨λ \ δdis⟩X ∨ ⟨λ ∪ δdis⟩Y)

We prove that Formula 6.1 captures exactly those states that do not admit
WFA paths that meet the following conditions: the path begins with δpre , after
which it is either entirely δdis-free or there is a δdis-free sequence which ends in
a state where δen is enabled, after which arbitrary actions may occur. This is a
more informal way of describing the conditions of violating paths we have given in
Section 6.2.

We do this in steps. First, we prove that satisfyBWFA(λ) characterises all states
that allow the λ action to be treated fairly or for δen to become enabled, without
taking any action in δdis . More formally:

Lemma B.1. For all environments ϵ, states s ∈ S, actions λ ∈ Act and sets
F ⊆ S, we have that a state s ∈ JsatisfyBWFA(λ)Kϵ[X:=F] if, and only if, s admits a
finite, possibly partial, path π meeting the following conditions:

1. π is δdis-free, and

2. at least one of the following conditions is satisfied:

(a) the path ends in a state in which δen is enabled and π is λ-free, or

(b) π ends in a state satisfying F in which λ is disabled and π is λ-free, or

(c) the last transition in π is a λ-transition, this is the only λ-transition on
π, and the last state satisfies F .

Proof. For this proof, we make use of Theorem 4.3, with ϕ = ⟨δen⟩tt ∨ ([λ]ff ∧
X) ∨ ⟨λ \ δdis⟩X and α = λ ∪ δdis . From the theorem, we conclude

s ∈ JµY .(⟨δen⟩tt ∨ ([λ]ff ∧ X) ∨ ⟨λ \ δdis⟩X ∨ ⟨λ ∪ δdis⟩Y)Kϵ[X:=F]

if, and only if, s admits a finite, possibly partial path π′ meeting the following
conditions:

3. on π′, only actions in λ ∪ δdis occur, and

126

4. π′ ends in a state s′ in J⟨δen⟩tt∨([λ]ff ∧X)∨⟨λ \ δdis⟩XKϵ[X:=F], which is equiv-
alent to s′ ∈ J⟨δen⟩ttKϵ[X:=F]∨s′ ∈ J[λ]ff ∧XKϵ[X:=F]∨s′ ∈ J⟨λ \ δdis⟩XKϵ[X:=F].

We now prove that s admits such a path π′ if, and only if, it admits a path π that
satisfies 1 and 2.

First, we assume s admits a path π′ satisfying 3 and 4 and prove it then also
admits a path π satisfying 1 and 2. From 4, we get that s′ is in at least one of
three sets. How we construct π depends on which of the three sets s′ is in.

• If s′ is in J⟨δen⟩ttKϵ[X:=F] then π = π′. In this case, since π′ is free from
δdis-actions and λ, due to 3, so is π. Additionally, since δen is enabled in the
final state of π′, it is also enabled in the final state of π. Therefore, π meets
the conditions 1 and 2a.

• If s′ is in J[λ]ff ∧ XKϵ[X:=F], then we can conclude λ is disabled in s′ and
s′ ∈ F . We take π = π′. Since π′ is free from δdis-actions and λ, so is π.
Additionally, since the final state of π′ satisfies F and λ is disabled in the
final state of π′, the same holds for π. Hence, π meets the conditions 1 and
2b.

• If s′ is in J⟨λ \ δdis⟩XKϵ[X:=F] then s
′ admits a transition t to a state s′′ such

that action(t) = λ and action(t) ̸∈ δdis and s
′′ ∈ F . We let π = π′ts′′. Since

π′ is free from δdis-actions, and action(t) ̸∈ δdis , π is δdis-free. Additionally,
the last transition of π is labelled with λ and its last state satisfies F . Finally,
since π′ is λ-free, t is the only λ-transition in π. We conclude that π meets
the conditions 1 and 2c.

In all three cases, we can construct a path π that meets conditions 1 and at least
one of the options from 2. We conclude s admits such a path.

The other way around, we assume s admits a path π satisfying 1 and 2 and
prove it also admits a path π′ satisfying 3 and 4. We know π is δdis-free from 1,
we do a case distinction on which condition from 2 holds:

• If 2a holds on π, then π is also λ-free and δen is enabled in the last state of π,
s′. We take π′ = π. Since π is δdis-free and λ-free, so is π′ and 3 is satisfied.
Since δen is enabled in s′, s′ ∈ J⟨δen⟩ttKϵ[X:=F] and hence π′ satisfies 4.

• If 2b holds on π, then π is also λ-free, and in the last state s′ of π, λ is
disabled and s′ ∈ F . This means s′ ∈ J[λ]ff ∧ XKϵ[X:=F]. We take π′ = π,
and because π satisfies 3 and 4, so does π′.

• If 2c holds on π, then the last transition of π, t is a λ-transition. Because
π is δdis-free, we know λ ̸∈ δdis . Additionally, we know from 2c that the

127

last state of π, s′, satisfies F . Let s′′ = source(t), then we know s′′ ∈
J⟨δ \ δdis⟩XKϵ[X:=F]. The prefix of π ending in s′′ is then our candidate for
π′. Since t is the only λ-transition on π, π′ is both δdis and λ-free, meaning
it satisfies 3. Additionally, since s′′ is the last state of π′, it also satisfies 4.

We conclude that if s admits a path satisfying 1 and 2, it also admits a path
satisfying 3 and 4.

We conclude that, since s ∈ JsatisfyBWFA(λ)Kϵ[X:=F] ⇔ s admits a finite, pos-
sibly partial, path satisfying 3 and 4 ⇔ s admits a finite, possibly partial, path
satisfying 1 and 2, the lemma holds.

The meaning of satisfyBWFA when expressed like this, may be somewhat eso-
teric. It makes more sense when combined with invariantBWFA. Let SBWFA be the
set of states that admits complete, WFA paths that are either entirely δdis-free or
contain a prefix which is δdis-free and ends in a state where δen is enabled. We
prove that invariantBWFA captures exactly the set SBWFA.

To do this, we first prove SBWFA is a fixed point for the transformer belonging
to the semantics of invariantBWFA.

Lemma B.2. The set SBWFA is a fixed point of the transformer TBWFA, where

TBWFA(F) =
⋂

λ∈Act

{s ∈ S | s ∈ J⟨λ⟩ttKϵ[X:=F] ⇒ s ∈ JsatisfyBWFA(λ)Kϵ[X:=F]}

For an arbitrary environment ϵ.

Proof. SBWFA being a fixed point of TBWFA means that TBWFA(SBWFA) = SBWFA.
We prove this through mutual set inclusion.

• Let s be an arbitrary state in S. We assume s ∈ SBWFA and prove s ∈
TBWFA(SBWFA). To prove s ∈ TBWFA(SBWFA) we need to prove that, for
all λ ∈ Act , if λ is enabled in s then s ∈ JsatisfyBWFA(λ)Kϵ[X:=SBWFA]. Let
λ be an arbitrary action in Act . If λ is not enabled in s, the implication
trivially holds. Hence, we assume λ is enabled in s. We need to prove that
s ∈ JsatisfyBWFA(λ)Kϵ[X:=SBWFA]. Using Lemma B.1, we know this is the case
if s admits a finite, possibly partial, path π such that

1. π is δdis-free, and

2. at least one of the following conditions is satisfied:

(a) the path ends in a state in which δen is enabled and π is λ-free, or

(b) π ends in a state satisfying SBWFA in which λ is disabled and π is
λ-free, or

128

(c) the last transition in π is a λ-transition, this is the only λ-transition
on π, and the last state satisfies SBWFA.

We therefore only need to prove such a path π indeed exists. From s ∈ SBWFA

we know that s admits a complete, WFA path πWFA that is either entirely
δdis-free or has a prefix πpre that is δdis-free and ends in a state spre such that
δen is enabled in spre . We do a case distinction on whether λ is perpetually
enabled on πWFA or not.

– If λ is perpetually enabled, then since πWFA satisfies weak fairness of
actions it must be the case that λ occurs on πWFA. Let t be the first
transition that is part of πWFA which is labelled with λ. We do a case
distinction on whether any state in πWFA before the execution of t there
is a state sen on which δen is enabled.

∗ If such a state sen exists, then πWFA has a prefix π such that sen is
the last state of π and, because sen by assumption comes before the
first transition labelled with λ, π is λ-free. Since πWFA is δdis-free,
so is π. We can therefore say that π satisfies 1 and 2a.

∗ If no such state sen exists, we instead construct a path that satisfies
2c. Recall that t is the first λ-transition on πWFA, let π be the prefix
of πWFA where t is the last transition. Since πWFA is δdis-free, so
is π and 1 is satisfied. We know that t is the last transition of π,
and since it is the first λ-transition on πWFA we also know that π
is λ-free with the exception of t. To establish π satisfies 2c, it only
rests to show that target(t) ∈ SBWFA.
To do this, we need to establish that target(t) admits a complete,
WFA path that is either entirely δdis-free or contains a δdis-free
prefix that ends in a state where δen is enabled. The suffix of πWFA

starting in target(t) is such a path: from Proposition 4.5 we know
that a suffix of a WFA path is WFA, and since no state sen exists
before t on πWFA, we are either dealing with a fully δdis-free path,
or we are still in the δdis-free prefix. Either way, the suffix of πWFA

starting in target(t) is a witness to the fact that target(t) ∈ SBWFA

and hence we can conclude that 2c is satisfied by the prefix of πWFA

ending in target(t).

– If λ is not perpetually enabled on πWFA then there are states on πWFA

in which λ is not enabled. Let snot be the first of those states. We do
a case distinction on whether λ occurs on πWFA before snot is reached.

∗ If λ occurs before snot is reached, then we can repeat the argu-
ment for the case where λ is perpetually enabled on πWFA. In this

129

argument, the only thing we use λ being perpetually enabled for
is to conclude λ must occur. Since in this case λ occurs anyway,
even though it is not perpetually enabled, we can apply the same
argument to conclude we can construct a path π satisfying 1 and
2.

∗ If λ does not occur before snot in πWFA, we know the prefix of πWFA

before snot is λ-free. We need to make one more case distinction on
whether there is a state sen before snot on which δen is enabled.

· If such a state sen exists, then πWFA has a prefix π such that
sen is the last state of π and, because we assumed that there is
no occurrence of λ before snot and therefore also not before sen ,
π is λ-free. Since πWFA is δdis-free, so is π. Hence, π satisfies 1
and 2a.

· If no such state sen exists, we construct a path that satisfies 1
and2b. For this, let π be the prefix of πWFA ending in snot . Since
πWFA is δdis-free, so is π. Hence, π satisfies 1. Additionally, we
have assumed λ is disabled in snot , and we have established the
prefix of πWFA before snot is λ-free. To establish π satisfies 2b,
we only need to show that snot is in SBWFA.
This requires us to show that snot admits a complete, WFA path
which is either entirely δdis-free, or contains a δdis-free prefix
ending in a state where δen is enabled. We know snot admits
such a path because it admits the suffix of πWFA starting in
snot . Using Proposition 4.5, we know that the suffix of a WFA
path is WFA. Additionally, by assumption δen has not been
enabled yet when we get to snot , so either πWFA is entirely δdis-
free, in which case its suffix is as well, or when we get to snot
we are still in the δdis-free prefix, in which case its suffix still
has such a prefix. Either way, the suffix of πWFA starting in
snot is a witness to the fact that snot ∈ SBWFA and hence we
can conclude that 2c is satisfied by the prefix of πWFA ending
in snot .

We have shown in every case that s admits a path π that satisfies 1 and 2.
Using Lemma B.1, we conclude that s ∈ JsatisfyBWFA(λ)Kϵ[X:=SBWFA]. Hence,
we have shown that for every arbitrary action λ, if λ is enabled in s then s ∈
JsatisfyBWFA(λ)Kϵ[X:=SBWFA], from which we conclude that s ∈ TBWFA(SBWFA).

• Let s be an arbitrary state in S. We assume s ∈ TBWFA(SBWFA) and prove
s ∈ SBWFA. From our assumption, we know that for every action λ ∈ Act
that is enabled in s, s ∈ JsatisfyBWFA(λ)Kϵ[X:=SBWFA]. We use this to prove

130

that s ∈ SBWFA. To do this, we need to construct a path π starting in s
such that π is a complete, WFA path that is either entirely δdis-free or has a
prefix that is δdis-free which ends in a state where δen is enabled. First, we
do a case distinction on whether s is a deadlock state.

– If s is a deadlock state, then s admits the complete path π = s. This
path is trivially WFA since it is finite, and it is trivially δdis-free since
it contains no transitions at all. Hence, this π is a witness for s being
in SBWFA.

– If s is not a deadlock state, there must be at least one action enabled in
s. Let λ be an arbitrary action that is enabled in s. Since λ is enabled
in s, we know that s ∈ JsatisfyBWFA(λ)Kϵ[X:=SBWFA]. Using Lemma B.1,
this is sufficient to conclude that s admits a finite, possibly partial, path
π′ such that

1. π′ is δdis-free, and

2. at least one of the following conditions is satisfied:

(a) the path ends in a state in which δen is enabled and π′ is λ-free,
or

(b) π′ ends in a state satisfying SBWFA in which λ is disabled and
π′ is λ-free, or

(c) the last transition in π′ is a λ-transition, this is the only λ-
transition on π′, and the last state satisfies SBWFA.

We use π′ to construct π. For this, we need to do a case distinction on
which of the options in 2 holds for π′.

∗ If the path π′ satisfies 2a, then π′ is a finite path ending in a state
on which δen is enabled. Either π′ is a complete path, in which case
it is trivially WFA because it is finite, or it is a partial path. If it
is partial, then because WFA is feasible, it can be extended to a
complete WFA path. We therefore know there exists a complete,
WFA path π of which π′ is a prefix. Since π′ is δdis-free, due to 1,
and ends in a state where δen is enabled, we know that π contains
a δdis-free prefix which ends in a state where δen is enabled. So π
is a witness for s being in SBWFA.

∗ If the path π′ satisfies 2b or 2c, then π′ ends in a state satisfying
SBWFA. We do not need any other information from these two
cases, so we address them both simultaneously. Let s′ be the final
state of π′. Since s′ ∈ SBWFA, we know s′ admits a path π′′ that is
complete, WFA and either entirely δdis-free or has a δdis-free prefix
which ends in a state where δen is enabled. We let π = π′π′′. From

131

Proposition 4.4, we know that since π′′ is WFA and π′ is finite, π′π′′

is WFA. Additionally, since π′ is δdis-free, due to 1, we can prepend
π′ to π′′ while preserving that the resulting path is either entirely
δdis-free or contains a δdis-free prefix ending in a state where δen is
enabled. Hence, π = π′π′′ is a witness for s being in SBWFA.

In all three cases, we can construct a π that witnesses s ∈ SBWFA.

We conclude that if s ∈ TBWFA(SBWFA) then s ∈ SBWFA.

Through mutual set inclusion, we have proven TBWFA(SBWFA) = SBWFA, hence
SBWFA is a fixed point of the transformer TBWFA.

To prove that SBWFA = JinvariantBWFAKϵ, we still need to show that SBWFA is
the greatest fixed point of the transformer TBWFA.

