
Architecture
of

Distributed Systems

Replication 2019-2020
Consistency

R. H. Mak

Agenda

• Introduction
• Partitioning versus replication
• Quality drivers
• Replication transparency
• Architectural concerns
• Basic architecture

• Consistency models
• Replica management
• Architectural case studies

24-Oct-192IMN10-REP page 1R.H. Mak

Partitioning versus replication

Partitioning
• Splitting the data into smaller subsets (called partitions)

that are distributed over multiple nodes
• Also called sharding

Replication
• Distributing multiple copies (replicas) of the same data

over distinct nodes
• Redundancy

Often combined
• Multiple replicas per partition

24-Oct-192IMN10-REP page 2R.H. Mak

Quality drivers for partitioning

Introducing partitioning into the architecture of a data store
is mainly motivated by the following quality drivers

• Size of the data set (data base) simply too large for a single node
• What will be partitioned? Tables, records, ...

• Scalability
• Partitioning allows load balancing of data and its access
• Works best for NO-SQL data stores, e.g., key-value data stores

– each partition contains a range of records

• Performance
• Throughput improvement by concurrent access of distinct partitions

– requires proper allocation of records to partitions!
– avoid hot spots that receive the bulk of the queries (skewed workload)
– or combine with replication

24-Oct-192IMN10-REP page 3R.H. Mak

Partitioning of key-value data

Define a mapping �� � � �� �� � � 	
 from the set of
keys � to the set of node numbers. Note that � �

• by key range
• for totally ordered keys
• continuous ranges, boundaries need not be evenly spaced
• efficient range queries
• “hot ranges” due to skewed workload

• by hash of key
• need not be a cryptographic key (one-way function)
• achieves uniform distribution, evenly spaced boundaries
• inefficient range queries
• “hot keys” remain a problem

Assumes a 1-1 relation between partitions and nodes!

24-Oct-192IMN10-REP page 4R.H. Mak

Rebalancing partitions

Rebalancing may become necessary due to
• Increased number of queries (workload per node)
• Increased partition size
• Node failure

Change
� and (thereby) redefine the mapping �
• Redistributes records over partitions

• especially � � ����� � �����
� is inefficient

Allow multiple partitions per node.

• Introduce separate mappings: one for keys to partitions, and one for
partitions to nodes
• as a result partitions and nodes can be independently added or removed

• Split (merge) partitions that become too large (small)
• Load balancing by moving entire partitions between nodes

24-Oct-192IMN10-REP page 5R.H. Mak

Quality drivers for replication

Introducing replication into the architecture of a data store is mainly
motivated by the following quality drivers
• Reliability

• Replication removes a single point of failure and allows consensus
protocols to deal with corrupted data (majority voting, etc.)

• Availability
• If the probability that a single server becomes inaccessible is � , then

the availability with��� servers is �� � � � � (assuming server failures are
independent, which need not be the case in, e.g., datacenters)

• Performance
• Throughput improvement by concurrent access of distinct replicas
• Latency reduction by accessing a nearby replica
• Bandwidth reduction due to increased data proximity

• Scalability
• Replication (mostly of compute resources) allows load balancing

24-Oct-192IMN10-REP page 6R.H. Mak

Replication transparency

• An architecture is replication transparent when the users
of the system are unaware of the fact that several
replicas (physical copies) of an object (resource) exist.

• Refers primarily to data values; services that are implemented
via multiple servers or multi-threaded servers are (by intention)
distinguishable through increased performance.

• Implies that clients identify only a single (logical) data object as
the target of an operation and also expect only a single return
value (as opposed to one for each replica on which the
operation is performed).

• Implies that the architecture is also location transparent,
otherwise replicas could be identified by their location.
• e.g., as revealed in their name.

24-Oct-192IMN10-REP page 7R.H. Mak

Architectural concerns

Replication (especially of data) is not for free: it raises
additional concerns whose solutions incur costs:

1. What is the number of replicas and where should the replicas and
replica managers be located?
• Statically or dynamically resolved. In the latter case, also which party initiates the

creation/destruction of replicas?

