Vertex-coloring

Consider a connected graph \(G = (V, E) \). Let \(\Delta(G) := \max_v \deg(v) \) denote the maximum degree, and let \(\chi(G) \) denote the vertex coloring number of \(G \). We make the following observations:

1. \(\chi(G) \leq \Delta(G) + 1 \). We can color the vertices of the graph with ‘colors’ \(1, \ldots, \Delta + 1 \) as follows: take any labeling \(v_1, \ldots, v_n \), for \(i = 1, \ldots, n \) assign \(v_i \) the lowest number not used for its neighbors among \(v_1, \ldots, v_{i-1} \). As there are at most \(\Delta \) such neighbors, a color from \(1, \ldots, \Delta + 1 \) is always available.

2. If \(G \) contains a vertex \(v \) of degree \(\deg(v) < \Delta(G) \), then \(\chi(G) \leq \Delta(G) \). To find the coloring with \(\Delta \) colors, make a breadth first search of the graph, starting at node \(v \). Label the vertices \(v_1, \ldots, v_n \), where \(v_i \) is the \(i \)th vertex encountered. Hence \(v_1 = v \). Now color the nodes in backward order. For each vertex \(v_i \) at most \(\Delta - 1 \) neighbors are among \(v_{i+1}, \ldots, v_n \) that receive a color before \(v_i \), hence there is a color available for \(v_i \). Note that for \(v_i \) there are \(\Delta - \deg(v) \) colors available.

3. (Brooks’ theorem) If \(G \) is not \(K_m \) or \(C_{2m+1} \) for some \(m \), \(\chi(G) \leq \Delta(G) \). A constructive proof is given below.

Proof of Brooks’ theorem.

1. If \(\Delta = 0 \), \(G = K_1 \); if \(\Delta = 1 \), \(G = K_2 \); if \(\Delta = 2 \), then \(G \) is a path, or an even cycle, and \(\chi = 2 \), or \(G \) is an odd cycle with \(\chi = 3 \). We may assume for the remainder that \(\Delta \geq 3 \).

2. If \(G \) has a one-node cut-set \(\{v\} \), we consider the sub-graphs \(G_1 \) and \(G_2 \). Both can be colored with \(\Delta(G) \) colors, as \(v \) has degree at most \(\Delta(G) - 1 \) in both \(G_1 \) and \(G_2 \).

3. If \(G \) has a two-node cut-set \(\{u, v\} \), with \(\{u, v\} \not\in E \), then we can again color both sub-graphs \(G_1 \) and \(G_2 \) with \(\Delta(G) \) colors as both vertices have degree at most \(\Delta(G) - 1 \), both in \(G_1 \) and in \(G_2 \). If in both graphs \(G_1 \) and \(G_2 \), at last one vertex \(u \) or \(v \) has degree at most \(\Delta(G) - 2 \), then both graphs can be colored with \(u \) and \(v \) in different colors, and the colorings can be combined to a coloring of \(G \) with \(\Delta(G) \) colors. If \(\deg(u) = \deg(v) = \Delta(G) - 1 \), then in \(G_2 \) they have degree 1; say \(uu' \in E, vv' \in E \), with \(u' \neq v' \), for some \(u', v' \in V(G_2) \). In this case replace the vertex cut-set by \(\{u, v'\} \). That one does the job.

4. If the above does not apply, then take any node \(w \in V \) of maximum degree. It must have two neighbors \(u, v \) say, such that \(uv \not\in E \), otherwise \(G = K_n \). The graph \(G - u - v \) is connected, and so its vertices can be labeled \(v_1, \ldots, v_{n-2} \) by breadth first search starting from \(w \) setting \(w = v_1 \). Now set \(u = v_{n-1} \), and \(v = v_n \), and color the vertices in order \(v_n, v_{n-1}, \ldots, v_1 \). For each vertex a color from \(1, \ldots, \Delta \) is available.