
Department of Mathematics and Computer Science
Department of Electrical Engineering

Test Fixture Optimization

Master Thesis

F.H. Oudman

Supervisors:
dr. R.H. Mak

ir. M.G.M. Spierings
prof.dr. H. Corporaal

Eindhoven, Thursday 11th July, 2019

Abstract

At Prodrive, the Automatic Electronic Test system (AET) is used to test Printed Circuit Board
Assemblies (PCBAs). In an AET test, the DUT is placed on a set of test probes which can test
the DUT using electric stimuli. In order for the test probes to make good contact with the DUT,
the DUT is clamped between a so-called top fixture and bottom fixture. The bottom fixture holds
the different probes, while the top fixture contains different push fingers that force the DUT down
on the test probes. Because of non-alignment between push fingers and test probes, the DUT can
deform. Strain created by this deformation can lead to DUT damage. Hence, push fingers need
to be placed in such a way that board strain stays below a safe threshold, while at the same time
the fixture costs are minimized.

ii Test Fixture Optimization

Contents

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

2 Device Under Test 2
2.1 Printed circuit board assembly . 2
2.2 Fixture . 5

2.2.1 Bottom fixture . 5
2.2.2 Top fixture . 5

2.3 Testing process . 5

3 Board strain 7
3.1 Definition . 7
3.2 Board defects . 7
3.3 IPC/JEDEC guidelines . 7
3.4 Finite Element Analysis . 7

4 Problem statement 8
4.1 State-of-the-art . 8
4.2 Objective . 8
4.3 Project scope . 8

5 Optimization algorithms 9
5.1 Random step . 9
5.2 Slope-based step . 9
5.3 Force-based step . 10
5.4 Displacement-based step . 10
5.5 Strain-based step . 10
5.6 Hill climb controller . 11
5.7 Simulated annealing . 12

6 Implementation 13
6.1 Input/output file formats . 13
6.2 Domain model . 13
6.3 Slope-based step . 13
6.4 Force-based step . 13
6.5 Displacement-based step . 14
6.6 Strain-based step . 14
6.7 Hill climb controller . 14

Test Fixture Optimization iii

CONTENTS

6.8 Simulated annealing . 14

7 Experimental results 15
7.1 Benchmark set . 15
7.2 Result representation . 18
7.3 Slope-based step . 18
7.4 Force-based step . 24
7.5 Displacement-based step . 29
7.6 Strain-based step . 32
7.7 Hill climb controller . 32
7.8 Simulated annealing . 32

8 Conclusion 33
8.1 Discussion . 33
8.2 Future work . 33
8.3 Conclusion . 33

A Abbreviations 34

iv Test Fixture Optimization

List of Figures

2.1 Example panelized PCBA . 3
2.2 The different modules of the AET Inline system . 4
2.3 The DUT brought into the AET . 6
2.4 The DUT aligned with the bottom fixture . 6
2.5 Alignment of top fixture with the bottom fixture 6
2.6 Establishing contact between DUT and test probes 6

5.1 Example explored search tree . 12

7.1 Benchmark set: DUT photos . 16
7.2 Example results . 17
7.3 FTS; slope step; aggressiveness 50.0; first stage; strain versus area 19
7.4 FTS; slope step; aggressiveness 50.0; strain versus iteration 19
7.5 FTS; slope step; aggressiveness 40.0; first stage; strain versus area 19
7.6 FTS; slope step; aggressiveness 40.0; strain versus iteration 19
7.7 FTS; slope step; aggressiveness 40.0; first stage; strain map 20
7.8 P1SMD; slope step; aggressiveness 500.0; first stage; strain versus area 21
7.9 P1SMD; slope step; aggressiveness 500.0; strain versus iteration 21
7.10 P1SMD; slope step; aggressiveness 500.0; generated fixtures 21
7.11 P1SMD; slope step; aggressiveness 250.0; first stage; strain versus area 22
7.12 P1SMD; slope step; aggressiveness 250.0; strain versus iteration 22
7.13 P1SMD; slope step; aggressiveness 250.0; first stage; strain map 23
7.14 FTS; force step; strain/price versus iteration . 25
7.15 FTS; force step; force goal 1500mN; first stage; strain map 26
7.16 P1SMD; force step; strain/price versus iteration . 27
7.17 P1SMD; force step; force goal 1500mN; first stage; strain map 28
7.18 FTS; displacement step; strain/price versus iteration 29
7.19 P1SMD; displacement step; strain/price versus iteration 29
7.20 FTS; displacement step; first stage; strain map . 30
7.21 P1SMD; displacement step; first stage; strain map 31

Test Fixture Optimization v

List of Tables

5.1 Example priority queue over time . 11

7.1 Benchmark set: fixture statistics . 17

vi Test Fixture Optimization

Chapter 1

Introduction

bladiebla

Test Fixture Optimization 1

Chapter 2

Device Under Test

When a printed circuit board assembly (PCBA) is being tested, it is referred to as the device under
test (DUT). This way, one can easy distinguish between the tested PCBA and some possible other
PCBA that is not being tested but is needed in the setup for some other reason.

In this chapter, an introduction is given on the different components of a PCBA. Next, the
different components of a fixture are described. Finally, the testing process is described, where the
DUT and fixture interact. The strain that arises during this testing process is further described
in the next chapter.

2.1 Printed circuit board assembly

The base of every PCBA is of course the PCB. Such a printed circuit board is made from woven
glass fibres and resin, together forming the board. On this board, a thin copper foil is attached. By
precisely removing parts of this copper, one can use the remaining copper as an electrical network
which provides connectivity between the different components that will later be placed on the
PCB. To accommodate more difficult routing, multiple copper and resin layers can be added to
create the desired electrical network.

By soldering different components on the board, the PCB becomes a PCBA. One can classify
components into two categories: through-hole technology (THT) and surface-mount technology
(SMT). When using THT, small holes are drilled at PCB contact point locations, through which
the leads of trough-hole components are inserted. At the opposite side of the board, the lead is
then soldered to the board. In surface mount technology (SMT), a components is soldered directly
to a soldering pad on the PCB.

When a PCB deforms due to fixture clamping, components react different depending on the
used technology. In case of THT, component leads provide a bit of flexibility, thus providing some
damage-free bending freedom. In case of SMD, the different components add extra stiffness to the
PCB. This extra stiffness reduces strain directly under the THT component, but can create extra
strain at the soldering connections at the edges of the component. This strain at the edges has a
higher change of damaging the PCB or the component since their is no component lead flexibility.