Lemma B.3. The set SBWFA is the greatest fixed point of TBWFA as defined in
Lemma B.2.

Proof. We show that for any F ⊆ S satisfying TBWFA(F) = F , it is the case that
F ⊆ SBWFA. Let F be an arbitrary subset of S that is a fixed point for TBWFA.
Let s be an arbitrary state in F . We prove that s ∈ SBWFA by constructing a
complete WFA path π starting in s0 = s that is either entirely δdis-free or contains
a δdis-free prefix which ends in a state where δen is enabled.

Observe that since s ∈ F and F = TBWFA(F), we also have s ∈ TBWFA(F).
From this we know that for all actions λ that are enabled in s, it is the case that
s ∈ JsatisfyBWFA(λ)Kϵ[X:=F]. Let L0 be the set of actions that are enabled in s. If
L0 is empty, then s is a deadlock state. In that case, the path consisting of only
the state s serves as a witness for s being in SBWFA: it is a complete WFA path
which is entirely δdis-free. We henceforth assume that L0 is not empty.

Consider an arbitrary but fixed order < on L0, and let λ0 be the least action
in L0 by this order. Since λ0 is an action that is enabled in s, we know that
s ∈ JsatisfyBWFA(λ0)Kϵ[X:=F]. By Lemma B.1, we know that s admits a finite,
possibly partial, path π0 that meets the following requirements:

1. π0 is δdis-free, and

2. at least one of the following conditions is satisfied:

(a) the path ends in a state in which δen is enabled and π0 is λ0-free, or

(b) π0 ends in a state satisfying F in which λ0 is disabled and π0 is λ-free,
or

(c) the last transition in π0 is a λ0-transition, this is the only λ0-transition
on π0, and the last state satisfies F .

132

We let π0 be the start of our path π. How we continue constructing π depends on
which condition holds for 2. We do a case distinction on whether 2a holds.

• If 2a holds, then we stop the algorithm for construction here. Instead of fur-
ther considering enabled actions, we simply arbitrarily extend π to a complete
WFA path. We know this is possible, because WFA is feasible. In this case,
the π we have constructed is a complete WFA path with a δdis-free prefix
which ends in a state where δen is enabled: this prefix is π0.

• If 2a does not hold, then either 2c or 2b holds. Either way, π0 ends in a
state s1 with s1 ∈ F . We continue construction of π from s1. Let L1 be the
set of actions enabled in s1. Let λ1 be the least action in L0 ∩ L1 such that
λ0 < λ1. Since F = TBWFA(F), s1 ∈ TBWFA(F). Hence, since λ1 is enabled
in s1, we know that s1 ∈ JsatisfyBWFA(λ1)Kϵ[X:=F].

Assuming we were in the second scenario, and so did not terminate the con-
struction algorithm, we can now repeat the construction we have done with s0 for
s1. We know a path π1 exists that meets the condition that it is δdis-free and either
ends in a state where δen is enabled, or in a state s2 with s2 ∈ F . In both cases,
we append π1 to the path π we are constructing. In the first case, where π now
ends in a state where δen is enabled, we arbitrarily extend π to a complete WFA
path and abort the algorithm. In the latter case, we continue the construction
from s2, now taking the next smallest action λ2 of the actions that are enabled in
s0, s1 and s2.

We repeat the above construction until there is no more action we can choose,
i.e when L0∩L1∩L2∩. . .∩Lk no longer contains any action greater than λk−1. This
will eventually happen, since there are only finitely many actions in our system.
Let sk be the final state of the π we have constructed so far. We now continue
the construction from sk by restarting the whole construction procedure, but now
using sk in place of s0. So we take Lk, the set of actions enabled in sk, and simply
take λk to be the least action in Lk according to <. We call this “refreshing the
set of actions” in the remainder of this proof.

This procedure continues until either it is forced to terminate, because we reach
a deadlock state or a state where δen is enabled, or it continues infinitely. We argue
that in all three cases, the path π we construct is a complete WFA path that is
either entirely δdis-free or contains a δdis-free prefix ending in a state where δen is
enabled.

• If the construction terminates because we reach a state where δen is enabled,
then we have finished constructing π by extending it to an arbitrary complete
WFA path. Since every path segments we added to the construction of π
during the algorithm was δdis-free, and δen is enabled in the last state before

133

our arbitrary extension, we have a path here that has a δdis-free prefix which
ends in a state where δen is enabled.

• If the construction terminates because we reach a deadlock state, then we
have a complete finite path, which is WFA because all complete finite paths
are WFA. Additionally, we have constructed it only from segments we found
via application of Lemma B.1, which were all δdis-free. Hence, we have
constructed a complete WFA path that is entirely δdis-free.

• If the construction never terminates, π is infinite. The construction only adds
segments that are δdis-free, because all segments come from applications of
Lemma B.1, so π is δdis-free. Additionally, π is infinite so it is complete. The
only thing we still need to prove is that π is WFA. Consider an arbitrary
suffix π′ of π, and consider an arbitrary action λ that is perpetually enabled
on π′. To prove π is WFA, we need to prove that λ occurs in π′.

We know that the construction algorithm until we refresh the set of actions
is finite, hence it occurs infinitely often while constructing the infinite path
π. Let sr be the first state in π

′ for which we refresh the set of actions when
constructing π. Since λ is perpetually enabled on π′, and sr is part of π′, λ is
enabled in sr. Hence, λ ∈ Lr. On every state in π′, λ is enabled because λ is
perpetually enabled on π′. Hence, every time a restriction is added to the set
of actions we consider through intersecting with the set of actions enabled
in the next state, λ remains in the set. We always take the next smallest
action in the set, and since Act is finite this means we will eventually choose
λ as the action we use for constructing the next segment of π.

So at some point during the constructing of π after sr, we add a path segment
on which either δen is enabled, or λ becomes disabled, ór λ occurs. In the
first case, the construction would terminate and we assumed that it did not.
In the second case, λ would not be perpetually enabled on π′. Hence, we
must be in the last case: the segment we add to π must be one in which λ
occurs. Thus λ occurs in π′.

Since for every suffix of π, every action that is perpetually enabled on that
suffix also occurs in that suffix, π is weakly fair of actions. Thus, π is a
complete WFA path which is entirely δdis-free.

We have shown that for an arbitrary state s in an arbitrary fixed point F
of TBWFA, we can construct a path starting in s that witnesses s ∈ SBWFA. We
conclude that SBWFA is the greatest fixed point of TBWFA.

The semantics of invariantBWFA are exactly the greatest fixed point of TBWFA,
hence we conclude the following.

134

Corollary B.4. The set of states characterised by invariantBWFA is exactly the
set SBWFA.

The difficult part of the proof is now done, since violateBWFA only adds a prefix,
and then to get Formula 6.1 we simply negate violateBWFA.

Lemma B.5. For all environments ϵ and states s ∈ S, s ∈ JviolateBWFAKϵ if,
and only if, s admits a complete WFA path that starts with δpre , after which it is
either entirely δdis-free or has a finite δdis-free prefix ending in a state where δen is
enabled.

Proof. This follows from Corollary B.4 and the definition of violateBWFA. The se-
mantics of ⟨δpre⟩invariantBWFA is exactly those states that admits paths that have
a prefix δpre that ends in a state that satisfies invariantBWFA. By Corollary B.4,
states satisfying invariantBWFA admit complete WFA paths that are either en-
tirely δdis-free or have a finite δdis-free prefix which ends in a state where δen is
enabled. The addition of ⟨δpre⟩ to the formula simply ensures there is a prefix
exactly matching δpre prepended to the path. By Proposition 4.4, the resulting
path is still WFA.

We now restate Theorem 6.1:

Theorem B.6. A state s ∈ S satisfies Formula 6.1 if, and only if, it does not
admit a path π meeting the following requirements:

1. π is complete and satisfies weak fairness of actions, and

2. there is a prefix of π that matches δ1 · δ2, and

3. there is no occurrence of any action in δ4 or δ5 in π after δ1 · δ2 and before
the first occurrence of an action in δ3.

Proof. This follows directly from Lemma B.5 and the fact that Formula 6.1 is the
negation of violateBWFA. Recall that for this proof, we have renamed δ1 · δ2 to δpre ,
δ3 to δen and δ4 ∪ δ5 to δdis .

B.2 Proof of Theorem 6.2

We need to prove that Formula 6.2:

¬(⟨δ1 · δ2 ⟩(
∨

F⊆Act

(µY.(⟨δ4 ∪ δ5 ⟩Y ∨ ⟨δ3 ⟩tt ∨ νX.inf (F)))))

135

Where inf (F) is defined as follows. We fix an arbitrary order on the actions in F
such that α1 is the first action, α2 the second, etc. Let n = |F |.

inf (F) = exec(F, n)

exec(F, 0) = [F]ff ∧X
exec(F, k + 1) = µWk+1.([F]ff ∧

(⟨δ4 ∪ δ5 ⟩Wk+1 ∨ ⟨αk+1 \ (δ4 ∪ δ5)⟩exec(F, k)))

Describes exactly those states that do not admit complete SFA paths that have
δ1 · δ2 as a prefix and no occurrence of δ4 ∪ δ5 after δ1 · δ2 but before an occurrence
of δ3.

For this proof, we again rename δ1 · δ2 to δpre , δ3 to δen and δ4 ∪ δ5 to δdis . We
do this renaming and the splitting of the formula into parts in one step.

violateBSFA = ⟨δpre⟩disjunctBSFA

disjunctBSFA =
∨

F⊆Act

finprefixBSFA(F)

finprefixBSFA(F) = µY.(⟨δdis⟩Y ∨ ⟨δen⟩tt ∨ satisfyBSFA(F))

satisfyBSFA(F) = νX .(infBSFA(F))

Where, of course, we define infBSFA(F) as follows, fixing an arbitrary order on the
actions in F , with n = |F |.

infBSFA(F) = execBSFA(F, n)

execBSFA(F, 0) = [F]ff ∧X
execBSFA(F, k + 1) = µWk+1.([F]ff ∧

(⟨δdis⟩Wk+1 ∨ ⟨αk+1 \ δdis⟩execBSFA(F, k)))

We start with proving the semantics of execBSFA. For this, we first prove the
semantics of the simpler formula µW.([D]ff ∧ (⟨δdis⟩W ∨ ⟨α \ δdis⟩ϕ for a ϕ that
does not depend on W .

Lemma B.7. For arbitrary environment ϵ, state s ∈ S, set F ⊆ Act, action
α ∈ F and µ-calculus formula ϕ which does not depend on W , we have that s ∈
JµW .([D]ff ∧ (⟨δdis⟩W ∨ ⟨α \ δdis⟩ϕ))Kϵ if, and only if, s admits a finite, possibly
partial, path π meeting the following requirements:

1. π is δdis-free, and

2. in every state of π with the possible exception of the last state, it must be the
case that all actions in D are disabled, and

136

3. the last transition of π is labelled with α, and

4. the last state of π is in JϕKϵ.

Proof. For this proof, we first apply Theorem 4.3 to the formula µW.(⟨δdis⟩W ∨
⟨α \ δdis⟩ϕ). From this, we know that that formula characterises exactly those
paths that admit a finite, possibly partial, that is δdis-free and of which the final
state is in J⟨α \ δdis⟩ϕKϵ. Note that the semantics of ⟨α \ δdis⟩ϕ is exactly those
states that admit an α transition to states in JϕKϵ, as long as α ̸∈ δdis . In other
words, this simpler formula characterises exactly those states that admit finite,
possibly partial, paths that meet requirements 1, 3 and 4. The only difference
between µW .([D]ff ∧ (⟨δdis⟩W ∨ ⟨α \ δdis⟩ϕ)) and the simpler formula is that there
is the action requirement that all states that satisfy W must satisfy J[D]ff Kϵ. This
is exactly the condition that there are no enabled transitions labelled with any
action in D. This is enforced in every state along the path, with the exception
of the last state since there only ϕ needs to hold, not W . In other words, 2 is
enforced.

We now want to use this lemma to prove the semantics of execBSFA as they are
truly defined. The way we defined execBSFA(F, 0) makes this proof a bit compli-
cated; if the formula said there could be a finite sequence of non-δdis transitions
before X had to hold again the proof would be a lot simpler, but there would be
an extra and unnecessary least fixpoint. Therefore we accept the more complex
proof, so that we can have a slightly simpler formula.

Lemma B.8. Let F be an arbitrary set of actions of size n, on which an arbitrary
order has been fixed. Let α1 be the smallest action in F , α2 the second smallest, etc.
Let k be an arbitrary natural number between 0 and n. For arbitrary environment
ϵ, set F ⊆ S, and state s ∈ S, s ∈ JexecBSFA(F, k)Kϵ[X:=F] if, and only if, s admits
a finite, possibly partial, path π meeting the following requirements:

1. π is δdis-free, and

2. every action αm with m ≤ k occurs at least once in π, and

3. there are transitions tik , tik−1
, tik−2

, . . . , ti1 in π such that action(tim) = αm

for all 1 ≤ m ≤ k, and im < im−1 for all 1 < m ≤ k. More informally: there
is a subsequence of the transitions in π in which all actions in F smaller
than or equal to αk occur exactly once and in reverse order1. And

4. on π, the actions in F are perpetually disabled, and

1Note that 3 implies 2, so the latter is superfluous. However, we find it useful in further proofs
to have this condition stated explicitly.

137

5. the final state of π satisfies F .

Additionally, there is a special requirement when k = 0:

6. When k = 0, π consists of a single state.

And a special requirement when k ̸= 0:

7. When k > 0, the last transition of π is labelled with α1.

Proof. For this, we do an inductive proof on k.
For the base, take k = 0. Note that execBSFA(F, 0) = [F]ff ∧ X. We need to

prove an arbitrary state s is in J[F]ff ∧XKϵ[X:=F] if, and only if, it admits a path
π satisfying requirements 1 to 7. We prove both directions separately.

• Assume the state s admits such a path π. By 6 we know π consists only
of the state s. By 4, all actions in F are disabled on all states in π, hence
they are all disabled in s. Additionally, by 5, the final state of π, which
is s, satisfies F . Hence, s ∈ J[F]ff Kϵ[X:=F] and s ∈ JXKϵ[X:=F]. Hence,
s ∈ JexecBSFA(F, 0)Kϵ[X:=F].

• Assume s ∈ J[F]ff ∧ XKϵ[X:=F]. Then all actions in F are disabled in s,
and s ∈ F . Let π = s, this is a finite, possibly partial path. There are no
transitions on this path, hence it is trivially δdis-free. Since k = 0, there are
no actions αm with m ≤ k, hence conditions 2 and 3 are both satisfied. Since
all actions in F are disabled in s and s ∈ F , conditions 4 and 5 are also
satisfied. Finally, 6 is satisfied and k = 0 so 7 is trivially satisfied. Hence, s
admits a path satisfying all requirements.

For our induction hypothesis we assume that a state is in JexecBSFA(F, k)Kϵ[X:=F]

for k ≥ 0 if, and only if, it admits a finite, possibly partial, path satisfying require-
ments 1 to 7.

