

Amigo in Hindsight Lessons learned

Maddy D. Janse

January 2012

Lessons learned

- 1. Intelligent home environments
- 2. Vision and timing
- 3. User-centered approach
- 4. Complexity at many levels
- 5. System and application developers needs
- 6. Creating impact
- 7. Technology moves on
- 8. Differences in time to market

Content

Tati 958 Amigo 2008

Lesson 1 Intelligent Home Environments

Old concept !!!!!!!

Maddy D. Janse, November 2012

Intelligent Home anno 1958

huge discrepancy

between

research and reality

Lesson 2 Vision and Timing

Future Enabling Applications

Amigo Home Network

Intelligent Home: Reality in 2004 Different Domains - Not Interoperable -

Maddy D. Janse, November 2012

Not within the home Not between homes

Services: To the Home

- down/up loading content
- Internet
- communication
 - email, chat, voice-IP, skype
- multi-user gaming
- adaptation of personal content
 - photo, video
- customization
 - ring tones, wallpaper

sharing ambience and activities

pictures and text docs

End-Users

Do not distinguish between the technical Amigo domains

Desire control over the overall comfort and social integrity of their home environment

Interoperability is obvious and natural for users

Project Goals

Service oriented architecture for intelligent future home networks,

- use available context information
- use different devices
- provide intelligent and attractive user services
- compose and integrate new devices and services

Enable the development of context-aware applications

- provide users with experience sharing, social presence, and responsive home environments
- extend their home to other homes, car, hotel, office,

42 Months (Sept04 – Feb08) 2021 Person months 4 Home labs

Amigo Project IST-2004-004182

Philips VTT , Telematica Instituut Fraunhofer, Microsoft, Univ. Paderborn, INRIA, France Telecom, Italdesign Fagor, Ikerlan, Telefonica LogicDis, ICCS

Lesson 3 User-centered Approach

- field studies
- user needs: caring & sharing
- requirements
- scenarios
- storyboards
- personas

Responses

- based on past and current experiences
- questionable fit for the project objectives and context

But

- crucial for project team,
 - to gain end-user insights
- essential for getting
 - user requirements
 - evaluation procedures and criteria
 - design iterations

Keep in mind

- 'You can't just ask customers what they want and then try to give that to them. By the time you get it built, they'll want something new'
- 'It's really hard to design products by focus groups. A lot of times, people don't know what they want until you show it to them'

Steve Jobs

Difference in perception

- user needs & requirements
- system requirements & specs.
- developer visions & implementations

Underestimated challenge

- huge number of variables
- causing an exploratory explosion of problems

Lesson 4 Complexity at many levels

taming technology

Complexity for User

Configure a 4-way switch with build-in temperature control 56 folders 277 parameters

Home control network

84 programs 6 programs

Complexity for Developers

Building blocks & subsystems Toolkits

Complexity in Communication

Middleware building blocks

Lesson 5 System & application developers needs

Smart homes are dynamic environments

- interoperability framework
- service oriented architecture

- service discovery and interaction interoperability
- enhanced discovery and service composition
- domotic infrastructure
- security and privacy
- content distribution / data store / QoS

Base Middleware

- functionality for networked environment
- Open Source Software

- context management
 - broker
 - source
 - wrapper
 - reasoner
 - history
- user modeling and profiling
- awareness and notification
- user interface services
- privacy and personal security

Intelligent User Services

• functionality for ambient environment

- reduction of programming effort
- enforcing interoperability
- common set of protocols
 - discovery
 - remote procedure calls
 - asynchronous event delivery

Programming & Deployment Framework

 no care about underlying protocols

Service Oriented Architecture

- on demand
 - development
 - delivery
 - use
- loosely coupled components
- dynamic configuring of services and devices
- multiple protocols
 - discovery: UPnP, SLP, WebServices
 - interaction: RMI, SOAP

Domotic Service

- expose devices as UPnP or Web services
- low-level and high-level drivers are completely decoupled
 - depend only on common specification

Interpreting low level context to high level context

Context Management Service

- open infrastructure
- acquires information from various sources
 - physical sensors,
 - user activities,
 - applications
- abstracts into "context information"
- provides to context aware services

Example of how to start building an application:

- 1. deployment framework,
- discovery mechanism & ontologies
- context management service
- 2. security & enhanced discovery
- user modeling & profiling service
- awareness & notification service
- 3. user interface service
- community sharing service

Use-it

- training modules and tutorials for all SW modules
- available on the Amigo website
- easy to build an Amigo service
 ~ 1 day
- understanding the concepts takes longer

- ~ weeks

Must have examples

- timely,
- relevant
- appropriate
- easy to understand
- illustrative for showing technical tour de force
- do-able and achievable

Lesson 6 Create Impact

Exploit applications & services

Trade-off between stakeholders and developers

Appliances Management

- appliances exchange information and communicate via existing power lines
- use case examples:
 - programming appliances from mobile devices
 - creating scenes like wake-up in the morning and setting the toaster and coffee machine
 - holidays settings at home

- components
 - domotic gateway
 - history database
 - behavior analyzer
 - outlier detector
 - controler

Daily Life Cycle Monitor

- monitors the behavior of inhabitants
- data from different sensors and information from Amigo middleware services
- detects deviations from normal behavior and takes appropriate action

cooking		planning users shopping lists
name: Mammy	Ingredients	Preferences
Mailiny	add >	apple
	add D	Recomendations
age 🗅 🖸 🕻		Restrictions
gender ⊳ Female 🔹		(Temove)
stature ▷ 😰 🗘 cm.	Medical Advices	Medical Advices
weight ▷ 🛛 🕻 Kg.		(remove)
personal planning	Diets Hipocaloric •	Diets
	Hipocaloric Mediterranean Vegetarian	Temove
edit profile		cancel save

Food Management

• each user's

- personal preferences
- health diets
- burned calories
- weight evolution
- how many people are going to eat and who they are
- available goods in the fridge.
- expiration date of the products

- Home agenda
- MyNews
- Media Manager Core
- Multimedia manager
- Context-dependent
 personalization

Home Information & Entertainment

- Amigo Box applications
- Standard protocols: wifi, ethernet, UPnP
- applications are web-based
- no need to buy new devices to connect
- any device with a web browser will do

My Home

Home-to-Home

feel at home

- have access to your services
 - applications can use exported services just like local services

Away-not-Away

- sharing presence and activities
- independent of location and devices
 - using TV with PC, TV with hotel-TV, or mobile with TV, etc.

Now, but not then

- Sensor network technologies
- Web 2.0
- .NET
- Social networking

Stay up to speed

- Be adaptable and flexible
 - to R&D community
 - to future market needs
 - to end-user customers
 - to existing situations

Lesson 7 Technology moves on

Fast

Middleware and application elements have different time to market

Existing infrastructures

- buildings are 'hard'
- power lines
- different practices

Stakeholders and their needs change over time

- energy consumption
- sustainability concerns
- demographic changes
 - elderly homes
 - home health care
 - nursing homes

Lesson 8

Differences in time to market

• Timing

- No start from 'scratch'
- Changing application demands
- Take-up of technology is not about technology

Complexity at many levels Developers needs

Timing Creating impact Technology moves on Differences in time to market

Watch it Iceberg

Key to Amigo

- unified middleware
- across application domains
- across homes and environments
- connects other networks (e.g., sensors)
- interoperable existing technologies
- intelligence in the middleware
- reusable by thin applications
- generalized use of semantics
- Open Source Software
 infrastructure

System concepts adaptable be flexible