Each PCBA needs to have a rectangular shape of which the length and the width have minimum
and maximum dimensions to be used in an AET test. In case one needs to produce a PCBA that
is smaller than the minimum PCBA size, and/or in case one needs to produce a non-rectangular
shaped PCBA, one needs to apply panelization. Using panelization, one fits multiple PCBA’s
on a single PCBA. During the PCB manufacturing, cutouts are created around the sub-PCBA’s.
In order to hold the sub-PCBA’s in place, small breakaway tabs are retained. Figure 2.1 shows
an example of a panelized PCBA. After the PCBA is fully assembled and tested, the different
sub-PCBA’s are separated from the main board by milling away the breakaway tabs.

Since the different sub-PCBA’s are connected to the main PCBA only through small tabs, one
needs to be careful with push fingers, test probes and/or support probes around the breakaway

2 Test Fixture Optimization

CHAPTER 2. DEVICE UNDER TEST

panel

cutout

breakaway
tab

mill away

Figure 2.1: Example panelized PCBA

tabs, to prevent excessive strain at these locations.

Test Fixture Optimization 3

CHAPTER 2. DEVICE UNDER TEST

b
ot

to
m

 f
ix

tu
re

to
p

fi
xt

u
re

probe plate

top fixture
alignment pin

push finger

DUT

conveyor
cutouts

support plate

DUT
alignment pin

probe plate

fixture PCB

Figure 2.2: The different modules of the AET Inline system

4 Test Fixture Optimization

CHAPTER 2. DEVICE UNDER TEST

2.2 Fixture

During the testing process, the DUT is clamped in the fixture. Such a fixture consists of two
main parts: the top fixture and the bottom fixture. Between these two main parts, the DUT is
clamped. Figure 2.2 presents a more detailed drawing of this.

2.2.1 Bottom fixture

The bottom fixture holds the different test probes that will test the DUT. Furthermore, the
bottom fixture contains some support probes, that provide additional support for the DUT during
the resting stage. Three alignment pins are used to align the DUT with the bottom fixture.

2.2.2 Top fixture

The top fixture consists of a plate with push fingers mounted onto it. These push fingers push
the DUT downwards onto the different probes of the bottom fixture. Furthermore, it contains
alignment pins to align the top fixture with the bottom fixture.

2.3 Testing process

This section describes the execution of an example AET test. Figure 2.3 shows a schematic drawing
of the start situation. The top fixture and bottom fixture are separated. In the middle, conveyor
belts bring in the DUT. One of these belts is located to the front of the machine, a second is
located towards the back side. The front and back edges of the DUT are resting on these conveyor
belts. When the DUT is fully shifted into the machine, it is stopped by a small stopper.

Next step is the lowering of the conveyor. The DUT is aligned with the bottom fixture through
three alignment pins. The DUT rests on multiple support probes such that there is not yet any
contact between DUT and test probes. Figure 2.4 shows a schematic drawing of this situation.

Next, the top fixture is lowered. First, alignment pins in the top fixture and alignment bushes
in the bottom fixture allow the top fixture to align itself with the bottom fixture and therefore
with the DUT. Figure 2.5 shows a schematic drawing of this situation. After alignment, the top
fixture continues with the lowering, pushing down the DUT with the push fingers attached to the
top fixture. This way, the DUT makes contact with the test probes. This is shown in Figure 2.6.

Next, the different electrical tests are performed trough the test probes. After all testing is
completed, the top fixture is raised again, followed by the raising of the conveyor belts, followed
by the conveyor belts shifting the DUT out of the AET system.

These four steps describe the most basic AET test procedure, but different extensions are
possible. One commonly used extended procedure is the so-called two-stage AET test. In such a
test, the bottom fixture contains two different types of test probes. In the first stage, the DUT is
pushed down to make contact with all probes. In the second stage, the DUT is raised a bit, such
that only a subset of the bottom fixture test probes makes contact with the DUT.

Test Fixture Optimization 5

CHAPTER 2. DEVICE UNDER TEST

TOP Fixture

Bottom Fixture

DUT

conveyor

stopper

Figure 2.3: The DUT brought into the AET

TOP Fixture

Bottom Fixture

support probe

alignment pin

Figure 2.4: The DUT aligned with the bottom fixture

Bottom Fixture

TOP Fixture

alignment pin

push finger

Figure 2.5: Alignment of top fixture with the bottom fixture

Bottom Fixture

TOP Fixture

test probe

Figure 2.6: Establishing contact between DUT and test probes

6 Test Fixture Optimization

Chapter 3

Board strain

bladiebla

3.1 Definition

principal / mohr’s circle / Von Mises

3.2 Board defects

example defects / literature studies

3.3 IPC/JEDEC guidelines

guidelines overview

3.4 Finite Element Analysis

fea characteristics

Test Fixture Optimization 7

Chapter 4

Problem statement

bladiebla

4.1 State-of-the-art

context

4.2 Objective

problem statement

4.3 Project scope

scope

8 Test Fixture Optimization

Chapter 5

Optimization algorithms

Optimization is done in an iterative manner. Two main parts can be distinguished: the optimiz-
ation controller and the optimization step.

An optimization step is an algorithm that performs exactly one step: given an existing fixture
design, create a derived design that is hopefully better. An example is the random step algorithm,
which randomly adjusts all support probe and push finger locations by a bit. Note that such an
optimization step does not necessarily result in a better/optimized fixture. The name ‘optimiza-
tion step’ refers to this algorithm being a small part of a bigger whole. One individual step might
not optimize a fixture design, but this one step is needed to get to the final optimized result.

An optimization controller is responsible for applying different rounds of optimization steps.
An example is the hill climb algorithm, which repeatedly applies the random step algorithm. After
each application of the random step algorithm, it checks if the new iteration is better than the
previous one, if so, it is used as a seed for the next iteration, if not, is thrown away. Each ap-
plication of an optimization step algorithm indicates a transition, the current best known fixture
and history that lead to this design indicate form the optimization controller state. The algorithm
finishes after a certain strain threshold is reached, or the maximum number of iterations is reached.

This chapter describes X optimization step algorithms and Y optimization controller algorithms.
Chapter 7 describes per algorithm the results when applied to some benchmark set.

Something about contact interference? Or put this in Chapter 6?