For our step case, we prove the claim for k + 1. Note that, since k ≥ 0,
k + 1 is definitely greater than 0. Hence, we know that execBSFA(F, k + 1) =
µWk+1.([F]ff ∧ (⟨δdis⟩Wk+1 ∨ ⟨αk+1 \ δdis⟩execBSFA(F, k))). Using Lemma B.7, we
know a state s′ satisfies this formula if, and only if, it admits a finite, possibly
partial path π′ meeting the following requirements:

8. π′ is δdis-free, and

9. in every state of π′, with the possible exception of the last state, it must be
the case that all actions in F are disabled, and

10. the last transition of π′ is labelled with αk+1, and

138

11. the last state of π′ satisfies execBSFA(F, k).

We once again prove both sides of the claim separately, both using the observation
above.

• Assume a state s admits a path π that is finite, possibly partial, and satisfies
all seven conditions with k+1 filled in for k. We prove s ∈ JexecBSFA(F, k+
1)Kϵ[X:=F]. By our observation earlier, it suffices to prove that s admits a
path π′ meeting the requirements 8 to 11.

Note that, by 2, the action αk+1 definitely occurs in π at least once. Note that
there may be several transitions labelled with αk+1 in π. For our construc-
tion, we want to identify a particular one. By 3, there exists a subsequence
of transitions in π where all actions αm with 0 < m ≤ k + 1 occur exactly
once and in reverse order. Let t be the last possible transition labelled with
αk+1 that is a candidate for tik+1

. Effectively, we want to consider all pos-
sible ways to make such a subsequence and ensure we pick the last possible
transition that can be the start of such a subsequence. Let π′ be the prefix
of π of which t is the last transition. Let s′ be the final state of π′.

We prove π′ meets the four requirements. Since π is δdis-free (by 1) and F is
disabled on all states on π (by 4), conditions 8 and 9 are trivially satisfied.
We choose t, the last transition of π′, to be a transition labelled with αk+1,
hence condition 10 is also satisfied. It remains for us to prove that s′ satisfies
execBSFA(F, k). We do this through application of the induction hypothesis:
s′ satisfies execBSFA(F, k) if it admits a finite, possibly partial path satisfying
requirements 1 to 7. We take π′′, the suffix of π starting in s′, as the witness
for s′ admitting such a path.

Since π′′ is the suffix of π, conditions1, 4 and5 are trivially satisfied. For2 and
3, note that we chose t such that t is the start of a subsequence of π on which
all actions αk+1 to α1 occur exactly once, in that order. Hence, all actions
αm with m ≤ k still occur on π after t, and there is still a subsequence of
the actions αk to α1 in that order. So these two conditions are also satisfied.
We do a case distinction on whether k = 0:

– If k = 0, then t is labelled with αk+1 = α1. The subsequence of all
actions m with m ≤ 1 consists of only α1, so when we selected t to be
the last possible transition labelled with αk+1 so that such a subsequence
could still be formed, t was simply the last transition in π labelled with
α1. Since π satisfies 7 and k + 1 > 0, the last transition of π labelled
with α1 is, in fact, the last transition of π period. Hence, when taking
the suffix of π starting in s′, there are no transitions left. Hence, π′′ = s′

and condition 6 is satisfied. Of course, 7 is trivially satisfied since k ̸> 0.

139

– If k > 0, then6 is trivially satisfied since k ̸= 0. Additionally, there must
still be transitions in π′′ because there must be at least an occurrence of
αk, and since π satisfies the condition that the last transition is labelled
with α1, π

′′ satisfies this condition as well. Hence, 7 is satisfied by π′′.

We have shown π′′ satisfies all seven conditions, and so by applying the
induction hypothesis we conclude that s ∈ JexecBSFA(F, k)Kϵ[X:=F]. From
this, we can conclude that π′ satisfies 11, and therefore π′ witnesses that
s ∈ JexecBSFA(F, k + 1)Kϵ[X:=F].

• Assume a state s is in JexecBSFA(F, k + 1)Kϵ[X:=F]. We prove that s admits
a path π meeting requirements 1 to 7 with k + 1 in place of k. We use the
observation due to Lemma B.7, which gives us that s admits a finite, possibly
partial path π′ meeting conditions 8 to 11. Note that, by 11, the final state
s′ of π′ is in JexecBSFA(F, k)Kϵ[X:=F]. We apply the induction hypothesis to
conclude that s′ admits a path π′′ satisfying conditions 1 to 7. We define π
to be π′π′′. We prove π meets the requirements 1 to 7 when filling in k + 1
for k.

Both π′ and π′′ are δdis-free by 8 and 1 respectively, hence π satisfies 1.
Additionally, by 9, all states on π′ with the possible exception of the last
state s′ satisfy the condition that all actions in F are disabled. Since s′ is on
π′′, and 4 holds on π′′, s′ and all other states on π′′ also satisfy this condition,
hence π satisfies 4.

Regarding 2 and 3, observe that since 10 is satisfied by π′, αk+1 occurs in π
before any of the transitions in π′′. Additionally, because 3 is satisfied by π′′,
there exists a subsequence of αk to α1, in that order, on the transitions of π′′.
Since the occurrence of αk+1 in π

′ can be prepended to any such subsequence
in π′′, it is the case that π satisfies 3 and hence also 2.

For 6, observe that k + 1 cannot be zero so 6 is trivially satisfied. For 7, we
do a case distinction on whether k = 0.

– If k = 0, then π′′, which satisfies 6, must consist of only a single state,
which is s′. Therefore, the last transition of π = π′π′′ is the last transi-
tion of π′. By 10, this transition is labelled with αk+1 = α1. Hence, π
satisfies 7.

– If k > 0, then since π′′ is a suffix of π and π′′ satisfies 7, the last
transition of π must be labelled with α1 and hence π satisfies 7.

We conclude that π satisfies all seven conditions for k+1, and hence s admits
a path that satisfies these conditions.

140

By induction, we have proven that for all 0 ≤ k ≤ n, it holds that a state s is in
JexecBSFA(F, k)Kϵ[X:=F] if, and only if, it admits a path π meeting the requirements
stated as part of the lemma.

Observe that infBSFA(F) = execBSFA(F, n) when |F | = n. We can therefore
observe the following: when n = 0, F = ∅ in which case execBSFA(F, 0) will include
[true]ff . Hence, the fact that when n = 0 the path consists of only a single state
does not need to be a special requirement, since it follows directly from there being
a deadlock state.

Corollary B.9. Let F be an arbitrary set of actions of size n, on which an
arbitrary order has been fixed. Let α1 be the smallest action in F , α2 the sec-
ond smallest, etc. For arbitrary environment ϵ, set F ⊆ S, and state s ∈ S,
s ∈ JinfBSFA(F)Kϵ[X:=F] if, and only if, s admits a finite, possibly partial, path π
meeting the following requirements:

1. π is δdis-free, and

2. every action in F occurs at least once in π, and

3. there is a subsequence of the transitions in π in which all actions in F occur
exactly once and in reverse order, and

4. on π, the actions in F are perpetually disabled, and

5. the final state of π satisfies F .

And a special requirement when n ̸= 0:

6. When n > 0, the last transition of π is labelled with α1.

Let us now consider the semantics of satisfyBSFA(F). We define SBSFA,F to
be the set of states that admit a δdis-free path on which all actions in F occur
infinitely often and all actions in F are perpetually disabled. Note that, unless F
is the empty set, the path must be infinite, otherwise the actions in F could not
occur infinitely often. We prove that the semantics of satisfyBSFA(F) are exactly
this set. We first prove that SBSFA,F is a fixed point of the transformer belonging
to the semantics of satisfyBSFA(F).

Lemma B.10. Let F be an arbitrary subset of Act of size n, and ϵ be an arbitrary
environment. Let there be an arbitrary ordering on F and let α1 be the least
action of F , followed by α2, etc. until αn. The set SBSFA,F is a fixed point of the
transformer TBSFA,F , where

TBSFA,F (F) = {s ∈ S | s ∈ JinfBSFA(F)Kϵ[X:=F]}

141

Proof. We prove SBSFA,F is a fixed point of this transformer by proving SBSFA,F =
TBSFA,F (SBSFA,F) through mutual set inclusion.

• Let s be an arbitrary state in SBSFA,F , we prove that s ∈ TBSFA,F (SBSFA,F).
From s ∈ SBSFA,F , we conclude that s admits a δdis-free path π on which
all actions in F occur infinitely often and all actions in F are perpetu-
ally disabled. To prove s ∈ TBSFA,F (SBSFA,F), we need to prove that s ∈
JinfBSFA(F)Kϵ[X:=SBSFA,F]. By Corollary B.9, we know this is the case when s
admits a finite, possibly partial, path π′ meeting the following requirements:

1. π′ is δdis-free, and

2. every action in F occurs at least once in π′, and

3. there is a subsequence of the transitions in π′ in which all actions in F
occur exactly once and in reverse order, and

4. on π′, the actions in F are perpetually disabled, and

5. the final state of π′ satisfies SBSFA,F , and

6. if n > 0 then the last transition of π′ is labelled with α1.

We will find such a path π′ in a prefix of π. We find this π′ as follows: we
first take the prefix of π up to the first occurrence of αn, we then append
to this the next part of π up to the first occurrence of αn−1 from this point
onwards, and we repeat this until we have get to α1. Once we have added
the transition labelled with α1, we stop the construction. This is the path
π′ we use. If F = ∅, this construction is empty and simply produces π′ = s.
It is always possible to find an occurrence of a particular action in F after
an arbitrary point on π, because all actions in F occur infinitely often on π.

We now show this construction leads to a path π′ meeting all requirements.
Most of these follow quite directly from the construction. Firstly, π is a δdis-
free path so π′ is as well, meaning 1 is satisfied. As part of the construction,
we ensure every action in F must occur at least once in π′, hence 2 is
satisfied. This construction specifically ensures that there is a an occurrence
of αn, eventually followed by an occurrence of αn−1, etc. until α1, hence 3 is
satisfied as well. Since on π the actions in F are perpetually disabled, this
is also the case for π′ and therefore 4 holds. If n > 0, then the construction
terminates in the state immediately after we add the last α1 transition, hence
6 holds as well.

Finally, 5 requires a slightly longer argument. We need to show that the last
state of π′, s′ is in SBSFA,F . To do this, we must show s′ admits a δdis-free
path π′′ on which all actions in F occur infinitely often and all actions in F

142

are perpetually disabled. If F = ∅, this is just the path consisting of only
the state s′. Otherwise, we find this in the suffix of π starting in s′. After
all, all three of the noted properties of π (δdis-free, F occurs infinitely often,
F perpetually disabled) hold for any suffix of a path that satisfies them as
well.

We have constructed a path π′ that witnesses s ∈ JinfBSFA(F)Kϵ[X:=SBSFA,F].
This allows us to conclude that s ∈ TBSFA,F (SBSFA,F).

• Let s be an arbitrary state in TBSFA,F (SBSFA,F), we prove s ∈ SBSFA,F . From
the assumption, we know that s ∈ JinfBSFA(F)Kϵ[X:=SBSFA,F]. Applying Corol-
lary B.9, this allows us to conclude s admits a finite, possible partial, path
π′ such that:

1. π′ is δdis-free, and

2. every action in F occurs at least once in π′, and

3. there is a subsequence of the transitions in π′ in which all actions in F
occur exactly once and in reverse order, and

4. on π′, the actions in F are perpetually disabled, and

5. the final state of π′ satisfies SBSFA,F , and

6. if n > 0 then the last transition of π′ is labelled with α1.

We use this to prove s ∈ SBSFA,F . To prove this, we need to show that s
admits a δdis-free path π on which all actions in F occur infinitely often and
all actions in F are perpetually disabled.

From 5, we know that the final state of π′, s′ is in SBSFA,F , hence s
′ admits a

δdis-free path on which all actions in F occur infinitely often and all actions
in F are perpetually disabled. Let this path be π′′. We use π = π′π′′ as
a witness for s ∈ SBSFA,F when F ̸= ∅, otherwise we can just use π = π′.
Since both π′ and π′′ are δdis-free, so is π. Since all actions in F occur
infinitely often in π′′, they do in π as well. Finally, since the actions in F are
perpetually disabled in both π′ and π′′, they are in π as well.

We conclude that, since s admits π, s is in SBSFA,F .

We have proven that if an arbitrary state s is in the set SBSFA,F then it is also in
TBSFA,F (SBSFA,F) and vice versa. Hence, SBSFA,F is a fixed point of TBSFA,F .

To prove SBSFA,F is the exact set characterised by satisfyBSFA(F) we need to
show that SBSFA,F is not merely a fixed point of this transformer, but in fact the
greatest fixed point.

143

Lemma B.11. Let F be an arbitrary subset of Act of size n, and ϵ be an arbitrary
environment. Let there be an arbitrary ordering on F and let α1 be the least action
of F , followed by α2, etc. until αn. The set SBSFA,F is the greatest fixed point of
the transformer TBSFA,F , defined in Lemma B.10.

Proof. We prove this by showing that any state in an arbitrary fixed point of
TBSFA,F is also in SBSFA,F . Let F be an arbitrary fixed point of TBSFA,F and let
s be an arbitrary state in F . We proceed to prove s ∈ SBSFA,F . To this end, we
must demonstrate that s admits a path π that is δdis-free, and on which all actions
in F occur infinitely often and all actions in F are perpetually disabled.

Since s ∈ F and, because F is a fixed point of TBSFA,F , F = TBSFA,F (F),
we know that s ∈ TBSFA,F (F). By definition of TBSFA,F , we conclude that s ∈
JinfBSFA(F)Kϵ[X:=F]. By applying Corollary B.9, we conclude that s must admit a
finite, possibly partial, path π′ meeting the following requirements:

1. π′ is δdis-free, and

2. every action in F occurs at least once in π′, and

3. there is a subsequence of transitions in π′ in which all actions in F occur
exactly once and in reverse order, and

4. on π′, the actions in F are perpetually disabled, and

5. the final state of π′ satisfies F , and

6. if n > 0, the last transition of π′ is labelled with α1.

We start our construction of π with π′.
If F is the empty set, then π′ will consist of only the state s since, by 4, all

states on π′ are deadlock states. Consequently, π′ cannot contain transitions and
is only the state s, which is a deadlock state. In this case, π = π′ is a witness
of s ∈ SBSFA,F , since this path is δdis-free by virtue of not having any transitions,
and all actions in F = ∅ occur infinitely often because there are no such actions.
Since s is a deadlock state, it is also the case that on all states in π, all actions in
F are perpetually disabled.

Henceforth, we assume F ̸= ∅. In this case, π′ contains at least n transitions
since, by 2, all actions in F occur at least once in π′. Let s′ be the final state of
π′. By 5, s′ ∈ F . Since F is a fixed point of the transformer, we also have s′ ∈
TBSFA,F (F) and hence, by definition of the transformer, s′ ∈ JinfBSFA(F)Kϵ[X:=F].
We can again apply Corollary B.9 to conclude that s′ admits a path π′′ that meets
conditions 1 to 6 but with π′′ in place of π′. Append π′′ to the path π we have
constructed so far.