2. Whether and how to maintain consistency?
• Ideally, all replicas have the same value (at least upon access)
• Difficult because there is no notion of global time and state.

3. What architectural elements to use for storage and management?
• Front ends, replica managers, caches, key-value stores, relational databases, load

balancers, multicast infrastructure, logical clocks for time-stamping and versioning

4. What protocols to use for accessing (reading & writing) of replicas?
• Push(server)-based or pull(client)-based, unicast versus multicast, group view,

gossiping, degree of synchronization

24-Oct-192IMN10-REP page 8R.H. Mak

Basic model (CDK5, Wiesmann et al.)

• The basic model is multiple-client-single-server or
multiple-client-multiple-server.
• Servers represent a distributed data store with one or more

access points for their clients
• Operations invoked on the objects in the store are classified in two

broad categories
• Updates (also referred to as write operations) that potentially modify

the state of the store
• Queries, (also referred to as read operations) that inspect part of the

state of the store.

• Each server has a special entity, the replica manager (RM), that is
responsible for managing the local part of the data store.
• Depending on the details of the architecture, this entity also serves as

access point for clients. Alternatively, this task is performed by a
separate front end (FE).

24-Oct-192IMN10-REP page 9R.H. Mak

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 15.1
A basic architectural model for the management of replicated data

FE

Requests and
replies

C

ReplicaC

ServiceClients Front ends

managers

RM

RMFE

RM

• RMs manage replicas of multiple objects, and each object is managed by a
subset of all RMs. The size of the subset determines the number of replicas
of the object. Often, each RM manages every object.

• RMs apply operations to their replicas as indivisible actions, and all actions
can be recovered.

• The state of an RM is completely determined by its initial configuration and
the sequence of actions performed.

Basic architecture: behavioral view

1. Request phase
• Requests accepted by FE are communicated to a fixed RM (passive)
• Requests accepted by FE are multi-casted to all RMs (active)

2. Coordination phase
• RMs determine whether, by which RMs and in which order (FIFO, causal,

total) requests are performed; ordering can be enforced through delivery
mechanism (usually total order)

3. Execution phase
• RMs tentatively, i.e. undo is possible, execute the requested operation

4. Agreement phase
• RMs reach consensus on the effect of the operation and commit

5. Response phase
• Some RMs respond to the FE which in turn replies to the client

Beware : Phases need not be executed in this order

24-Oct-192IMN10-REP page 11R.H. Mak

Agenda

• Introduction
• Consistency models

• Single-server paradigm
• Conflicting operations
• Data-centric models
• Client-centric models

• Replica management
• Architectural case studies

24-Oct-192IMN10-REP page 12R.H. Mak

1. Are contracts between data store and clients
• Consistency is a property of the data store as a whole; for

individual data items we speak about coherence for which there
can be separate models.

2. Define the unit of consistency (the conit)
3. Determine the outcome of a sequence of read/write

operations performed by one or more clients
• Results obtained by individual clients
• Resulting state of the store

4. Can be classified in two broad categories:
• Data-centric models
• Client-centric models

Consistency models

24-Oct-192IMN10-REP page 13R.H. Mak

Single-server paradigm

• The key idea behind consistency is that, for all parties involved, the
operations appear as if they were performed as indivisible actions by
a single server, i.e., in the same order and having the same effect.

• “the same effect” requires that queries return the same value and
updates leave the data store in the same state.
• This state is a logical concept, because, in practice, it can occur that there is

never a moment in time at which all replicas hold values in accordance with
the state. However, if clients cease to access the store and no RM crashes, all
replicas eventually must assume the same value.

• “the same order” requires the existence of a global, system wide, notion
of time, that is used to totally order the receipt of operation requests by
the data store.
• In practice, synchronization of local clocks can only approximate this ideal,

which may or may not be sufficient (beware True Time in Google Spanner �)

• Since neither demand can be fulfilled, consistency models basically
delineate how far the system may deviate from this ideal.