5.1 Random step

The random step algorithm is perhaps the most elementary optimization step algorithm: each
iteration, each support probe and each push finger is adjusted in a random direction by a random
distance. A possible implementation is the following: take a random value in the in the range
[0, 2π) as direction, and take a random value in the range [0,∆] as distance.

5.2 Slope-based step

The slope-based step algorithm is a local optimization algorithm. This method can be seen as
a variant of the gradient descent method. With the gradient descent method, one takes a step
in solution space that is proportional to the derivative of the current point in solution space.
However, since the fixture solution space is unknown except for the current point, the slope-based
step cannot use the derivative for iteration.

The slope-based step is applied per support probe and per push finger for some test stage.
For each such contact, one takes the known slope of the deformed DUT and takes a step that is
proportional to this slope. Each push finger moves ‘uphill’, each support probe ‘downhill’.

Section 6.3 describes the implementation of this algorithm. Section 7.3 describes test results
acquired.

Test Fixture Optimization 9

CHAPTER 5. OPTIMIZATION ALGORITHMS

5.3 Force-based step

The force-based step algorithm adds and/or removes support probes and push fingers based on
how much each one exerts during the different test stages. Based on a seed fixture, a new fixture
is created. For each contact of old fixture, one the following three actions can be applied:

• Remove: The old contact is not used on the new fixture.

• Copy: The old contact is copied to the new fixture.

• Duplicate: Two instances of the old contact are copied to the new fixture, both placed as
close as possible to the original contact position.

Two variants of the force-based step algorithm exist: one in which the optimization controller
decides how many support probes or push fingers are removed and/or duplicated per test stage,
and one in which the step algorithm decides which action to apply per contact. Using the optimiz-
ation controller’s point of view, these two variants are respectively called the manual version and
the automatic version.

The manual version works in the following manner. Per test stage i, two numbers ni and mi

are given, indicating the number of support probes or push fingers need to be respectively removed
or duplicated. First, all test probes are copied. Second, the n0 support probes exerting the least
amount of force on the DUT during the resting stage are removed, the m0 support probes exerting
the largest amount of force are duplicated, and all other support probes are copied once. Third, a
removal set is created by selecting per test stage i the ni push fingers that exert the least amount
of force, and a duplication set is created by selecting per test stage the mi push fingers exerting
the largest amount of force. Finally, all push fingers that are not in the removal set are copied,
after which all push fingers in the duplication set are copied a second time. Note that using this
structure, a push finger that is marked for removal in one test stage, can be marked for duplication
at another test stage, resulting in the push finger being copied exactly once.

The automatic version differs slightly from the manual version. A push finger goal force gf
is given. First, all test probes are copied. Second, all support probes which during the resting
stage exert a force less than half their spring preload are removed, all support probes exerting a
calculated force of more than their spring preload are duplicated, and all other support probes
are copied once. Third, a copy set is created by selecting per test stage all push fingers exerting a
force bigger than gf/2, and a duplication set is created by selecting per test stage all push fingers
exerting a force bigger than gf . Finally, all push fingers that are in the copy set are copied, after
which all push fingers in the duplication set are copied a second time.

Section 6.4 describes the implementation of these two algorithms. Section 7.4 describes test
results acquired.

5.4 Displacement-based step

The displacement-based step algorithm adds support probes and/or push fingers based on peaks
in the DUT deformation.

Per test stage, the number of to be added contacts is given. Per test stage, these are then added
near the points with biggest absolute displacement. In case this displacement is in positive Z dir-
ection, a push finger is added as close as possible to this displacement peak. In this displacement
is in negative Z direction, a support probe is added with a push finger directly above it.

Section 6.5 describes the implementation of these two algorithms. Section 7.5 describes test
results acquired.

5.5 Strain-based step

bladiebla

10 Test Fixture Optimization

CHAPTER 5. OPTIMIZATION ALGORITHMS

Table 5.1: Example priority queue over time

iteration entry 1 entry 2
i0 s(f0) = 20
i1 s(f2) = 11 s(f3) = 14
i2 s(f2) = 11 s(f4) = 13
i3 s(f2) = 11 s(f4) = 13

5.6 Hill climb controller

The opening text of this chapter described an example hill climb controller. The described hill
climb controller algorithm consisted of executing the random step algorithm. If the fixture pro-
duced by this step algorithm is better than the fixture used as a fixture, it replaces the seed fixture,
otherwise it is ignored. The step algorithm is then repeatedly applied until n succeeding iterations
do not show more than x% improvement, or if a maximum number of iterations imax is reached.

The hill climb controller algorithm presented in this chapter is more advanced, although its
mechanics are still quite simple. The controller uses depth-first search as well, but is extended
with backtracing functionality.

Key element of the controller algorithm is a priority queue containing up to n fixtures. Each
fixture is associated with a score s representing how good the fixture is, using the definition of
Section 4.2. This priority is initialized with some to be optimized fixture which is marked as ‘not
optimized yet’.

Each iteration starts by selecting from the priority queue the fixture with the best score s
marked ‘not optimized yet’. This fixture will next be used as a seed fixture. The ‘not optimized
yet’ marker is removed from the seed fixture. Next, several step algorithms are executed using the
seed fixture. Each step algorithm is used with some fixed parameters. These parameters are not
modified by the controller algorithm, but are manually selected before using controller algorithm.
Multiple step algorithm instances can be executed, each with different parameters. The different
produced fixtures are then analyzed and stored in the priority queue, each with its score and a ‘not
optimized yet’ marker. If the priority queue now contains more than n entries, the worst entries
are removed such that the n best entries are kept.

The described process is repeatedly executed, until either imax iterations have been executed,
or if the priority queue does not contain any element marked ‘not optimized yet’. When one of
these two conditions is reached, the fixture with the best score s is returned as the found optimum.

As an example, take a hill climb controller with a priority queue of size n = 2. Two optimiz-
ation algorithms A and B are selected, A is used with some parameter x, B is once used with
parameter y and once with parameter z. Start with an initial fixture f0 with a score s(f0) = 20.
In the first iteration, f0 is used as a seed. Applying the three step algorithms gives f1 = Ax(f0),
f2 = By(f0) and f3 = Bz(f0), with s(f1) = 19, s(f2) = 11 and s(f3) = 14. Hence, f2 is used as
the next seed. Applying the same procedure results in s(f4) = 13, s(f5) = 17 and s(f6) = 15. f2
is still the best found fixture so far, but has already been used as a seed. Hence, f4 is selected
as a seed, producing s(f7) = 14, s(f8) = 16 and s(f9) = 18. After this iteration, no items in the
priority queue are marked ‘not optimized yet’. Table 5.1 gives a summary of the contents of this
priority queue over time. Figure 5.1 visualizes the explored search tree.