144

This construction can be repeated infinitely often: every time we add a partial
path to the path π we have constructed so far, the final state is in F and so there
is always a next partial path to append. This way, we construct the infinite path
π.

To prove π has the required properties, we reference 1 to 6, which hold for every
segment of the path we add. That π is δdis-free follows from the fact that every
segment we add to π is δdis-free by 1. Additionally, by 4, every state on every
segment we add to π meets the condition that all actions in F are perpetually
disabled, so the same holds for π. Finally, since π is constructed from infinitely
many segments, and by 2 every action in F occurs at least once in every segment,
every action in F occurs infinitely often in π. We conclude π is δdis-free, all actions
in F occur infinitely often on it and all actions in F are perpetually disabled on
it. Since s admits this path π, we have established s ∈ SBSFA,F .

Since for every state s in every fixed point F of TBSFA,F , s ∈ SBSFA,F , we
conclude SBSFA,F is the greatest fixed point of TBSFA,F .

Since the semantics of satisfyBSFA(F) are exactly the greatest fixed point of
TBSFA,F as defined in Lemma B.10, we can conclude that these semantics corre-
spond to SBSFA,F .

Corollary B.12. . For all environments ϵ, sets F ⊆ Act and states s ∈ S,
s ∈ JsatisfyBSFA(F)Kϵ if, and only if, s admits a δdis-free path π on which all
actions in F occur infinitely often and all actions in F are perpetually disabled.

Note that since F ∪ F = Act and F ∩ F = ∅, a path on which all actions in
F occur infinitely often and all actions in F are perpetually disabled is a path on
which any action that is enabled infinitely often must be part of F and therefore
also occurs infinitely often. Hence, it is an SFA path.

Corollary B.13. For all environments ϵ, sets F ⊆ Act and states s ∈ S, s ∈
JsatisfyBSFA(F)Kϵ if, and only if, s admits an SFA and δdis-free path π on which
all actions in F occur infinitely often and all actions in F are perpetually disabled.

This concludes the main bulk of the proof. We find that proving the semantics
of satisfyBSFA(F) is by far the most complicated part. However, we still need to
prove the semantics of the other parts of the formula to drawn our final conclusion.

Lemma B.14. For all environments ϵ, sets F ⊆ Act and states s ∈ S, s ∈
JfinprefixBSFA(F)Kϵ if, and only if, s admits a finite, possibly partial, δdis-free path
ending in a state s′ such that either s′ ∈ J⟨δen⟩ttKϵ or s′ ∈ JsatisfyBSFA(F)Kϵ.

Proof. This follows directly from Theorem 4.3, using α = δdis and ϕ = ⟨δen⟩tt ∨
satisfyBSFA(F).

145

Lemma B.15. For all environments ϵ and states s ∈ S, we know that s ∈
JdisjunctBSFAKϵ if, and only if, s admits an SFA path that is either entirely δdis-free
or has a δdis-free prefix ending in a state where δen is enabled.

Proof. By definition of disjunctBSFA, a state s is in JdisjunctBSFAKϵ if, and only if,
there exists some F ⊆ Act such that s ∈ JfinprefixBSFA(F)Kϵ. From Lemma B.14,
s ∈ JfinprefixBSFA(F)Kϵ for some arbitrary F if, and only if, s admits a finite,
possibly partial, δdis-free path ending in a state s′ such that either s′ ∈ J⟨δen⟩ttKϵ
or s′ ∈ JsatisfyBSFA(F)Kϵ.

The claim in the lemma is a bi-implication, so we prove both sides separately.

• Assume that for some arbitrary F , an arbitrary state s admits a finite,
possibly partial, δdis-free path π

′ ending in a state s′ such that s′ ∈ J⟨δen⟩ttKϵ
or s′ ∈ JsatisfyBSFA(F)Kϵ. We prove that s admits an SFA path π that is
either entirely δdis-free or has a δdis-free prefix ending in a state where δen is
enabled. We do a case distinction on whether s′ ∈ J⟨δen⟩ttKϵ.

– If this is the case, then π′ is a δdis-free path ending in a state where δen
is enabled. This path is guaranteed to be partial, since s′ cannot be a
deadlock state because δen is enabled. Let π be an arbitrary SFA path
that has π′ as a prefix. We know such a path must exist, because SFA
is a feasible fairness assumption. Hence, s admits an SFA path that has
a δdis-free prefix ending in a state where δen is enabled.

– If s′ ̸∈ J⟨δen⟩ttKϵ, then we must have s′ ∈ JsatisfyBSFA(F)Kϵ. From
Corollary B.13, we conclude that s′ must admit an SFA path π′′ that
is δdis-free and on which all actions in F occur infinitely often and
all actions in F are perpetually disabled. We take π = π′π′′. By
Proposition A.16, since π′′ is SFA, so is π. And since both π′ and π′′

are δdis-free, so is π. Hence, s admits an SFA path that is entirely
δdis-free.

In both cases, s admits an SFA path that is either entirely δdis-free or has
a δdis-free prefix ending in a state where δen is enabled. To reiterate, if
we assume s ∈ JdisjucntBSFAKϵ, then there must be some F such that s ∈
JfinprefixBSFA(F)Kϵ, and then by Lemma B.14 we can eventually prove that
s admits such a path.

• Assume an arbitrary state s admits an SFA path π that is either entirely
δdis-free or has a δdis-free prefix ending in a state where δen is enabled. We
prove that s ∈ JdisjunctBSFAKϵ by proving there exists some F such that
s ∈ JfinprefixBSFA(F)Kϵ.

146

We know π is an SFA path, and hence the set Act can be split into the set F
of actions that occur infinitely often in π and the set F of actions that occur
finitely often in F . Note that an action occurring finitely often in an SFA
path does not mean it is perpetually disabled, only that there is some suffix
of the path on which that action is perpetually disabled. We prove that for
this F , s ∈ JfinprefixBSFA(F)Kϵ. We do a case distinction on whether δen is
enabled at any point along π.

– If δen is enabled on π, then there is a state s′ on π that is the first state
in which δen is enabled. Let π′ be the prefix of π ending in s′. Since π is
either entirely δdis-free or has a δdis-free prefix ending in a state where
δen is enabled, and s′ is the first state on π in which δen is enabled, we
know that all transitions on π before s′ are guaranteed to not be labelled
with actions in δdis . Hence, π

′ is δdis-free. Therefore, π
′ is a witness to

s admitting a finite, possibly partial, δdis-free path ending in a state in
which δen is enabled. By Lemma B.14, s ∈ JfinprefixBSFA(F)Kϵ.

– If δen is never enabled on π, then π must be an entirely δdis-free path. As
argued previously, there must be some suffix of π in which all actions in
F are perpetually disabled. After all, if no such suffix existed then these
actions would be infinitely often enabled and therefore occur infinitely
often, since π is SFA. Let s′ be the first state on π such that the suffix
of π starting in s′, π′′, satisfies the requirement that all actions in F are
perpetually disabled and π′′ is δdis-free. By Proposition A.17, a suffix of
an SFA path is SFA, so π′′ is SFA. Additionally, since all actions in F
occur infinitely often in π, they also occur infinitely often in π′′. Hence,
π′′ witness that s′ admits an δdis-free, SFA path on which all actions in
F are perpetually disabled and all actions in F occur infinitely often.
Using Corollary B.13, we can conclude s′ ∈ JsatisfyBSFA(F)Kϵ.
Let π′ be the prefix of π ending in s′. We can use π′ as a witness for the
fact that s admits a finite, δdis-free path ending in a state that satisfies
satisfyBSFA(F). Hence, by Lemma B.14, s ∈ JfinprefixBSFA(F)Kϵ.

In both cases we have shown s ∈ JfinprefixBSFA(F)Kϵ for this F , hence such
an F exists and s ∈ JdisjunctBSFAKϵ.

We have proven both sides of the bi-implication, and can therefore conclude the
lemma holds.

Lemma B.16. For all environments ϵ and states s ∈ S, s ∈ JviolateBSFAKϵ if, and
only if, s admits an SFA path that starts with δpre , after which it is either entirely
δdis-free or has a finite δdis-free prefix ending in a state where δen is enabled.

147

Proof. This follows directly from Lemma B.15, we have simply stuck ⟨δpre⟩ in front
of disjunctBSFA. Hence, violateBSFA characterises states that admit paths that have
a prefix matching δpre , after we the path is in a state s′ ∈ JdisjunctBSFAKϵ.

We restate Theorem 6.2:

Theorem B.17. A state s ∈ S satisfies formula Formula 6.2 if, and only if, it
does not admit a path π meeting the following requirements:

1. π is complete and satisfies strong fairness of actions, and

2. there is a prefix of π that matches δ1 · δ2, and

3. there is no occurrence of any action in δ4 or δ5 in π after δ1 · δ2 and before
the first occurrence of any action in δ3.

Proof. This follows from Lemma B.16 and the fact that Formula 6.2 is the negation
of violateBSFA. Recall that in our proofs, we have renamed δ1 · δ2 to δpre , δ3 to δen
and δ4 ∪ δ5 to δdis .

B.3 Proof of Theorem 6.3

This proof is almost a copy of the proof for the WFA formula, which is unsurprising
since the formulae are so similar.

We will prove formula Formula 6.3 correct. That means proving that

¬(⟨δ1 · δ2 ⟩νX.(
∧

λ∈Act

(⟨true⋆ · λ⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([true⋆ · λ]ff ∧X)∨
⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨λ ∪ δ4 ∪ δ5 ⟩Y)))))

characterises exactly those states that do not admit complete and FRA paths with
prefixes matching δ1 · δ2 and no occurrences of actions in δ4 ∪ δ5 after δ1 · δ2 but
before the first occurrence of δ3.

Similar to the WFA proof, we rename δ1 · δ2 to δpre , δ3 to δen and δ4 ∪ δ5 to
δdis . We also split the formula into multiple parts:

violateBFRA = ⟨δpre⟩invariantBFRA

invariantBFRA = νX .(
∧

λ∈Act

(⟨true⋆ · λ⟩tt ⇒ satisfyBFRA(λ)))

satisfyBFRA(λ) = µY.(⟨δen⟩tt ∨ ([true⋆ · λ]ff ∧X)∨
⟨λ \ δdis⟩X ∨ ⟨λ ∪ δdis⟩Y)

148

We prove that Formula 6.3 captures exactly those states that do not admit
FRA paths that meet the following conditions: the path begins with δpre , after
which it is either entirely δdis-free or there is a δdis-free sequence which ends in a
state where δen is enabled, after which arbitrary actions may occur.

We do this in steps. First, we prove that satisfyBFRA(λ) characterises all states
that allow the λ action to be treated fairly or for δen to become enabled, without
taking any action in δdis . More formally:

Lemma B.18. For all environments ϵ, states s ∈ S, actions λ ∈ Act and sets
F ⊆ S, we have that a state s ∈ JsatisfyBFRA(λ)Kϵ[X:=F] if, and only if, s admits a
finite, possibly partial, path π meeting the following conditions:

1. π is δdis-free, and

2. at least one of the following conditions is satisfied:

(a) the path ends in a state in which δen is enabled and π is λ-free, or

(b) π ends in a state satisfying F from which λ is unreachable and π is
λ-free, or

(c) the last transition in π is a λ-transition, this is the only λ-transition on
π, and the last state satisfies F .

Proof. For this proof, we apply Theorem 4.3, with ϕ = ⟨δen⟩tt ∨ ([true⋆ · λ]ff ∧
X) ∨ ⟨λ \ δdis⟩X and α = λ ∪ δdis . From the theorem, we conclude

s ∈ JµY .(⟨δen⟩tt ∨ ([true⋆ · λ]ff ∧ X) ∨ ⟨λ \ δdis⟩X ∨ ⟨λ ∪ δdis⟩Y)Kϵ[X:=F]

if, and only if, s admits a finite, possibly partial path π′ meeting the following
conditions:

3. on π′, only actions in λ ∪ δdis occur, and

4. π′ ends in a state s′ in J⟨δen⟩tt∨([true⋆ · λ]ff ∧X)∨⟨λ \ δdis⟩XKϵ[X:=F], which
is equivalent to s′ ∈ J⟨δen⟩ttKϵ[X:=F] ∨ s′ ∈ J[true⋆ · λ]ff ∧ XKϵ[X:=F] ∨ s′ ∈
J⟨λ \ δdis⟩XKϵ[X:=F] .

We now prove that s admits such a path π′ if, and only if, it admits a path π that
satisfies 1 and 2.

First, we assume s admits a path π′ satisfying 3 and 4 and prove it then also
admits a path π satisfying 1 and 2. From 4, we get that s′ is in at least one of
three sets. How we construct π depends on which of the three sets s′ is in.

149

• If s′ is in J⟨δen⟩ttKϵ[X:=F] then π = π′. In this case, since π′ is free from
δdis-actions and λ, due to 3, so is π. Additionally, since δen is enabled in the
final state of π′, it is also enabled in the final state of π. Therefore, π meets
the conditions 1 and 2a.

• If s′ is in J[true⋆ · λ]ff ∧ XKϵ[X:=F], then we can conclude λ is unreachable
from s′ and s′ ∈ F . We take π = π′. Since π′ is free from δdis-actions
and λ, so is π. Additionally, since the final state of π′ satisfies F and λ is
unreachable from the final state of π′, the same holds for π. Hence, π meets
the conditions 1 and 2b.

• If s′ is in J⟨λ \ δdis⟩XKϵ[X:=F] then s
′ admits a transition t to a state s′′ such

that action(t) = λ and action(t) ̸∈ δdis and s
′′ ∈ F . We let π = π′ts′′. Since

π′ is free from δdis-actions, and action(t) ̸∈ δdis , π is δdis-free. Additionally,
the last transition of π is labelled with λ and its last state satisfies F . Finally,
since π′ is λ-free, t is the only λ-transition in π. We conclude that π meets
the conditions 1 and 2c.

In all three cases, we can construct a path π that meets conditions 1 and at least
one of the options from 2. We conclude s admits such a path.

The other way around, we assume s admits a path π satisfying 1 and 2 and
prove it also admits a path π′ satisfying 3 and 4. We know π is δdis-free from 1,
we do a case distinction on which condition from 2 holds:

• If 2a holds on π, then π is also λ-free and δen is enabled in the last state of π,
s′. We take π′ = π. Since π is δdis-free and λ-free, so is π′ and 3 is satisfied.
Since δen is enabled in s′, s′ ∈ J⟨δen⟩ttKϵ[X:=F] and hence π′ satisfies 4.

• If 2b holds on π, then π is also λ-free, and in the last state s′ of π, λ is
unreachable and s′ ∈ F . This means s′ ∈ J[true⋆ · λ]ff ∧XKϵ[X:=F]. We take
π′ = π, and because π satisfies 3 and 4, so does π′.

• If 2c holds on π, then the last transition of π, t is a λ-transition. Because
π is δdis-free, we know λ ̸∈ δdis . Additionally, we know from 2c that the
last state of π, s′, satisfies F . Let s′′ = source(t), then we know s′′ ∈
J⟨δ \ δdis⟩XKϵ[X:=F]. The prefix of π ending in s′′ is then our candidate for
π′. Since t is the only λ-transition on π, π′ is both δdis and λ-free, meaning
it satisfies 3. Additionally, since s′′ is the last state of π′, it also satisfies 4.