24-Oct-192IMN10-REP page 14R.H. Mak

Conflicting operations

• Two operations are conflicting when the outcome of
executing them as a sequence of two atomic actions
may potentially differ for the two possible execution
orderings.

• Conflicting operations come in two flavors:
• read-write conflicts (different values returned)
• write-write conflicts (store left in different states)

• The actual values involved in write operations can be
such that no conflict arises.
• Example: Client1::Write (X, 42) Client2::Write (X,42)
• To limit the amount of state information, replication

management protocols, in general, do not take values of
operations into account, only their order.

24-Oct-192IMN10-REP page 15R.H. Mak

Execution constraints

Consistency puts constraints on the interleaving of opera-
tions allowed to the single server, and therefore, by the
single server paradigm, also on the behavior, i.e., order of
operations, occurring at the RMs of the data store.

• R1: The interleaved sequence of operations meets the specification
of a (single) correct copy of the objects
• i.e., produces the same results (return values and internal state)
• maintains system invariants

• R2: The order of operations in the interleaving originating from a
single client is consistent with the order in which that client issued
them (program order).

• R3: The order of operations in the interleaving is consistent with the
global (real-time) ordering of the operations.

24-Oct-192IMN10-REP page 16R.H. Mak

� � � ��� � � ��

�� �

�� �

� �

� �

Total number of
interleavings: 24

Interleavings by R2
• � � � � � �
• � � � � � �
• � � � � � �
• � � � � � �
• � � � � � �
• � � � � � �

Interleavings by R3
• � � � � � �
• � � � � � �

Overlapping
in time, hence
concurrent

24-Oct-192IMN10-REP 17R.H. Mak

Concurrency and interleavings

t
i

m
e

Sequential consistency

Actual executions that satisfy R1 and R2 are sequentially
consistent.

• A data store with replicated objects is sequentially consistent when
all its executions are sequentially consistent.

• Sequential consistency allows swapping the order of pairs of
subsequent operations originating from distinct clients to obtain a
single server execution (even when they are conflicting)
• Reflects possible transmission delays between clients and the data store

and between data store AEs.

• This is the strongest form of consistency that can be enforced without
loosing full benefits offered by concurrency.
• Where concurrent events are those that have no causal dependency

24-Oct-192IMN10-REP page 18R.H. Mak

Definition from TvS

A data store is sequentially consistent when

The result of any execution is the same as if the read
and write operations by all processes on the data store
where executed in some sequential order and the
operations of each individual process appear in this
sequence in the order specified by its program.

24-Oct-192IMN10-REP page 19R.H. Mak

Linearizability

Actual executions that satisfy R1 and R3 are called
linearizable

• A data store with replicated objects is linearizable when all its
executions are linearizable.

• Linearizability allows swapping the order of pairs of subsequent
operations originating from distinct clients provided they do not
conflict, i.e., they refer to distinct objects, or they are both read
operations.

• Swapping conflicting operations at a single server, in principle
modifies the result (return value of reads or resulting state of logical
object).

24-Oct-192IMN10-REP page
20

R.H. Mak

� � � ���!� �"#� � � ���

Write (X, 1)

Return

Read (X)

Return 0

Single server execution
(1-out-of-2 allowed by R3)

Initially: $ �%� & ' � �%�

! � � �"#� � � ��� ! � � �"#

Write (X, 1)

Return

� � � ���

Read (X)

Return 0

Write (X, 1)

Return

Linearizable (execution, but not the store!!!) R1 not violated
! � follows !

concurrent

but wrong implementation!

slow
propa-
gation

X

From here on: front ends omitted!