Test Fixture Optimization 11

CHAPTER 5. OPTIMIZATION ALGORITHMS

Figure 5.1: Example explored search tree

5.7 Simulated annealing

bladiebla

12 Test Fixture Optimization

Chapter 6

Implementation

bladiebla

6.1 Input/output file formats

bladiebla

6.2 Domain model

bladiebla

6.3 Slope-based step

This section describes in a high-level manner how the slope-based step is implemented. One by
one, all push fingers and test probes are adjusted according to the description given in Section 5.2.

First, the mesh representing the deformed DUT is taken. Per contact to be adjusted, a set
of mesh vertices/points near the centre of the contact is taken. Using a least-squares method, a
plane is fit through this set of points. This plane represents the 2D slope at the contact. From
this plane, the normal is taken. This normal n is then normalized, i.e. n = n/|n|.

Next, the normalized normal is projected on the original surface by reduction from n = (x, y, z)
to nproj = (x, y). If the to be adjusted contact is a push finger, nproj is added to the finger position
to make the push finger ‘walk upwards’. If the to be adjusted contact is a support probe, nproj is
subtracted from the original position to make the contact ‘walk downwards’.

In order to control the step size, nproj can be multiplied with an aggressiveness value. Sec-
tion 7.3 presents the results of applying this described algorithm and the effects of different ag-
gressiveness values.

Add pictures?

6.4 Force-based step

This section describes in a high-level manner how the two force-based step algorithms are imple-
mented. Based on a seed fixture, a new fixture is designed. Each old contact is copied zero, one or
two times to the new fixture, all according to the description given in Section 5.3.

The manual version is implemented in the following manner. First, all test probes of the old
fixture are copied to the new fixture. Second, all old support probes are sorted on the amount
of force each one produces during the resting stage. Using this ordering, the n0 support probes
exerting the least amount of force are ignored, but all other support probes are copied to the new

Test Fixture Optimization 13

CHAPTER 6. IMPLEMENTATION

fixture. Again using the ordered list of old support probes, the m0 support probes exerting the
largest amount of force are copied a second time and inserted as close as possible to their original
locations, while keeping a safe distance to PCB edges, DUT components and other probes. Third,
all push fingers are per test stage sorted on force exerted, then copied zero, one or two times to
the new fixture, using the same steps as used on the support probes.

The automatic version is implemented in the same way, but using the different copy criteria
described in Section 5.3.

Section 7.4 describes test results acquired after application of the described algorithm imple-
mentation.

6.5 Displacement-based step

This section describes how the displacement based step algorithm is implemented. Based on a seed
fixture, a new fixture is designed. All old contacts are copied once, and a given number of support
probes or push fingers is added, all according to the description given in Section 5.4.

First, the mesh representing the deformed DUT is taken. Per test stage, all vertices are ordered
on absolute Z displacement. Next, the vertex with the biggest displacement is picked. In case this
displacement is in positive Z direction, a push finger is added as close as possible to the vertex
position. In case the displacement is in negative Z direction, a support probe is in a similar way,
after which a push finger is added above the support probe. This is repeated for the desired number
of added contacts.

Section 7.5 describes test results acquired after application of the described algorithm imple-
mentation.

6.6 Strain-based step

bladiebla

6.7 Hill climb controller

bladiebla

6.8 Simulated annealing

bladiebla

14 Test Fixture Optimization

Chapter 7

Experimental results

This chapter describes the results obtained by applying the algorithms described in Chapter 5
using the implementations described in Chapter 6.

First, a set of PCBA’s is introduced that will be used as the benchmark set. Next, test
methodologies are described. The rest of the chapters then describes per algorithm the benchmark
results and draws some intermediate conclusions. Based on the results described in this chapter,
Chapter 8 deduces a final conclusion.

7.1 Benchmark set

The benchmark set consists of four different DUT’s. These four DUT’s span a wide PCBA
spectrum: both test and production boards are selected, both panelized and non-panelized boards,
both thick and thin PCB’s are represented, and both empty and high-density boards are among
the benchmark set.

The first benchmark DUT is the FTS board. This board is designed for testing purposes
and has a size of only 100 × 50 × 0.5mm. No components are present and, except for the three
alignment holes, no cut-outs.

The second benchmark DUT is the ODDD board. This board is quite large, with a size of
400× 350× 2.4mm. Several cutouts are present. The board has a medium component density on
the top side and a very low component density on the bottom side, leaving lots of space for push
fingers and support probes. The test probe density is quite low.

The third benchmark DUT is the TNXTD board. This board has a size of 388×251×1.6mm.
The board consists of four identical panels. Per panel, a few cutouts are present. At some places,
the board has a very high test probe density. Space for support probes and push fingers is locally
limited.

The fourth benchmark DUT is the P1SMD board. This board has a size of 249×161×0.8mm.
The board consist of eleven identical panels. Per panel, almost no space is available for the
placement of push fingers, creating an optimization challenge.

Figure 7.1 provides photos of the top and bottom sides of the four benchmark DUT’s. Table 7.1
gives an overview of the number of test probes, support probes and push fingers used in the
manually designed fixtures.

Test Fixture Optimization 15

Rmak
Cross-Out

Rmak
Inserted Text
In the first section

Rmak
Cross-Out

Rmak
Inserted Text
In the remaining sections, ...

Rmak
Highlight
Als algemeen principe: de plaats in een zin bepaalt waar de nadruk op ligt. Je zou hier bijvoorbeeld beter kunnen schrijven:The final conclusions based on the results described in these sections are given in Chapter 8.De zin was ook raar, omdat die stelt dat "the chapter deduces ...". Deductie is echter een menselijke activiteit niet een van hoofdstukken!

Rmak
Highlight
Gebruik een genummerde lijst met vooraf en achteraf een blanco regel.. Dus1. The FTS board. This board ...2. The ODDD board, etc

Rmak
Highlight
PCBAs .In het algemeen als de afkorting enkelvoud is en het meervoud van het laatste woord is met een "s", dan geen apostrophe. Dus ook PCBs, DUTs, etc. Controleer je hele verslag hierop!