We conclude that if s admits a path satisfying 1 and 2, it also admits a path
satisfying 3 and 4.

We conclude that, since s ∈ JsatisfyBFRA(λ)Kϵ[X:=F] ⇔ s admits a finite, pos-
sibly partial, path satisfying 3 and 4 ⇔ s admits a finite, possibly partial, path
satisfying 1 and 2, the lemma holds.

150

We now prove the meaning of invariantBFRA. Let SBFRA be the set of states
that admits complete, FRA paths that are either entirely δdis-free, or contain a
prefix which is δdis-free and ends in a state where δen is enabled. We prove that
invariantBFRA captures exactly the set SBFRA.

To do this, we first prove SBFRA is a fixed point for the transformer belonging
to the semantics of invariantBFRA.

Lemma B.19. The set SBFRA is a fixed point of the transformer TBFRA, where

TBFRA(F) =
⋂

λ∈Act

{s ∈ S | s ∈ J⟨true⋆ · λ⟩ttKϵ[X:=F] ⇒ s ∈ JsatisfyBFRA(λ)Kϵ[X:=F]}

For an arbitrary environment ϵ.

Proof. SBFRA being a fixed point of TBFRA means that TBFRA(SBFRA) = SBFRA.
We prove this through mutual set inclusion.

• Let s be an arbitrary state in S. We assume s ∈ SBFRA and prove s ∈
TBFRA(SBFRA). To prove s ∈ TBFRA(SBFRA) we need to prove that, for all
λ ∈ Act , if λ is reachable from s then s ∈ JsatisfyBFRA(λ)Kϵ[X:=SBFRA]. Let λ
be an arbitrary action in Act . If λ is not reachable from s, the implication
trivially holds. Hence, we assume λ is reachable from s. We need to prove
that s ∈ JsatisfyBFRA(λ)Kϵ[X:=SBFRA]. Using Lemma B.18, we know this is the
case if s admits a finite, possibly partial, path π such that

1. π is δdis-free, and

2. at least one of the following conditions is satisfied:

(a) the path ends in a state in which δen is enabled and π is λ-free, or

(b) π ends in a state satisfying SBFRA from which λ is unreachable and
π is λ-free, or

(c) the last transition in π is a λ-transition, this is the only λ-transition
on π, and the last state satisfies SBFRA.

We therefore only need to prove such a path π indeed exists. From s ∈ SBFRA

we know that s admits a complete, FRA path πFRA that is either entirely
δdis-free or has a prefix πpre that is δdis-free and ends in a state spre such that
δen is enabled in spre . We do a case distinction on whether λ is perpetually
reachable on πFRA or not.

– If λ is perpetually reachable, then since πFRA satisfies fair reachability
of actions it must be the case that λ occurs on πFRA. Let t be the first
transition that is part of πFRA which is labelled with λ. We do a case
distinction on whether any state in πFRA before the execution of t there
is a state sen on which δen is enabled.

151

∗ If such a state sen exists, then πFRA has a prefix π such that sen is
the last state of π and, because sen comes before the first transition
labelled with λ by assumption, π is λ-free. Since πFRA is δdis-free,
so is π. We can therefore say that π satisfies 1 and 2a.

∗ If no such state sen exists, we instead construct a path that satisfies
2c. Recall that t is the first λ-transition on πFRA, let π be the prefix
of πFRA where t is the last transition. Since πFRA is δdis-free, so is
π and 1 is satisfied. We know that t is the last transition of π,
and since it is the first λ-transition on πFRA we also know that π
is λ-free with the exception of t. To establish π satisfies 2c, it only
rests to show that target(t) ∈ SBFRA.
To do this, we need to establish that target(t) admits a complete,
FRA path that is either entirely δdis-free or contains a δdis-free
prefix that ends in a state where δen is enabled. The suffix of πFRA

starting in target(t) is such a path: from Proposition A.9 we know
that a suffix of an FRA path is FRA, and since no state sen exists
before t on πFRA, we are either dealing with a fully δdis-free path,
or we are still in the δdis-free prefix. Either way, the suffix of πFRA

starting in target(t) is a witness to the fact that target(t) ∈ SBFRA

and hence we can conclude that 2c is satisfied by the prefix of πFRA

ending in target(t).

– If λ is not perpetually reachable on πFRA then there are states on πFRA

from which λ is not reachable. Let snot be the first of those states. We
do a case distinction on whether λ occurs on πFRA before snot is reached.

∗ If λ occurs before snot is reached, then we can repeat the argument
for the case where λ is perpetually reachable on πFRA. In this
argument, the only thing we use λ being perpetually reachable for
is to conclude λ must occur. Since in this case λ occurs anyway,
even though it is not perpetually reachable, we can apply the same
argument to conclude we can construct a path π satisfying 1 and
2.

∗ If λ does not occur before snot in πFRA, we know the prefix of πFRA

before snot is λ-free. We need to make one more case distinction on
whether there is a state sen before snot on which δen is enabled.

· If such a state sen exists, then πFRA has a prefix π such that
sen is the last state of π and, because we assumed that there is
no occurrence of λ before snot and therefore also not before sen ,
π is λ-free. Since πFRA is δdis-free, so is π. Hence, π satisfies 1
and 2a.

· If no such state sen exists, we construct a path that satisfies

152

1 and 2b. For this, let π be the prefix of πFRA ending in
snot . Since πFRA is δdis-free, so is π. Hence, π satisfies 1.
Additionally, we have assumed λ is unreachable from snot , and
we have established the prefix of πFRA before snot is λ-free. To
establish π satisfies 2b, we only need to show that snot is in
SBFRA.
This requires us to show that snot admits a complete, FRA path
which is either entirely δdis-free, or contains a δdis-free prefix
ending in a state where δen is enabled. We know snot admits
such a path because it admits the suffix of πFRA starting in snot .
Using Proposition A.9, we know that the suffix of an FRA path
is FRA. Additionally, by assumption δen has not been enabled
yet when we get to snot , so either πFRA is entirely δdis-free, in
which case its suffix is as well, or when we get to snot we are
still in the δdis-free prefix, in which case its suffix still has such a
prefix. Either way, the suffix of πFRA starting in snot is a witness
to the fact that snot ∈ SBFRA and hence we can conclude that
2c is satisfied by the prefix of πFRA ending in snot .

We have shown in every case that s admits a path π that satisfies 1 and
2. Using Lemma B.18, we conclude that s ∈ JsatisfyBFRA(λ)Kϵ[X:=SBFRA].
Hence, we have shown that for every arbitrary action λ, if λ is reachable
from s then s ∈ JsatisfyBFRA(λ)Kϵ[X:=SBFRA], from which we conclude that
s ∈ TBFRA(SBFRA).

• Let s be an arbitrary state in S. We assume s ∈ TBFRA(SBFRA) and prove
s ∈ SBFRA. From our assumption, we know that for every action λ ∈ Act
that is reachable from s, s ∈ JsatisfyBFRA(λ)Kϵ[X:=SBFRA]. We use this to prove
that s ∈ SBFRA. To do this, we need to construct a path π starting in s such
that π is a complete, FRA path that is either entirely δdis-free or has a prefix
that is δdis-free which ends in a state where δen is enabled. First, we do a
case distinction on whether s is a deadlock state.

– If s is a deadlock state, then s admits the complete path π = s. This
path is trivially FRA since it is finite, and it is trivially δdis-free since
it contains no transitions at all. Hence, this π is a witness for s being
in SBFRA.

– If s is not a deadlock state, there must be at least one action enabled in
s, which means there is also at least one action reachable from s. Let λ
be an arbitrary action that is reachable from s. Since λ is reachable from
s, we know that s ∈ JsatisfyBFRA(λ)Kϵ[X:=SBFRA]. Using Lemma B.18,

153

this is sufficient to conclude that s admits a finite, possibly partial,
path π′ such that

1. π′ is δdis-free, and

2. at least one of the following conditions is satisfied:

(a) the path ends in a state in which δen is enabled and π′ is λ-free,
or

(b) π′ ends in a state satisfying SBFRA from which λ is unreachable
and π′ is λ-free, or

(c) the last transition in π′ is a λ-transition, this is the only λ-
transition on π′, and the last state satisfies SBFRA.

We use π′ to construct π. For this, we need to do a case distinction on
which of the options in 2 holds for π′.

∗ If the path π′ satisfies 2a, then π′ is a finite path ending in a state
on which δen is enabled. Either π′ is a complete path, in which case
it is trivially FRA because it is finite, or it is a partial path. If it
is partial, then because FRA is feasible, it can be extended to a
complete FRA path. We therefore know there exists a complete,
FRA path π of which π′ is a prefix. Since π′ is δdis-free, due to 1,
and ends in a state where δen is enabled, we know that π contains
a δdis-free prefix which ends in a state where δen is enabled. So π
is a witness for s being in SBFRA.

∗ If the path π′ satisfies 2b or 2c, then π′ ends in a state satisfying
SBFRA. We do not need any other information from these two cases,
so we address them both simultaneously. Let s′ be the final state
of π′. Since s′ ∈ SBFRA, we know s′ admits a path π′′ that is
complete, FRA and either entirely δdis-free or has a δdis-free prefix
which ends in a state where δen is enabled. We let π = π′π′′. From
Proposition A.8, we know that since π′′ is FRA and π′ is finite, π′π′′

is FRA. Additionally, since π′ is δdis-free, due to 1, we can prepend
π′ to π′′ while preserving that the resulting path is either entirely
δdis-free or contains a δdis-free prefix ending in a state where δen is
enabled. Hence, π = π′π′′ is a witness for s being in SBFRA.

In all three cases, we can construct a π that witnesses s ∈ SBFRA.

We conclude that if s ∈ TBFRA(SBFRA) then s ∈ SBFRA.

Through mutual set inclusion, we have proven TBFRA(SBFRA) = SBFRA, hence
SBFRA is a fixed point of the transformer TBFRA.

To prove that SBFRA = JinvariantBFRAKϵ, we still need to show that SBFRA is
the greatest fixed point of the transformer TBFRA.

154

Lemma B.20. The set SBFRA is the greatest fixed point of TBFRA as defined in
Lemma B.19.

Proof. We show that for any F ⊆ S satisfying TBFRA(F) = F , it is the case that
F ⊆ SBFRA. Let F be an arbitrary subset of S that is a fixed point for TBFRA. Let
s be an arbitrary state in F . We prove that s ∈ SBFRA by constructing a complete
FRA path π starting in s0 = s that is either entirely δdis-free or contains a δdis-free
prefix which ends in a state where δen is enabled.

Observe that since s ∈ F and F = TBFRA(F), we also have s ∈ TBFRA(F).
From this we know that for all actions λ that are reachable from s, it is the case
that s ∈ JsatisfyBFRA(λ)Kϵ[X:=F]. Let L0 be the set of actions that are reachable
from s. If L0 is empty, then s is a deadlock state. In that case, the path consisting
of only the state s serves as a witness for s being in SBFRA: it is a complete FRA
path which is entirely δdis-free. We henceforth assume that L0 is not empty.

Consider an arbitrary but fixed order < on L0, and let λ0 be the least action
in L0 by this order. Since λ0 is an action that is reachable from s, we know that
s ∈ JsatisfyBFRA(λ0)Kϵ[X:=F]. By Lemma B.18, we know that s admits a finite,
possibly partial, path π0 that meets the following requirements:

1. π0 is δdis-free, and

2. at least one of the following conditions is satisfied:

(a) the path ends in a state in which δen is enabled and π0 is λ0-free, or

(b) π0 ends in a state satisfying F from which λ0 is unreachable and π0 is
λ-free, or

(c) the last transition in π0 is a λ0-transition, this is the only λ0-transition
on π0, and the last state satisfies F .

We let π0 be the start of our path π. How we continue constructing π depends on
which condition holds for 2. We do a case distinction on whether 2a holds.

• If 2a holds, then we stop the algorithm for construction here. Instead of
further considering reachable actions, we simply arbitrarily extend π to a
complete FRA path. We know this is possible, because FRA is feasible. In
this case, the π we have constructed is a complete FRA path with a δdis-free
prefix which ends in a state where δen is enabled: this prefix is π0.

• If 2a does not hold, then either 2c or 2b holds. Either way, π0 ends in a
state s1 with s1 ∈ F . We continue construction of π from s1. Let L1 be
the set of actions reachable from s1. Let λ1 be the least action in L0 ∩ L1

2

2We stick as close as possible to the WFA proof here. However, in case of FRA it is unnecessary
to specify that we take the intersection of L0 and L1, because any action reachable from s1 is
also reachable from s0.

155

such that λ0 < λ1. Since F = TBFRA(F), s1 ∈ TBFRA(F). Hence, since λ1 is
reachable from s1, we know that s1 ∈ JsatisfyBFRA(λ1)Kϵ[X:=F]. We continue
the construction from s1.

Assuming we were in the second scenario, and so did not terminate the con-
struction algorithm, we can now repeat the construction we have done with s0 for
s1. We know a path π1 exists that meets the condition that it is δdis-free and either
ends in a state where δen is enabled, or in a state s2 with s2 ∈ F . In both cases, we
append π1 to the path π we are constructing. In the first case, where π now ends
in a state where δen is enabled, we arbitrarily extend π to a complete FRA path
and abort the algorithm. In the latter case, we continue the construction from s2,
now taking the next smallest action λ2 of the actions that are reachable from s0,
s1 and s2.

We repeat the above construction until there is no more action we can choose,
i.e when L0∩L1∩L2∩. . .∩Lk no longer contains any action greater than λk−1. This
will eventually happen, since there are only finitely many actions in our system.
Let sk be the final state of the π we have constructed so far. We now continue
the construction from sk by restarting the whole construction procedure, but now
using sk in place of s0. So we take Lk, the set of actions reachable from sk, and
simply take λk to be the least action in Lk according to <. We call this “refreshing
the set of actions” in the remainder of this proof.

This procedure continues until either it is forced to terminate, because we reach
a deadlock state or a state where δen is enabled, or it continues infinitely. We argue
that in all three cases, the path π we construct is a complete FRA path that is
either entirely δdis-free or contains a δdis-free prefix ending in a state where δen is
enabled.

• If the construction terminates because we reach a state where δen is enabled,
then we have finished constructing π by extending it to an arbitrary complete
FRA path. Since every path segments we added to the construction of π
during the algorithm was δdis-free, and δen is enabled in the last state before
our arbitrary extension, we have a path that has a δdis-free prefix which ends
in a state where δen is enabled.

• If the construction terminates because we reach a deadlock state, then we
have a complete finite path, which is FRA because all complete finite paths
are FRA. Additionally, we have constructed it only from segments we found
via application of Lemma B.18, which were all δdis-free. Hence, we have
constructed a complete FRA path that is entirely δdis-free.

• If the construction never terminates, π is infinite. The construction only adds
segments that are δdis-free, because all segments come from applications of

156

Lemma B.18, so π is δdis-free. Additionally, π is infinite so it is complete.
The only thing we still need to prove is that π is FRA. Consider an arbitrary
suffix π′ of π, and consider an arbitrary action λ that is perpetually reachable
on π′. To prove π is FRA, we need to prove that λ occurs in π′.

We know that the construction algorithm until we refresh the set of actions
is finite, hence it occurs infinitely often while constructing the infinite path
π. Let sr be the first state in π

′ for which we refresh the set of actions when
constructing π. Since λ is perpetually reachable on π′, and sr is part of π′,
λ is reachable from sr. Hence, λ ∈ Lr. From every state in π′, λ is reachable
because λ is perpetually reachable on π′. Hence, every time a restriction is
added to the set of actions we consider through intersecting with the set of
actions reachable in the next state, λ remains in the set. We always take
the next smallest action in the set, and since Act is finite this means we will
eventually choose λ as the action we use for constructing the next segment
of π.

So at some point during the constructing of π after sr, we add a path segment
on which either δen is enabled, or λ becomes unreachable, or λ occurs. In
the first case, the construction would terminate and we assumed that it did
not. In the second case, λ would not be perpetually reachable on π′, and we
assumed it is. Hence, we must be in the last case: the segment we add to π
must be one in which λ occurs. Thus λ occurs in π′.

Since for every suffix of π, every action that is perpetually reachable on that
suffix also occurs in that suffix, π satisfies fair reachability of actions. Thus,
π is a complete FRA path which is entirely δdis-free.

We have shown that for an arbitrary state s in an arbitrary fixed point F
of TBFRA, we can construct a path starting in s that witnesses s ∈ SBFRA. We
conclude that SBFRA is the greatest fixed point of TBFRA.

The greatest fixed point of the transformer TBFRA given in Lemma B.19 is the
semantics of invariantBFRA, hence we can conclude the following.

Corollary B.21. The set of states characterised by invariantBFRA is exactly the
set SBFRA.

The difficult part of the proof is now done, since violateBFRA only adds a prefix,
and then to get Formula 6.3 we simply negate violateBFRA.

Lemma B.22. For all environments ϵ and states s ∈ S, s ∈ JviolateBFRAKϵ if,
and only if, s admits a complete FRA path that starts with δpre , after which it is
either entirely δdis-free or has a finite δdis-free prefix ending in a state where δen is
enabled.

157

Proof. This follows from Corollary B.21 and the definition of violateBFRA. The se-
mantics of ⟨δpre⟩invariantBFRA is exactly those states that admits paths that have
a prefix δpre that ends in a state that satisfies invariantBFRA. By Corollary B.21,
states satisfying invariantBFRA admit complete FRA paths that are either en-
tirely δdis-free or have a finite δdis-free prefix which ends in a state where δen is
enabled. The addition of ⟨δpre⟩ to the formula simply ensures there is a prefix
exactly matching δpre prepended to the path. By Proposition A.8, the resulting
path is still FRA.

We restate Theorem 6.3:

Theorem B.23. A state s ∈ S satisfies Formula 6.3 if, and only if, it does not
admit a path π meeting the following requirements:

1. π is complete and satisfies fair reachability of actions, and

2. there is a prefix of π that matches δ1 · δ2, and

3. there is no occurrence of any action in δ4 or δ5 in π after δ1 · δ2 and before
the first occurrence of an action in δ3.

Proof. This follows directly from Lemma B.22 and the fact that Formula 6.3 is
the negation of violateBFRA. Recall that for this proof, we have renamed δ1 · δ2 to
δpre , δ3 to δen and δ4 ∪ δ5 to δdis .

158

Appendix C

Note on the WFA Global
Response Formula

Recall that in Section 4.3, we presented Formula 4.3, a formula representing global
response under WFA where only the r action is actually treated fairly. We restate
the formula here.

[true⋆ · q]µY.((⟨true⟩tt ∧ [r]Y) ∨ νX .((⟨r⟩tt ∨ Y) ∧ [r]X))

We noted that it may be confusing that we use ⟨r⟩tt ∨ Y instead of just ⟨r⟩tt in
this formula. We explain this detail here.

We had initially designed the formula without the extra Y in this part, thinking
it was not necessary. After all, a state in which r is perpetually enabled as long as
it is not taken would be characterised by νX .(⟨r⟩tt ∧ [r]X), without adding the
possibility of Y being satisfied instead of r being enabled. However, in Section 7.1
we designed a formula that can be adapted to express global response under the
assumption only r is treated weakly fair. When we compared this formula to For-
mula 4.3 without the extra Y using MLSolver, we found they were not equivalent
with the counterexample shown in Figure C.1.

We explain the counterexample in more detail below, but here do attempt an
intuitive explanation. Without the extra Y , the formula says that in finitely many
steps you always reach a state from which either only r is enabled, or from which
r is perpetually enabled. It does not account for the possibility that in finitely
many steps, you reach a state that admits both finite (partial) paths and infinite
paths such that the finite paths end in states where only r is enabled and along
the infinite paths r is perpetually enabled. Basically, even when we reach a state
from which r can be perpetually enabled, we must still allow recursion back into
Y because there may be other paths where r is not (yet) perpetually enabled.

The counterexample clarifies this idea. The crucial element in this counterex-
ample is as follows: after taking t1, t2, t5 and t9, we are in state s6. At this point,

159

t1: q
s1

s2

s3

s4

s5

s6

s8

s7

t3: a

t2: a

t4: r

t5: a

t6: a

t7: r

t8: r

t9: a

t10: a

t11: a

t12: a

t13: a

t14: r

s0

Figure C.1: The counterexample MLSolver found to illustrate why the extra Y
in Formula 4.3 is required. We have bolded the most important transitions for
clarity.

a q has occurred but no r. Since s6 has a self-loop that is not labelled with r, t12,
if we do not assume fairness global response is violated. However, this is an unfair
path when assuming the r-action is treated weakly fair, because t14 is enabled in
s6 and is labelled with r. However, if we use νX .(⟨r⟩tt ∧ [r]X) in Formula 4.3,
it reports that global response is violated still. This happens because, while r is
enabled in s6, it is not the case that every non-r transition from s6 leads to a state
where r is enabled. We could take t13, labelled with a to state s5 in which r is not
enabled. So νX .(⟨r⟩tt ∧ [r]X) is not satisfied in s6. However, this does not lead
to a fair and complete violating path either: once we are in s5, we can only take
t11 to s3 and there t7 is the only enabled transition. Since t7 is an r-transition, r
is guaranteed to occur on this path. Hence, while s6 does not satisfy the condition
that r is enabled and will always remain enabled as long as it does not occur, it
does satisfy the condition that r is enabled and will either remain enabled or will
eventually be required to occur.

This insight led to us including the extra Y in Formula 4.3, which resulted
in it being equivalent to the formula we derive from Section 7.1. We have not
proven the equivalence, but MLSolver does report that they are equivalent up to
an alphabet of size three.

This example alone, we think, demonstrates the difficulty of designing good
modal µ-calculus formulae.

160

Appendix D

Alternate Formulae

Of all the formulae we present in this thesis, Formula 6.1, Formula 6.2 and For-
mula 6.3 are the three most important ones. Almost all the formulae in this thesis
are variations on these three. This is why we include detailed proofs of the seman-
tics of these formulae. While writing these proofs, we noticed some of the details
in the formulae seem to be superfluous, or could be presented more elegantly. We
did not have time to confirm these suspicions by doing full proofs for these alter-
nate formulae as well, which is why they are not presented in the main text of this
thesis. Hence, the observations we make in this appendix are all speculative.

However, we still think it is interesting to include the alternate presentations
here. In part because readers of this thesis might have the same ideas upon
seeing the formulae and proofs, but primarily because we suspect these alternate
formulae are a bit easier to prove correct. Hence, if and when we take the time
to mechanically check these proofs with a proof assistant, these formulae may be
easier to work with.

D.1 Weak Fairness and Fair Reachability

The base WFA formula is Formula 6.1, which we restate here.

¬(⟨δ1 · δ2 ⟩νX.(
∧

λ∈Act

(⟨λ⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([λ]ff ∧X)∨
⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨λ ∪ δ4 ∪ δ5 ⟩Y)))))

While proving the semantics of this formula for Theorem 6.1 it stood out that
the exclusion of λ in ⟨λ ∪ δ4 ∪ δ5 ⟩Y seems to play no role in the semantics of this
formula as a whole. It plays a role in the semantics of the least fixpoint, of course,
but not in the final formula.

161

Removing the exclusion of λ from this part would simplify the semantics of the
least fixpoint a little, and hence make that part of the proof simpler as well. It
would only be a matter of the complexity of the proof, the impact on the complexity
of computing the formula would be minimal. Note that we have already proven
Theorem 6.1, so excluding the λ does not make the formula incorrect.

The same argument can be made for the base fair reachability formula For-
mula 6.3. We think it likely that the exclusion of the λ-action before Y is super-
fluous there as well.

D.2 Strong Fairness

The base formula we present for strong fairness of actions is Formula 6.2, which
we restate here.

¬(⟨δ1 · δ2 ⟩(
∨

F⊆Act

(µY.(⟨δ4 ∪ δ5 ⟩Y ∨ ⟨δ3 ⟩tt ∨ νX.inf (F)))))

Where inf (F) is defined as follows: we fix an arbitrary order on the actions in F
such that α1 is the first action, α2 the second, etc. Let n = |F |.

inf (F) = exec(F, n)

exec(F, 0) = [F]ff ∧X
exec(F, k + 1) = µWk+1.([F]ff ∧

(⟨δ4 ∪ δ5 ⟩Wk+1 ∨ ⟨αk+1 \ (δ4 ∪ δ5)⟩exec(F, k)))

In the νX .inf (F) part of this formula we explicitly run through all the actions
in F , from last to first, requiring them all to occur at least once before we repeat
the whole process. In Formula 7.4, we showed that you could also approach weak
fairness of actions and fair reachability of actions by running through all the actions
one by one and requiring each to satisfy some condition. The formulae for WFA
and FRA are written more elegantly, however, by stating the condition needs to
eventually be satisfied for all enabled/reachable actions whenever X holds. This
way, there do not need to be separate fixpoints for each variable.

This raises the question whether we could not also use this approach for the
SFA formula. We can try to write the SFA formula in the same style as the WFA
and FRA ones. Unlike the WFA and FRA formulae, the SFA formula requires
that all actions in F occur infinitely often regardless of whether they are enabled
or reachable, so the left-hand side of the implication that is used in the WFA and
FRA formulae can be removed. However, WFA and FRA formulae both use that
when there are no enabled/reachable actions, we have reached a deadlock. The

162

SFA formula would need to explicitly incorporate that when a deadlock is reached
no further actions have to occur. We do not move the placement of ⟨δ3 ⟩tt , even
though we could bring that part more in line with the WFA and FRA formulae,
since that would likely just make the proof more complicated rather than less.

The result of these modifications is Formula D.1

¬(⟨δ1 · δ2 ⟩(
∨

F⊆Act

(µY.(⟨δ4 ∪ δ5 ⟩Y ∨ ⟨δ3 ⟩tt∨

νX.(
∧
λ∈F

(⟨true⟩tt ⇒ (

µW.([F]ff ∧ (⟨λ \ (δ4 ∪ δ5)⟩X ∨ ⟨δ4 ∪ δ5 ⟩W)))))))))

(D.1)

This formula looks better, and it does not have the massive amount of fixpoint
operators that Formula 6.2 has. However, since those fixpoints do not contribute
to the alternation depth anyway, and the main issue with the SFA formula is the
quantification over subsets of Act , Formula D.1 is likely barely more efficient than
Formula 6.2.

The main difficulty in proving Theorem 6.2 was in proving the exact semantics
of the exec-function and the νX .inf (F)-part. So simplifying how these parts of
the formula are written would likely simplify the proof as well.

Of course, this is quite the change from Formula 6.2, so until this formula
has been proven correct as well, we cannot recommend using it. If we can prove
Formula D.1 correct, then it would also be interesting to change the combined
formula, Formula 7.4, to use this approach for all types of fairness rather than
iterating through all actions.

163

Appendix E

Comparisons with Remenska

This appendix serves as something of an extension to Chapter 6. In this chapter,
we presented non-violate style formulae for PSP patterns under weak fairness of
actions, strong fairness of actions and fair reachability of actions. We did not give
any precondition-style formulae. As stated in that chapter, we generally prefer
the non-violate approach since the shape of a fair path is much clearer in those.
Not to mention, we actually have formulae in the non-violate style for all three
assumptions.

However, in this appendix we would like to compare our fair reachability of
actions formulae to the fairness formulae presented in [41], which are in the pre-
condition style. We therefore do translate the precondition-style formula for global
response under fair reachability of actions to a base formula. We take the same
approach we took for translating the non-violate formulae to base formulae: re-
placing true⋆ · q with δ1 · δ2 and replacing explicit references to r with δ4 ∪ δ5. We
also add that if δ3 becomes enabled after δ1 · δ2 while no actions in δ4 ∪ δ5 have
occurred, there is a violation. The result is Formula E.1.

[δ1 · δ2 · δ4 ∪ δ5
⋆
]([δ3]ff ∧ ⟨true⋆ · (δ4 ∪ δ5)⟩tt) (E.1)

This formula can also be filled in according to Table 6.2. Due to time constraints,
we do not have a correctness proof for this base formula. Once again, our recom-
mendation is to use the non-violate formulae in practical model checking applica-
tions, not Formula E.1; this formula is exclusively used for comparison.

In the remainder of this appendix, we discuss some comparisons between For-
mula E.1 and Remenska’s formulae under fairness. Regarding this comparison,
it is important to note that Remenska does not explicitly use this exact fairness
assumption for her formulae. She describes the underlying fairness assumption as
“the assumption that in reality each process of the system is given a fair chance to
execute”, and she identifies problematic executions in a model as “runs in which
a single process gets all execution time, while other processes starve” [41]. The

164

description of the underlying fairness assumption is not as precise as those we
present here, and as such we cannot assume that the FRA assumption is exactly
what she intended. In fact, based on her wording it seems more likely some form
of fairness of components is intended, although we do not see the components
themselves referenced in the formulae she presents. However, the global response
formula under fairness she presents corresponds to the global response formula
under FRA we give, both of which match the fair reachability formula from [35].
As such, we think it is interesting to discuss where and how our FRA formulae
differ from the formulae for fairness she presents

On an additional note, we repeat and expand on a footnote in Chapter 5:
Remenska’s formulae for the property specification patterns are part of PASS, a
tool to help engineers generate the correct µ-calculus formula for the property
they wish to express. The underlying µ-calculus formulae are not easy to directly
extract from the tool, however. On the Github page of PASS1, a link is included
to a page which should contain all the formulae. Sadly, this link no longer leads
to a publicly viewable page and the page was not archived. On a different, more
recent, part of her Github, we did find an HTML file containing an overview of all
patterns2. We operate on the assumption that this file is what is meant to be on
the public page, and have used it as our source for her formulae where they were
not further specified in [41]. However, we must allow for the possibility that these
are not the final formulae she designed.

We present the comparisons between our formulae and Remenska’s out of inter-
est, and because the comparisons highlight some details of our formulae. However,
when we discuss differences between the formulae presented in this thesis and Re-
menska’s formulae, we do not wish to suggest her formulae are incorrect. She
may be using a different fairness assumption, and we may be comparing against
outdated versions of her formulae.