Rmak
Highlight
Hierboven schreef je cut-out met een hyphen. Ik weet niet wat de goede spelling is, maar wees in ieder geval consistent. Dat kun je o.a. voor elkaar krijgen door een LaTeX macro te gebruiken. Kan je later ook in een keer de spelling veranderen, mocht je die verkeerd hebben.Ook dit geldt voor alle woorden met (of juist zonder) hyphen in je rapport.

CHAPTER 7. EXPERIMENTAL RESULTS

(a) FTS, top (b) FTS, bottom

(c) ODDD, top (d) ODDD, bottom

(e) TNXTD, top (f) TNXTD, bottom

(g) P1SMD, top

Figure 7.1: Benchmark set: DUT photos

16 Test Fixture Optimization

CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.1: Benchmark set: fixture statistics

DUT test probes support probes push fingers
FTS 20 9 9
ODDD 158 51 155
TNXTD 432 31 158
P1SMD 264 127 83

(a) Example strain map

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 10 100 1000 10000

V
o

n
 M

is
e

s
st

ra
in

 (
u

S
tr

a
in

)

area (mm2)

stage 0

stage 1

stage 2

(b) Example strain versus area

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 128 256

a
v
e

ra
g

e
 V

o
n

 M
is

e
s

st
ra

in
 (

u
S

tr
a

in
)

iteration number

stage 0

stage 1

stage 2

(c) Example strain versus iteration

Figure 7.2: Example results

Test Fixture Optimization 17

Rmak
Sticky Note
Begin Section 7.2 na tabel 7.1 en plaats figuur 7.2 op de volgende pagina.

Rmak
Sticky Note
Gebaseerd op je uitleg op de volgende pagina zou ik op de horizontale as niet absolute oppervlakte verwachten maar juist relatieve, van 0 tot 100% van de DUT.

Rmak
Sticky Note
Von Mises wordt in de tekst niet uitgelegd. Lijkt me ook overbodig dus kan wat mij betreft hier weg.

Rmak
Sticky Note
Figuur is (op een A4-tje tamelijk klein. Aangezien je nog wat horizontale marge hebt, zou het van mij een centimeter of 2 breder (en dus ook wat hoger) mogen.

CHAPTER 7. EXPERIMENTAL RESULTS

7.2 Result representation

In accordance with the project objective stated in Section 4.2, analysis of the test results will focus
on DUT strain and fixture costs. Additionally, convergence of results will shortly discussed.

A first method of strain presentation is a strain map of the PCB. Define the maximum surface
strain to be x µstrain. Then, area’s marked green represent 0 µstrain, area’s marked yellow
represent 1/4xµstrain, area’s marked red represent 1/2xµstrain, area’s marked purple represent
3/4x µstrain, and area’s marked blue represent x µstrain. An example of such a strain map is
shown in Figure 7.2a. Key advantage of this strain presentation is that it clearly shows the weak
points of a fixture. A drawback is that only one stage of one fixture can be shown at a time.

A second method of strain presentation is a strain versus area plot. An example of such plot is
shown in Figure 7.2b. The vertical axis shows strain, while the horizontal axis shows what board
area fraction has that level of strain. Key advantage of this presentation is that it clearly shows
what percentage of the board area exceeds a certain strain threshold. A drawback is that this plot
does not show where these weak points are located. One has to be careful to correctly interpret
this plot. Since FEA is an approximation of reality, the calculated strain values can deviate from
reality. On larger surfaces, these effects can be negligible, but at small surfaces, these deviations
can be bigger. In the example of Figure 7.2b, the spike at the top 0.02% strain area is caused by
FEA inaccuracy.

A third method of strain presentation is a strain versus iteration plot. This presentation method
can be seen as a summarized version of the previous strain presentation method. Per test stage, a
weighted average of the board strain is taken. This way, different fixtures can quickly be compared.
An example of such comparison is shown in Figure 7.2c.

A first method of fixture cost representation consists of adding up the prices of the individual
probes and push fingers. In this thesis, this can be done by attaching fictional but reasonable
prices to the different component types. As an example, one can set the price of one support
probe to be equal to four push fingers. Prices of test probes are not relevant here, since these are
given and cannot be optimized.

A second method of fixture cost representation consists of simply presenting the total number
of support probes and push fingers, in a manner comparable to Table 7.1. Drawback of this
method is that comparing two different fixtures is not always possible, e.g. fixture A has more
support probes than fixture B, but fixture B has more push fingers than fixture A.

Computational costs can be expressed in total number iterations needed to need the final result.
It is true that computation times can fluctuate between iterations, but such small differences can
safely be neglected.

Convergence speed is a more detailed variant of the computational cost presentation. By plot-
ting strain or fixture costs per iteration, one can see how consistent optimization algorithms are:
e.g. the differences between every two iterations are consistent, or the main part of optimization
is done in the first few iterations. An example of such plot is shown in Figure 7.2c.

7.3 Slope-based step

This section describes the results of applying the benchmark set described in Section 7.1 to the
algorithm described in Section 5.2 and implemented according to Section 6.3. As described in
Section 6.3, this algorithm has precisely one variable, aggressiveness. Hence, not only need is the
algorithm tested against the different benchmark DUT’s, but also using different aggressiveness
values per DUT.

Using an aggressiveness of 50.0, the algorithm gives divergent results. After only a few itera-
tions, the generated fixtures are worse than the fixture used as a seed. However, after ten iterations,
the system starts to converge. From iteration 40, the slope step algorithm does no longer improve.
This is shown in Figures 7.3 and 7.4.

Using an aggressiveness of 40.0, the algorithm consistently gives convergent results. Figures 7.5
and 7.6 show that the algorithm converges after approximately 160 iterations.

18 Test Fixture Optimization

Rmak
Highlight
Beter titel is:Evaluation criteriaJe bent in deze sectie weer erg kort van stof. Begin eerst eens met uit te leggen dat je de algorithmen evalueert op 3 criteria:1. Kwaliteit van de resulterende fixture (dwz strain eigenschappen, maximum, gemiddelde, verdeling over het boordje, ..)2. Kosten in aantallen pushfinger en support, evt omgerekend naar geld.3. Convergentiegedrag. Aantal benodigde iteratiestappen. Tijp per stap, etc.Dan pas uitleggen welke representaties je kiest om de evaluatie te presenteren.