We now give the comparisons. This appendix very deliberately follows the
same structure as Section 6.4.

E.1 Response Before-variant

This is one of the patterns where our precondition FRA formula differs from Re-
menska’s formula for fairness. Firstly, filling in the FRA precondition base, For-
mula E.1, with the response before-variant values results in Formula E.2.

[b
⋆ · q · r ⋆]([b]ff ∧ ⟨true⋆ · r⟩tt) (E.2)

1Archived at https://web.archive.org/web/20230725152438/https://github.com/

remenska/PASS.
2Archived at http://web.archive.org/web/20230901054952/https://raw.

githubusercontent.com/remenska/remenska.github.io/master/patterns/index.html.

165

https://web.archive.org/web/20230725152438/https://github.com/remenska/PASS
https://web.archive.org/web/20230725152438/https://github.com/remenska/PASS
http://web.archive.org/web/20230901054952/https://raw.githubusercontent.com/remenska/remenska.github.io/master/patterns/index.html
http://web.archive.org/web/20230901054952/https://raw.githubusercontent.com/remenska/remenska.github.io/master/patterns/index.html

This states that as long as no b has occurred, if a q occurs then subsequently until
an r occurs it must be the case that b is not enabled and r is reachable.

Note that the following formula is equivalent to Formula E.2, because we impose
that the b may not be enabled as long as the r has not been done yet.

[b
⋆ · q · (r ∪ b)⋆]([b]ff ∧ ⟨b⋆ · r⟩tt) (E.3)

This alternate version is easier to compare to Remenska’s formula.

Remenska’s formula for response before-variant under fairness is Formula E.4.

[b
⋆ · q · (r ∪ b)

⋆
]⟨b⋆ · r⟩tt (E.4)

This is very similar to Formula E.3, but misses the [b]ff condition and as a con-
sequence does not represent response before-variant under the fair reachability of
actions assumption.

We show this with the following example.

Example E.1. See Figure E.1. After the q-step, we are in state s1. In s1, [b]ff
does not hold because transition t3 is enabled, so we can immediately see that
Formula E.2 and Formula E.3 are not satisfied by this LTS. However, ⟨b⋆ · r⟩tt
does hold in s1 because the action r is enabled (transition t2). Additionally, since
both the r and b actions are forbidden in Formula E.4, we only care whether
⟨b⋆ · r⟩tt holds in s1. So Formula E.4 is satisfied in this LTS.

Considering that the s0t1s1t3 path is finite and therefore fair, it seems quite
clear that response before-variant does not hold in this LTS, at least not under
fair reachability of actions, or any feasible fairness assumption for that matter.

s0 s1

s2

s3

t1: q
t2: r

t3: b

Figure E.1: An LTS in which Formula E.4 is satisfied, but Formula E.2 and For-
mula E.3 are not.

166

E.2 Response After

Similar to Section 6.4, we discuss the variants of the after scope separately.

Any

Note that the after-any scope is not considered by Remenska, so there is no com-
parison to be made here.

First

The precondition formula for fair reachability of actions would be Formula E.5.

[a⋆ · a · true⋆ · q · r ⋆]⟨true⋆ · r⟩tt (E.5)

This is also the formula Remenska proposes.

Last

For response after-last, our formula differs from what is presented by Remenska.
If the values from Table 6.2 are filled into Formula E.1, we get Formula E.6.

[true⋆ · a · a⋆ · q · r ∪ a⋆]⟨true⋆ · (r ∪ a)⟩tt (E.6)

Informally: after every a that is followed by a q without an a in-between, as long
as neither an r nor an a has occurred, it must be possible to reach either r or
a. The idea is that if you can reach an r then by FRA the r will occur and the
behaviour is satisfied. If you can reach an a then by FRA the a will occur and this
part of the path falls outside of the after-last scope. In either case, the property
holds. We could have written ⟨a⋆ · r⟩tt ∨ ⟨true⋆ · a⟩tt to highlight that the r must
be reachable without doing an a, but this does not affect the semantics of the
formula. After all, if an a must be taken to reach the r, then an a is reachable and
thus ⟨true⋆ · a⟩tt is true.

The difference with Remenska’s formula mainly comes from how the require-
ment for it being the last a is represented, rather than the influence of the fairness
assumption. We therefore discuss response after-last without fairness in this com-
parison. Remenska provides the following formula for response after-last without
fairness assumptions:

[true⋆ · a · a⋆](([true⋆ · a]ff) ⇒ [true⋆ · q]µY .(⟨true⟩tt ∧ [r]Y)) (E.7)

This formula expresses that after an a and subsequently only non-a actions, if you
are in a state from which a can never be enabled again, then any subsequent q

167

must be followed by an r. At first glance, this indeed captures that the response
condition is satisfied after the last a on a path. However, as we demonstrate in
Example E.2, a small edge case is missed here.

Example E.2. Consider Figure E.2. After taking an a-transition, we are in state
s1. The [a⋆] requires us to consider the subsequent part of the formula for s1 and
s3, but not s2, since these are the states than can be reached from s1 with zero or
more non-a-actions. In s1, [true

⋆ · a]ff is false, since a is enabled, so the implication
is trivially true. In s3, the left-hand side of the implication is true but since no q
will ever occur again the right-hand side is trivially true so the whole implication
still holds. Thus, the formula holds in this LTS. However, s0t1s1t3s3 is a complete
path which involves an a-action, followed by a q and then never followed by either
an a or an r. So after the last a, the response condition is violated. With our
understanding of the after-last scope, this is not desirable behaviour. Hence why
we propose a different way to represent the after-last scope.

Our approach for representing the after-last scope can also be used for response
after-last without fairness, as follows:

[true⋆ · a · a⋆ · q]µY .(⟨true⟩tt ∧ [r ∪ a]Y) (E.8)

Formula E.8 expresses that after an a, if we can reach a q without doing another
a, then after this q we must always, in finitely many transitions that are neither
labelled with a nor r, be able to reach a state where only a and/or r are enabled,
without encountering any deadlocks. If we reach a state with only a and/or r
enabled, then either an r is done and so the response condition is satisfied; or an a
is done in which case the previous a was not the last a and so the condition need not
be satisfied. We designed Formula E.8 to compare our approach to Remenska’s;
it was MLSolver that found Example E.2 as a counterexample for the equivalence
of these two formulae. Indeed, Formula E.8 correctly reports that the LTS in
Example E.2 violates response after-last without fairness assumption.

s0 s1

s2

s3

t1: a
t2: a

t3: q

Figure E.2: An LTS demonstrating that Formula E.7 does not capture response
after-last.

168

E.3 Response Until & Existence

Since the until scopes depend on the before-variant and after scopes, the differences
between our formulae and those by Remenska are inherited as well. We do not
repeat the discussion of those differences here. There is also nothing further to
discuss on existence that has not already been covered for response.

169

Appendix F

Task Formulae

In Section 7.2, we described how to turn the base fairness of actions formulae
from Chapter 6 into formulae for fairness of tasks and demonstrated this with the
weak fairness of tasks formula. We here show the strong fairness of tasks and fair
reachability of tasks formulae as well.

For both formulae, C is the set of actions that is in some task from F .

Strong fairness of tasks

¬(⟨δ1 · δ2 ⟩(
∨
T⊆T

(µY.(⟨δ4 ∪ δ5 ⟩Y ∨ [true]ff ∨ ⟨δ3 ⟩tt ∨ νX.infT (T))))) (F.1)

With

infT (T) = execT (T, n)

execT (T, 0) = [D]ff ∧ ⟨δ4 ∪ δ5 ⟩X
execT (T, k + 1) = µWk+1.([D]ff ∧

(⟨δ4 ∪ δ5 ⟩Wk+1 ∨ ⟨τk+1 \ (δ4 ∪ δ5)⟩execT (T, k)))
Where τ1 is the first task in T , τ2 the second, etc. until τn, for some arbitrary
order on the tasks in T . Additionally, D = {α ∈ Act | ∃t∈T \T .α ∈ t}: the set of
actions that must be disabled is any action that is in a task that must be disabled.

As you can see, C is not referenced in this formula at all, this is because the
strong fairness formula incorporates the progress assumption differently from the
other two formulae: it just says explicitly that you either reach a deadlock in
finitely many steps, or the tasks must occur infinitely often (hence it is an infinite
path). The only place where C is used in Formula 7.2 is to determine which actions
should be treated fairly but are not in the set of actions that occurs infinitely often.
With the task formula, an action that is not in any task (and hence not in C) will
not be forced to be disabled because there is no task t ∈ T \ T that it appears in,
hence it is not in D.

170

Fair reachability of tasks

¬(⟨δ1 · δ2 ⟩νX.(∧
t∈T

(⟨true⋆ · t⟩tt ⇒ (

µY.(⟨δ3 ⟩tt ∨ ([true⋆ · t]ff ∧X)∨
⟨t \ (δ4 ∪ δ5)⟩X ∨ ⟨t ∪ δ4 ∪ δ5 ⟩Y)))

∧ ([true⋆ · C]ff ⇒ ([true]ff ∨ ⟨δ3 ⟩tt ∨ ⟨δ4 ∪ δ5 ⟩X))))

(F.2)

There is little to say about this formula that has not been said about the WFA
formula, since they are so similar.

171

Appendix G

Task Formulae in mCRL2

In Section 8.2 we showed how the base WFA, SFA and FRA formulae can be
written in mCRL2 syntax. We briefly discussed how these could be modified to
instead work with any arbitrarily chosen set of tasks. We here present the full
mCRL2 versions of the task-based formulae. Recall from Section 8.1 that we have
a mapping task from natural numbers to sets of labels, T is the number of tasks
we use and C is the set of all labels that appear in some task.

Weak fairness We here show the mCRL2 formula for weak fairness of tasks.

!(<δ′1.δ
′
2>nu X.(

(forall t:Nat. (val(t < T) =>

((exists a:Label. (val(a in task(t)) && <l(a)>true)) =>

(mu Y.(

<δ′3>true
|| ((forall a: Label. (val(a in task(t)) =>

[l(a)] false)) && X)

|| (exists a: Label. (val(a in task(t)) &&

<l(a) && !(δ′4 || δ′5)>X))
|| (exists a: Label. (val(!(a in task(t))) &&

<l(a) && !(δ′4 || δ′5)>Y))
)))))

&& ((forall a: Label. (val(a in C) => [l(a)]false)) => (

[true]false || <δ′3>true || <!(δ′4 || δ′5)>X
))))

Strong fairness We here show the mCRL2 formula for strong fairness of tasks.

forall F: List(Bool). (val(#F == T) => (

!(<δ′1.δ
′
2>mu Y.(

<!(δ′4 || δ′5)>Y

172

|| <δ′3>true
|| [true]false

|| nu X.(

mu W(num: Nat = 0).(

(val(num == T) => (

(forall t:Nat.(val(t < T && !(F.t)) =>

(forall a:Label .(val(a in task(t)) =>

[l(a)] false)))) && <!(δ′4||δ
′
5)>X))

&& (val(num < T && F.num) => (

(forall t:Nat.(val(t < T && !(F.t)) =>

(forall a: Label. (val(a in task(t)) =>

[l(a)] false))))

&& (<!(δ′4||δ
′
5)>W(num)

|| (exists a: Label. (val(a in task(num))

&& <l(a) && !(δ′4||δ
′
5)>W(num +1))))))

&& (val(num < T && !(F.num)) => (

W(num + 1)))

))))))

Fair reachability We here show the mCRL2 formula for fair reachability of
tasks.

!(<δ′1.δ
′
2>nu X.(

(forall t: Nat. (val(t < T) =>

((exists a: Nat. (val(a < N && order(a) in task(t))

&& <true*.l(order(a))>true)) => (

mu Y.(

<δ′3>true
|| ((forall a: Nat.

(val(a < N && order(a) in task(t)) =>

[true*.l(order(a))] false)) && X)

|| (exists a: Nat.

(val(a < N && order(a) in task(t)) &&

<l(order(a)) && !(δ′4 || δ′5)>X))
|| (exists a: Nat.

(val(a < N && !(order(a) in task(t))) &&

<l(order(a)) && !(δ′4 || δ′5)>Y))
)))))

&& ((forall a: Nat. (val(a < N && order(a) in C) =>

[true*.l(order(a))] false)) => (

[true]false || <δ′3>true || <!(δ′4 || δ′5)>X
))))

173

Appendix H

Dekker’s Algorithm Model

H.1 mCRL2 Model

We here include the mCRL2 model used in Section 8.3. It is based on the model
used in [23], which is included with the mCRL2 distribution.

sort

% Labels , this data type means the Label set is infinite

Label = struct Crit(id: Nat) | Noncrit(id: Nat) |

GetFlag(id: Nat , owner: Nat , value: Bool) |

SetFlag(id: Nat , owner: Nat , value: Bool) |

GetTurn(id: Nat , value: Nat) |

SetTurn(id: Nat , value: Nat);

% Components , also infinite

Component = struct Comp(id: Nat);

% We added a parameter to every action representing

% which process is responsible for it

act crit , noncrit: Nat;

get_flag_r , get_flag_s , get_flag ,

set_flag_r , set_flag_s , set_flag: Nat # Nat # Bool;

get_turn_r , get_turn_s , get_turn ,

set_turn_r ,set_turn_s ,set_turn: Nat # Nat;

% We added the action l to the existing model

l: Label;

map

order: Nat -> Label;

N: Nat;

task: Nat -> Set(Label);

T: Nat;

C: Set(Label);

eqn

order (0) = Crit (0);

order (1) = Crit (1);

order (2) = Noncrit (0);

order (3) = Noncrit (1);

order (4) = SetFlag(0, 0, true);

order (5) = SetFlag(1, 1, true);

order (6) = GetFlag(0, 1, false);

order (7) = GetFlag(1, 0, false);

174

order (8) = SetTurn(0, 1);

order (9) = SetTurn(1, 0);

order (10) = GetFlag(1, 0, true);

order (11) = GetFlag(0, 1, true);

order (12) = GetTurn(1, 0);

order (13) = GetTurn(0, 0);

order (14) = SetFlag(0, 0, false);

order (15) = SetFlag(1, 1, false);

order (16) = GetTurn(1, 1);

order (17) = GetTurn(0, 1);

N = 18;

task (0) = {Crit(0), Noncrit (0), SetFlag(0, 0, true), GetFlag(0, 1, false),

SetTurn(0, 1), GetFlag(0, 1, true), GetTurn(0, 0),

SetFlag(0, 0, false), GetTurn(0, 1)};

task (1) = {Crit(1), Noncrit (1), SetFlag(1, 1, true), GetFlag(1, 0, false),

SetTurn(1, 0), GetFlag(1, 0, true), GetTurn(1, 1),

SetFlag(1, 1, false), GetTurn(1, 0)};

T = 2;

% In this example , C is the whole set of actions that appears in the LTS

% so we can also leave that part of the formulae out ,

% since [F]ff always implies [true]ff.

% For illustration purposes , we keep it.

%C = {l: Label | exists n: Nat. (n < N && l in task(n))};

% We find that making sets explicit , rather than implicitly defining them

% as done above , makes verification a bit faster ,

C = {Crit(0), Noncrit (0), SetFlag(0, 0, true), GetFlag(0, 1, false),

SetTurn(0, 1), GetFlag(0, 1, true), GetTurn(0, 0),

SetFlag(0, 0, false), GetTurn(0, 1), Crit(1), Noncrit (1),

SetFlag(1, 1, true), GetFlag(1, 0, false),

SetTurn(1, 0), GetFlag(1, 0, true), GetTurn(1, 1),

SetFlag(1, 1, false), GetTurn(1, 0)};

map other: Nat -> Nat;

eqn other (0) = 1;

other (1) = 0;

proc

% Shared variables flag (array).

Flag(i: Nat , b: Bool)=

sum j: Nat. (j <= 1) -> (

sum b’: Bool. set_flag_r(j, i, b’)|l(SetFlag(j, i, b’)). Flag(i, b’)

+ get_flag_s(j, i, b)|l(GetFlag(j, i, b)). Flag(i, b));

% Shared variable turn.

Turn(n:Nat)=

sum j: Nat. (j <= 1) -> (

sum n’: Nat. set_turn_r(j, n’)|l(SetTurn(j, n’)). Turn(n’)

+ get_turn_s(j, n)|l(GetTurn(j, n)). Turn(n));

% Main process for Dekker ’s algorithm.

Dekker(i: Nat) =

noncrit(i)|l(Noncrit(i)). set_flag_s(i, i, true) .

Dekker_outer_loop(i);

Dekker_outer_loop(i: Nat) =

% Read shared variable flag

sum flag_other: Bool . get_flag_r(i, other(i), flag_other) .

flag_other -> (sum turn: Nat .

get_turn_r(i, turn) . % Read shared variable turn

(turn != i) -> (set_flag_s(i, i, false) . % flag[i] := false

175

get_turn_r(i, i) . % while turn != i

% { /* busy wait */}

set_flag_s(i, i, true) . % flag[i] := true

Dekker_outer_loop(i) % loop

)

<> Dekker_outer_loop(i)) % if turn == i, loop

<> (set_turn_s(i, other(i)) . % turn := other(i)

crit(i)|l(Crit(i)) .

set_flag_s(i, i, false) . % flag[i] := false

Dekker(i));

init

hide ({ crit , noncrit ,

get_flag , set_flag , get_turn , set_turn},

allow ({ crit|l, noncrit|l,

get_flag|l, set_flag|l, get_turn|l, set_turn|l},

comm ({ get_flag_r | get_flag_s -> get_flag ,

set_flag_r | set_flag_s -> set_flag ,

get_turn_r | get_turn_s -> get_turn ,

set_turn_r | set_turn_s -> set_turn },

Dekker (0) || Dekker (1) ||

Flag(0,false) || Flag(1, false) || Turn (0))));

H.2 µ-Calculus Formulae

We here present the full µ-calculus formulae we used in our verification of Dekker’s
algorithm.

Starvation Freedom without Fairness

forall i: Nat. (val(i < 2) => (

!(<true*.l(Noncrit(i))>nu X. (

[true]false || <!(l(Crit(i)))>X))

))

Starvation Freedom under WFA

forall i: Nat. (val(i < 2) => (

!(<true*.l(Noncrit(i))>nu X.(

forall a:Label. (<l(a)>true => (

mu Y.(

([l(a)]false && X)

|| <l(a) && !(l(Crit(i)))>X

|| <!(l(a) || l(Crit(i)))>Y

)))))))

176

Starvation Freedom under SFA

Note that we could not verify this formula directly.

forall i: Nat. (val(i < 2) => (

forall F: List(Bool). (val(#F == N && !(F.i)) => (

!(<true*.l(Noncrit(i))>mu Y.(<!l(Crit(i))>Y || nu X.(

mu W(num: Nat = 0).(

(val(num == N) => (

(forall j:Nat.(val(j < N && !(F.j)) =>

[l(order(j))] false)) && X))

&& (val(num < N && F.num) => (

(forall j:Nat.(val(j < N && !(F.j)) =>

[l(order(j))] false))

&& (<!l(Crit(i))>W(num)

|| <l(order(num))

&& !l(Crit(i))>W(num +1))))

&& (val(num < N && !(F.num)) => (

W(num +1)))

))))))))

Starvation Freedom under FRA

forall i: Nat. (val(i < 2) => (

!(<true*.l(Noncrit(i))>nu X.(

forall j: Nat. (val(j < N) &&

<true*.l(order(j))>true => (

mu Y.(

([true*.l(order(j))] false && X)

|| <l(order(j)) && !(l(Crit(i)))>X

|| <!(l(order(j)) || l(Crit(i)))>Y

)))))))

Starvation Freedom under WFC

forall i: Nat. (val(i < 2) => (

!(<true*.l(Noncrit(i))>nu X.(

(forall t: Nat. (val(t < T) =>

((exists a: Label. (val(a in task(t))

&& <l(a)>true)) => (

mu Y.(

((forall a: Label.

(val(a in task(t)) =>

177

[l(a)]false)) && X)

|| (exists a: Label.

(val(a in task(t)) &&

<l(a) && !(l(Crit(i)))>X))

|| (exists a: Label.

(val(!(a in task(t))) &&

<l(a) && !(l(Crit(i)))>Y))

))))) &&

((forall a: Label.

(val(a in C) => [l(a)]false)) => (

[true]false || <!(l(Crit(i)))>X

))

))))

Starvation Freedom under SFC

forall i: Nat. (val(i < 2) => (

forall F: List(Bool). (val(#F == T) => (

!(<true*.l(Noncrit(i))>mu Y.(

<!l(Crit(i))>Y || [true]false || nu X.(

mu W(num: Nat = 0).(

(val(num == T) => (

(forall t: Nat.

(val(t < T && !(F.t)) =>

(forall a: Label.

(val(a in task(t)) =>

[l(a)]false)))) && <!l(Crit(i))>X))

&& (val(num < T && F.num) => (

(forall t: Nat.

(val(t < T && !(F.t)) =>

(forall a: Label.

(val(a in task(t)) =>

[l(a)]false))))

&& (<!l(Crit(i))>W(num)

|| (exists a: Label.

(val(a in task(num)) &&

<l(a) &&

!l(Crit(i))>W(num +1))))))

&& (val(num < T && !(F.num)) => (

W(num +1)))

))))))))

178

Starvation Freedom under FRC

forall i: Nat. (val(i < 2) => (

!(<true*.l(Noncrit(i))>nu X.(

(forall t: Nat. (val(t < T) =>

((exists a: Nat.

(val(a < N && order(a) in task(t))

&& <true*.l(order(a))>true)) => (

mu Y.(

((forall a: Nat.

(val(a < N && order(a) in task(t)) =>

[true*.l(order(a))] false)) && X)

|| (exists a: Nat.

(val(a < N && order(a) in task(t)) &&

<l(order(a)) && !(l(Crit(i)))>X))

|| (exists a: Nat.

(val(a < N && !(order(a) in task(t))) &&

<l(order(a)) && !(l(Crit(i)))>Y))

))))) &&

((forall a: Nat.

(val(a < N && order(a) in C) =>

[true*.l(order(a))] false)) => (

[true]false || <!(l(Crit(i)))>X

))

))))

H.3 Script for SFA Formula

A batch script is provided which we used to run the experiment with the SFA
formula. It also has a feature for picking up where the computation left off if
interrupted, as long as you know which process and which permutation were last
considered. The lts and lps files for the model should already exist.

On a personal note, I have very little experience writing batch files, so the code
is functional (on my computer) but likely not particularly well-written.

::== Settings ==::

@echo off

::== Setup variables ==::

:: folder all files are in

set "folder=C: \...\ case_study_Dekker \"

:: file to store the temporary formulae in

set "formulafile=strong_fairness_part.mcf"

179

:: path to lts file from folder

set "ltsfile=Dekker\Dekker_spec.lts"

:: path to lps file from folder

set "lpsfile=Dekker\Dekker_spec.lps"

:: file to store the temporary pbes in

set "pbesfile=Dekker_sfpart.pbes"

:: number of actions = N

set /a "numactions =18"

:: number of permutations that should be done , 2^numactions

set /a "permutations =262144"

:: number of processes

set /a "numprocesses =2"

:: set process number to start at

set /a "startprocess =0"

:: set permutation number to start at

set /a "startperm =0"

:: set whether to skip actions at x + process id

set "skipone=true"

:: set x in the above calculation

set /a "skipx =0"

:: choose whether to record results in a file

set "record=false"

:: set filename that results will be recorded in

set "resfile=starvation_freedom_sfa_results.txt"

::== Actual code ==::

set /a "sub =1"

set /a "perm = %permutations% - %sub%"

set /a "acts = %numactions% - %sub% - %sub%"

set /a "procs = %numprocesses% - %sub%"

SETLOCAL ENABLEDELAYEDEXPANSION

:: iterate through processes , start at startprocess in case

the computation was interrupted.

for /l %%p in (%startprocess% ,1,%procs%) do (

:: iterate through permutations required , start at

startperm in case computation was interrupted

for /l %%n in (!startperm! ,1,%perm%) do (

:: initialise list for F

set "list =["

:: we need a bitmask comp to check whether each

action is true in the list corresponding to this

permutation

180

set /a "comp =1"

:: the variable skip tracks whether we should skip

this list

set "skip=false"

:: iterate over the actions

for /l %%i in (0,1,%acts%) do (

:: test if , in the bit representation of n, the

index of this action is 1

set /a "res=%%n & !comp!"

IF !res! GEQ 1 (

:: if yes , add true to the list

set "list=!list! true ,"

:: if we decide to skip , and we are looking

at the action that needs to be skipped

when true , then set skip to true

IF !skipone! EQU true (

set /a "calc = %skipx% + %%p"

IF %%i EQU !calc! (

set "skip=true"

)

)

) ELSE (

:: add false to the list if this action is

not in this set

set "list=!list! false ,"

)

:: bitshift comp to test for the next action

set /a "comp=!comp! << 1"

)

:: final action is handled separately to properly

format list

set /a "res=%%n & !comp!"

IF !res! GEQ 1 (

set "list=!list! true]"

IF !skipone! EQU true (

set /a "calc = %skipx% + %%p"

IF %%i EQU !calc! (

set "skip=true"

)

)

) ELSE (

set "list=!list! false]"

)

181

:: report information

echo At p = %%p and n = %%n

echo ^* Gives list: !list!

IF !skip! EQU true (

echo ^* Skipped

:: if chosen to record information , add record

to file

IF !record! EQU true (

echo At p = %%p and n = %%n >> "

%folder%%resfile%"

echo ^* List: !list! >> "%folder%%resfile%"

echo ^* skipped >> "%folder%%resfile%"

)

) ELSE (

:: set formula for this process and this F

set "formula=^!(<true*.l(Noncrit(%%p))>mu Y.(<

^!l(Crit(%%p))>Y || nu X.(mu W(num: Nat =

0).((val(num == N) => ((forall j:Nat.(val(j <

N && ^!(!list!.j)) => [l(order(j))]false))

&& X)) && (val(num < N && !list!.num) => ((

forall j:Nat .(val(j < N && ^!(!list!.j)) =>

[l(order(j))]false)) && (<^!l(Crit(%%p))>W(

num) || <l(order(num)) && ^!l(Crit(%%p))>W(

num +1)))) && (val(num < N && ^!(!list!.num))

=> (W(num+1)))))))"

:: store formula temporarily

echo !formula! >" %folder%%formulafile%"

:: use powershell to call lts2pbes. I only know

how to do this with powershell not batch

directly , apologies

powershell -C "lts2pbes -q -f \"

%folder%%formulafile% \" \" %folder%%ltsfile% \"

-l \" %folder%%lpsfile% \" \"

%folder%%pbesfile% \""

:: call pbessolve and save result

FOR /F "tokens =* USEBACKQ" %%F IN (‘powershell -

C "pbessolve -s2 \" %folder%%pbesfile% \""‘) DO

(

182

set var=%%F

)

:: report output

echo ^* !var!

:: if chosen to record information , add record

to file

IF !record! EQU true (

echo At p = %%p and n = %%n >> "

%folder%%resfile%"

echo ^* List: !list! >> "%folder%%resfile%"

echo ^* Result: !var! >> "%folder%%resfile%"

)

:: check if output was false

IF !var! NEQ true (

:: if so , we have a violating path , which we

can report exists

:: the violating path itself is not reported

, this requires a more expensive

calculation to find a counterexample

echo Violating path found with p = %%p , n =

%%n and list = !list! , property is false

:: quit , we know the property is false

goto :done

)

)

)

:: reset startperm , the next process should start at 0

again

set /a "startperm = 0"

)

ENDLOCAL

:: if no violations are found , the property is true

echo No violating paths found , property is true

:done

:: keep on screen

PAUSE

183

	Introduction
	Motivation
	Related Work
	Research Questions
	Content

	Preliminaries
	Labelled Transition Systems
	Assuming Progress

	Modal -Calculus
	Syntax
	Semantics
	Positive Normal Form
	Alternation Depth
	Syntactic Extensions

	Tools
	mCRL2
	MLSolver

	Fairness Assumptions
	Types of Fairness
	Defining Tasks
	Feasibility
	Other Fairness Assumptions
	Focus

	Global Response Formulae
	The Global Response Pattern
	Design Approaches
	Weak Fairness of Actions
	Precondition Approach
	Non-Violate Approach

	Fair Reachability of Actions
	Precondition Approach
	Non-Violate Approach
	Comparison of Approaches

	Unconditional Fairness of Actions
	Strong Fairness of Actions

	Property Specification Patterns
	Behaviours
	Scopes
	Notes on the Patterns

	Formulae for Patterns
	Relevance of Fairness
	Formula Structures
	Correctness Claims
	Formula Details
	Response Before-Variant
	Response After
	Response Until
	Existence

	Generalising Formulae
	Fair and Unfair Actions
	Generalised Weak Fairness of Actions (GWFA)
	Generalised Strong Fairness of Actions (GSFA)
	Generalised Fair Reachability of Actions (GFRA)
	Combining All Generalised Formulae

	Tasks

	Fairness Formulae in mCRL2
	The Model
	The Formulae
	Case Study

	Conclusion
	Research Questions
	Future Work

	Bibliography
	Appendices
	Miscellaneous Proofs
	Proof of Theorem 4.3
	Proof of Proposition 4.4
	Proof of Proposition 4.5
	Proof of Lemma 3.13
	Proof of Theorem 4.12
	Proof of Theorem 4.15

	Proofs of Base Formulae
	Proof of Theorem 6.1
	Proof of Theorem 6.2
	Proof of Theorem 6.3

	Note on the WFA Global Response Formula
	Alternate Formulae
	Weak Fairness and Fair Reachability
	Strong Fairness

	Comparisons with Remenska
	Response Before-variant
	Response After
	Response Until & Existence

	Task Formulae
	Task Formulae in mCRL2
	Dekker's Algorithm Model
	mCRL2 Model
	-Calculus Formulae
	Script for SFA Formula