Rmak
Highlight
Te compact. Allereerst overgang van absolute strain waarde naar relatieve t.o.v. het maximum over het hele oppervlak. Dat geeft voor ieder punt een getal tussen 0 en 100%. Vervolgens kleur codering. Die kan in principe ook continue verlopen en kun je aangeven met een kleurbalk die van 0 tot 100% gaat. Zie bijv matplotlib om een idee te krijgen.

Rmak
Highlight
Ook hier weer erg compact. Zie opmerkingen bij de figuur op de vorige pagina. Verder gaat het om cumulatieve effecten. De bij oppervlak A afgelezen strain S, zegt dat het A-de deel van het oppervlak TENMINSTE strain S heeft. Of ik begrijp het niet. Hoe dan ook: meer uitleg

Rmak
Highlight
Leg dit begrip hier uit of verwijs naar of herhaal hier een eerder gegeven uitleg

Rmak
Sticky Note
Goed dat je de aggressiveness parameter test. Ik mis echter motivatie voor de keuze en een goed overzicht bijv een tabel die resulterende strain en aantal benodigde iteratie per waarde van de parameter geeft.

Rmak
Sticky Note
Waarom beschouw je dit als divergent gedrag. Waarom zou de oplossing gedurende de eerste iteraties niet tijdelijk slechter kunnen worden alvorens te verbeteren?

CHAPTER 7. EXPERIMENTAL RESULTS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 10 100 1000 10000

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

area (mm2)

0

1

2

4

8

16

32

64

128

Figure 7.3: FTS; slope step; aggressiveness 50.0; first stage; strain versus area

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 4 8 16 32 64 128

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

Figure 7.4: FTS; slope step; aggressiveness 50.0; strain versus iteration

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 10 100 1000 10000

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

area (mm2)

0

1

2

4

8

16

32

64

128

256

Figure 7.5: FTS; slope step; aggressiveness 40.0; first stage; strain versus area

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 128 256

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

Figure 7.6: FTS; slope step; aggressiveness 40.0; strain versus iteration

Test Fixture Optimization 19

Rmak
Sticky Note
In general, too many lines in one figure. Especially, when printed and zoom in is not possible. Show 5 measurements, e.g.(0, 4, 16, 64, 256) and enlarge the figure, while keeping the aspect ratio, say until it as wide as the caption. Same for other figures

CHAPTER 7. EXPERIMENTAL RESULTS

(a) Iteration 0: fixture (b) Iteration 1: fixture (c) Iteration 2: fixture

(d) Iteration 0: strain (e) Iteration 1: strain (f) Iteration 2: strain

(g) Iteration 4: fixture (h) Iteration 8: fixture (i) Iteration 16: fixture

(j) Iteration 4: strain (k) Iteration 8: strain (l) Iteration 16: strain

(m) Iteration 32: fixture (n) Iteration 64: fixture (o) Iteration 128: fixture

(p) Iteration 32: strain (q) Iteration 64: strain (r) Iteration 128: strain

(s) Iteration 256: fixture (t) Iteration 256: strain

Figure 7.7: FTS; slope step; aggressiveness 40.0; first stage; strain map

20 Test Fixture Optimization

Rmak
Sticky Note
Dit is te veel en heel onoverzichtelijk. Creeer een figuur met 5 rijen en twee kolommen. Een kolom voor strain en een voor fixture .Per rij een iteratie (bijv weer 0, 4, 16, 64, 256) Getallen kunnen ook anders zijn om convergentiegedrag beter te illustreren, maar zorg dat goede vergelijking van experimenten mogelijk blijft.

CHAPTER 7. EXPERIMENTAL RESULTS

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100 1000 10000

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

area (mm2)

0

1

2

4

8

16

32

64

Figure 7.8: P1SMD; slope step; aggressiveness 500.0; first stage; strain versus area

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8 16 32 64

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

Figure 7.9: P1SMD; slope step; aggressiveness 500.0; strain versus iteration

Figure 7.7 gives a deeper looking at the converging process. By design, the DUT is almost
symmetric. This symmetry almost causes the algorithm to not further improve from iteration 25
onward, but the small design irregularity causes the top centre push finger to move a bit to the
left, allowing a restructuring of the original 3× 3 push finger configuration to the craggy 4× 2 + 1
configuration. Another thing to note is that the push fingers and support probes keep matching
each other.

The ODDD and the TNXTD boards have not been tested against the slope-based step al-
gorithm.

Instead of applying the slope-based step algorithm on the original P1SMD board, only one
part of the board has been used.

Using an aggressiveness of 500.0, the algorithm gives divergent results. New generated fixtures
are sometimes worse, sometimes better than the fixture used as a seed. The system does not

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 7.10: P1SMD; slope step; aggressiveness 500.0; generated fixtures

Test Fixture Optimization 21

Rmak
Highlight
explains the convergence behavior in more detail, by not only considering the decrease in strain, but also the location of the push fingers, i.e. the geometrical properties of the fixture.

Rmak
Highlight
Niet hier. Geef aan het einde van het hoofdstuk aan welke tests ook nog gedaan moeten worden en de evt reden waarom ze niet gedaan of gerapporteerd zijn (waarschijnlijk tijdgebrek)

CHAPTER 7. EXPERIMENTAL RESULTS

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100 1000 10000

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

area (mm2)

0

1

2

4

8

16

32

64

128

Figure 7.11: P1SMD; slope step; aggressiveness 250.0; first stage; strain versus area

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64 128

av
er

ae
 V

o
n

 M
is

es
 s

tr
ai

n
 (

u
St

ra
in

)

iteration number

stage 0

stage 1

stage 2

Figure 7.12: P1SMD; slope step; aggressiveness 250.0; strain versus iteration

converge. This is shown in Figures 7.8 and 7.9.
The lack of convergence can be explained by taking a look at the generated fixture designs,

shown in Figure 7.10. The different push fingers and support probes on the panel move slowly
towards a local optimum position, while the different push fingers and support probes on the
empty PCB surrounding the panel overshoot each iteration.

Using an aggressiveness of 250.0, the algorithm does give convergent results. Figures 7.11
and 7.12 show that the algorithm converges until iteration 15, switches to worse design, continues
to converge, then stabilizes around iteration 75.

Figure 7.13 gives a deeper looking at the converging process. The original fixture has five push
fingers on the panel and five push fingers on the surrounding PCB. Nine support probes support
the panel, while five support probes support the surrounding PCB. Twenty-four test probes exert
forces on the panel, causing strain to concentrate on the panel push fingers. The slope-based
step algorithm causes two of the outer push fingers to move onto the panel, while the different
support probes move towards the closest by push finger. After convergence, some push fingers
have multiple support probes close by.

Based on these benchmarks, the slope-step algorithm seems to be a very efficient algorithm.
The algorithm is able to converge to a local optimum in only a few iterations. Such local optimum
is then often improved to an even better local optimum in around one hundred iterations.

The algorithm has also some drawbacks. First, the aggressiveness needs to be controlled. If
this value is too low, convergence will be slow. If this value is too high, the algorithm overshoots,
giving diverging results. Hence, this algorithm needs an optimization controller that is able to
choose a fitting aggressiveness value. Second, the algorithm can only move contacts, not add or
remove them. In the FTS example, adding one extra push finger at the right side might have
improved the optimization process. In the P1SMD example, multiple support probes converging
towards the same push finger could have been replaced by a single support probe.

22 Test Fixture Optimization

CHAPTER 7. EXPERIMENTAL RESULTS

(a) Iteration 0: fixture (b) Iteration 1: fixture (c) Iteration 2: fixture (d) Iteration 4: fixture

(e) Iteration 0: strain (f) Iteration 1: strain (g) Iteration 2: strain (h) Iteration 4: strain

(i) Iteration 8: fixture (j) Iteration 16: fixture (k) Iteration 32: fixture (l) Iteration 64: fixture

(m) Iteration 8: strain (n) Iteration 16: strain (o) Iteration 32: strain (p) Iteration 64: strain

(q) Iteration 110: fixture (r) Iteration 110: strain

Figure 7.13: P1SMD; slope step; aggressiveness 250.0; first stage; strain map

Test Fixture Optimization 23

Rmak
Sticky Note
Zie commentaar bij figuur 7.7

CHAPTER 7. EXPERIMENTAL RESULTS

7.4 Force-based step

This section describes the results of applying the benchmark set described in Section 7.1 to the
automatic force step algorithm described in Section 5.3 and implemented according to Section 6.4.
The manual version of the algorithm is not benchmarked. Since that version needs an controller al-
gorithm which adjusts the parameters of the step algorithm per iteration, such benchmarks would
mainly test the quality of the controller algorithm, instead of the quality of the step algorithm.

The automatic force step algorithm has precisely one adjustable variable, push finger force goal .
Hence, this section will not only describe the algorithm tested against the different benchmark
DUT’s, but also using different force goal values.

Using the FTS board, the algorithm is repeatedly applied, each time using a different force
goal. Figure 7.14 shows the average strain per iteration. Furthermore, the fixture cost relative to
the original fixture is shown. Using a force goal of 4500mN, the results converge after only one
iteration. It does however not stabilize, each iteration some push fingers are removed and some are
duplicated. The same behaviour can be observed when using a force goal of 3000mN and 1500mN:
the results converge after a couple of iterations, after which ‘shaky’ behaviour is shown.

Figure 7.15 gives a more in-depth look at the algorithm behaviour when using a force goal of
1500mN. At the first stage, each test probe exerts 1500mN force on the DUT, resulting in the gen-
erated fixtures converging towards approximately 30 push fingers, slightly more than test probes
and support probes present. However, the algorithm is not capable of placing these different push
fingers directly above the different probes. If the different placed push fingers would be shifted to
these probe positions, all board strain would approximately zero, while the number of push fingers
would be reduced as well.

Similar behaviour can be observed when benchmarking the P1SMD board. Again, force goals
of 4500mN, 3000mN and 1500mN are used. Convergence is shown in Figure 7.16. Using a force
goal of 4500mN, results converge after a single iteration. Using a force goal of 3000mN, results
converge after 12 iterations, but showing a second improvement after the 50th iteration. Using a
force goal of 1500mN, results converge after 16 iterations, after which results still differ a bit, but
do not show major strain differences.

Figure 7.17 shows a more in-depth look on the converging process. During the first iteration,
most of the support probes are removed, leaving a minimum number of four support probes. Note
that because no force recalculations are done between individual removals, the result is a fixture
that would be unstable during the resting stage. In practice, when applying the step algorithm
to a complete PCB instead of a single panel, the generated fixture would be stable. However, a
controller algorithm should not accept this generated fixture, but for example apply instead several
iterations of the manual force step algorithm.

During the second iteration, the push fingers that no longer have any support probe under
them are removed as well. Furthermore, from this iteration onwards, the algorithm tries to add
extra push finger near the push fingers on the panel. However, this is not always possible because
of DUT component interference. As a result, no extra push fingers are added, or a push finger
is added on the surrouding empty PCB, only to be removed again in the next iteration. This
behaviour is shown in iterations 16, 32 and 64.

In conclusion: just like with the FTS board, the final result is quite good, but would benefit
from small adjustments to the positions of the different contacts.

24 Test Fixture Optimization

CHAPTER 7. EXPERIMENTAL RESULTS

0%

20%

40%

60%

80%

100%

120%

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64

p
ri

ce
 (

re
la

ti
ve

)

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

price

(a) Force goal 4500mN

0%

20%

40%

60%

80%

100%

120%

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64

p
ri

ce
 (

re
la

ti
ve

)

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

price

(b) Force goal 3000mN

0%

20%

40%

60%

80%

100%

120%

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64

p
ri

ce
 (

re
la

ti
ve

)

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

price

(c) Force goal 1500mN

Figure 7.14: FTS; force step; strain/price versus iteration

Test Fixture Optimization 25

CHAPTER 7. EXPERIMENTAL RESULTS

(a) Iteration 0: fixture (b) Iteration 1: fixture (c) Iteration 2: fixture

(d) Iteration 0: strain (e) Iteration 1: strain (f) Iteration 2: strain

(g) Iteration 4: fixture (h) Iteration 8: fixture (i) Iteration 16: fixture

(j) Iteration 4: strain (k) Iteration 8: strain (l) Iteration 16: strain

Figure 7.15: FTS; force step; force goal 1500mN; first stage; strain map

26 Test Fixture Optimization

CHAPTER 7. EXPERIMENTAL RESULTS

0%

20%

40%

60%

80%

100%

120%

140%

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64

p
ri

ce
 (

re
la

ti
ve

)

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

price

(a) Force goal 4500mN

0%

20%

40%

60%

80%

100%

120%

140%

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64

p
ri

ce
 (

re
la

ti
ve

)

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

price

(b) Force goal 3000mN

0%

20%

40%

60%

80%

100%

120%

140%

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64

p
ri

ce
 (

re
la

ti
ve

)

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

price

(c) Force goal 1500mN

Figure 7.16: P1SMD; force step; strain/price versus iteration

Test Fixture Optimization 27

CHAPTER 7. EXPERIMENTAL RESULTS

(a) Iteration 0: fixture (b) Iteration 1: fixture (c) Iteration 2: fixture (d) Iteration 4: fixture

(e) Iteration 0: strain (f) Iteration 1: strain (g) Iteration 2: strain (h) Iteration 4: strain

(i) Iteration 8: fixture (j) Iteration 16: fixture (k) Iteration 32: fixture (l) Iteration 64: fixture

(m) Iteration 8: strain (n) Iteration 16: strain (o) Iteration 32: strain (p) Iteration 64: strain

Figure 7.17: P1SMD; force step; force goal 1500mN; first stage; strain map

28 Test Fixture Optimization

CHAPTER 7. EXPERIMENTAL RESULTS

7.5 Displacement-based step

This section describes the results of applying the benchmark set described in Section 7.1 to the
displacement step algorithm described in Section 5.4 and implemented according to Section 6.5. As
described in Section 6.5, this algorithm has per test stage one adjustable parameter, the number
of contacts to add.

As a first benchmark, this step algorithm is repeatedly applied to the FTS board. Since this
board has no much weight, there is not much use in focusing on the resting stage. Instead, each
iteration one contact will be added based on the deformation of the first stage. Figure 7.18 shows
per iteration the average strain per test stage and costs of the generated fixture relative to the
original fixture.

One can see that the generated fixture converge after approximately 40 iterations. Figure 7.20
shows why no improvements are made after this iteration: there is no free space above any probe
to place a push finger on. Instead, push fingers are added at the closest by free space, resulting in
a push finger explosion. Just like the force step algorithm, contacts which are placed just off the
perfect position block further improvement near that position.

Applying the displacement step algorithm to the P1SMD board gives comparable algorithm
characteristics. Or more precisely, even worse results. Figure 7.19 shows the convergence results,
Figure 7.21 the corresponding strain maps. The high DUT component density on the panel causes
push fingers to be placed on the surrounding PCB, producing another push finger explosion.

In conclusion, the displacement based step algorithm is not very useful if used in a stand-alone
manner.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 4 8 16 32 64

p
ri

ce
 (

re
la

ti
ve

)

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

price

Figure 7.18: FTS; displacement step; strain/price versus iteration

0%

50%

100%

150%

200%

250%

300%

350%

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64

p
ri

ce
 (

re
la

ti
ve

)

av
er

ag
e

V
o

n
 M

is
es

 s
tr

ai
n

 (
u

St
ra

in
)

iteration number

stage 0

stage 1

stage 2

price

Figure 7.19: P1SMD; displacement step; strain/price versus iteration

Test Fixture Optimization 29

CHAPTER 7. EXPERIMENTAL RESULTS

(a) Iteration 0: fixture (b) Iteration 1: fixture (c) Iteration 2: fixture

(d) Iteration 0: strain (e) Iteration 1: strain (f) Iteration 2: strain

(g) Iteration 4: fixture (h) Iteration 8: fixture (i) Iteration 16: fixture

(j) Iteration 4: strain (k) Iteration 8: strain (l) Iteration 16: strain

(m) Iteration 32: fixture (n) Iteration 64: fixture

(o) Iteration 32: strain (p) Iteration 64: strain

Figure 7.20: FTS; displacement step; first stage; strain map

30 Test Fixture Optimization

CHAPTER 7. EXPERIMENTAL RESULTS

(a) Iteration 0: fixture (b) Iteration 1: fixture (c) Iteration 2: fixture (d) Iteration 4: fixture

(e) Iteration 0: strain (f) Iteration 1: strain (g) Iteration 2: strain (h) Iteration 4: strain

(i) Iteration 8: fixture (j) Iteration 16: fixture (k) Iteration 32: fixture (l) Iteration 64: fixture

(m) Iteration 8: strain (n) Iteration 16: strain (o) Iteration 32: strain (p) Iteration 64: strain

Figure 7.21: P1SMD; displacement step; first stage; strain map

Test Fixture Optimization 31

CHAPTER 7. EXPERIMENTAL RESULTS

7.6 Strain-based step

bladiebla

7.7 Hill climb controller

bladiebla

7.8 Simulated annealing

bladiebla

32 Test Fixture Optimization

Chapter 8

Conclusion

bladiebla

8.1 Discussion

bladiebla

8.2 Future work

bladiebla

8.3 Conclusion

bladiebla

Test Fixture Optimization 33

Appendix A

Abbreviations

AET Automated Electrical Test
BCS Bottom Clamping Side
BGA Ball Grid Array
CAD Computer Aided Design
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
DOF Degree Of Freedom
DUT Device Under Test
ESD Electrostatic Discharge
ETS Electrical Test System
FEA Finite Element Analysis
FEM Finite Element Modelling
LBM Lattice Boltzmann Method
MTTF Mean Time To Failure
NMAE Normalized Mean Average Error
PCB Printed Circuit Board
PCBA Printed Circuit Board Assembly
PN Prodrive Number
PCA Principle Component Analysis
PSO Particle Swarm optimization
PWA Printed Wiring Assembly
SDF Signed Distance Function
SIMP Solid Isotropic Microstructures with Penalty
SMD Surface Mount Device
SMT Surface Mount Technology
TCS Top Clamping Side

34 Test Fixture Optimization

	Contents
	List of Figures
	List of Tables
	Introduction
	Device Under Test
	Printed circuit board assembly
	Fixture
	Bottom fixture
	Top fixture

	Testing process

	Board strain
	Definition
	Board defects
	IPC/JEDEC guidelines
	Finite Element Analysis

	Problem statement
	State-of-the-art
	Objective
	Project scope

	Optimization algorithms
	Random step
	Slope-based step
	Force-based step
	Displacement-based step
	Strain-based step
	Hill climb controller
	Simulated annealing

	Implementation
	Input/output file formats
	Domain model
	Slope-based step
	Force-based step
	Displacement-based step
	Strain-based step
	Hill climb controller
	Simulated annealing

	Experimental results
	Benchmark set
	Result representation
	Slope-based step
	Force-based step
	Displacement-based step
	Strain-based step
	Hill climb controller
	Simulated annealing

	Conclusion
	Discussion
	Future work
	Conclusion

	Abbreviations