R.H. Mak 2IMN10-REP 21 24-Oct-19

� � � ���!� �"#� � � ���

Write (X, 1)

Return

Read (X)

Return 1

Single server execution
(the only one allowed by R3)

Initially: $ �%� & ' � �%�

! � � �"#� � � ��� ! � � �"#

Write (X, 1)

Return

� � � ���

Read (X)

Return 0
Write (X, 1)

Return

Not linearizable: the execution
and hence also the store

R1 violated

R.H. Mak 2IMN10-REP 22 24-Oct-19

X

! � � �"#� � � ��� ! � � �"#

Write (X, 1)

Return

� � � ���

Read (X)

Return 1

Write (X, 1)

Return

� � � ���!� �"#� � � ���

Write (X, 1)

Return
Read (X)

Return 1

Single server execution
(the only one allowed by R3)

Initially: $ �%� & ' � �%�

Linearizable (both execution and store) R1 not violated

()�

R.H. Mak 2IMN10-REP 23 24-Oct-19

� � � ���!� �"#� � � ���

Write (X, 1)

Return

Read (X)

Return 0

Single server execution
(1 out-of 2 allowed by R3)

Initially: $ �%� & ' � �%�

! � � �"#� � � ��� ! � � �"#

Write (X, 1)

Return

� � � ���

Read (X)

Return 0Write (X, 1)

Return

Linearizable R1 not violated

R.H. Mak 2IMN10-REP 24 24-Oct-19

! � � "#� � � ��� ! � � "#

Write (X, 1)

Return

� � � ���

Read (X)

Return 1

Write (X, 1)

Return

� * � ���! * � "#

Read (X)

Return 0
Write (X, 1)

Return

� � � ��� ! � � "#

Write (X, 1)

Return

� � � ���

Read (X)

Return 1

� * � ���

Read (X)

Return 1

Initially: $ �%�%�

Not linearizable R1 violated

Single server execution (1 out-of
3) allowed by R3. None allows
reading 1 twice.

R.H. Mak 2IMN10-REP 25 24-Oct-19

!� �"#! � � �"#� � � ��� ! � � �"#

Read (Y)

Return 2

Write (X, 1)

Return

� � � ���

Write (Y, 2)

Return

Read (X)

Return 0

XWrite (Y,2)

Write (X, 1)

Return

Write (Y, 2)

Return

Read (Y)

Return 2

Read (X)

Return 1

Single server execution
(the only one satisfying R3)

Initially: $ �%� & ' � �%�

Not linearizable
see also slide 29

� � � ���� � � ���

timeout

conflict

Crash
before
propagate

rebind

Logical variables $ �and '

R.H. Mak 2IMN10-REP 26 24-Oct-19

!� �"#! � � �"#� � � ��� ! � � �"#

Read (Y)

Return 0

Write (X, 1)

Return

� � � ���

Write (Y, 2)

Return

Read (X)

Return 0

X

Write (Y,2)

Write (X, 1)

Return

Write (Y, 2)

Return

Read (Y)

Return 0

Read (X)

Return 1

Single server execution
1 out-of 2 allowed by R3

Initially: $ �%� & ' � �%�

Not linearizable

� � � ���� � � ���

timeout

conflict

Allowed
By R3

concurrent

R.H. Mak 2IMN10-REP 27 24-Oct-19

!� �"#! � � �"#� � � ��� ! � � �"#

Read (Y)

Return 0

Write (X, 1)

Return

� � � ���

Write (Y, 2)

Return

Read (X)

Return 0

X

Write (Y,2)

Write (X, 1)

Return

Write (Y, 2)

Return

Read (Y)

Return 0

Read (X)

Return 1

Single server execution
does not satisfy R3, shows
swapping non-conflicts
does not alter linearizability

Initially: $ �%� & ' � �%�

Not linearizable

� � � ���� � � ���

timeout

conflict

non conflict
swapped

R.H. Mak 2IMN10-REP 28 24-Oct-19

� � � ���!� �"#� � � ���

Write (X, 1)

Return

Write (Y, 2)

Return

Read (Y)

Return 0

Read (X)

Return 0

Single server execution:
does not satisfy R3,
but does satisfy R2.

conflicting operations
swapped (allowed)

! � � �"#� � � ��� ! � � �"#

Read (Y)

Return 0

Write (X, 1)

Return

� � � ���

Write (Y, 2)

Return

Read (X)

Return 0

X

Write (Y,2)

Initially: $ �%� & ' � �%�

sequential consistent
early return for Write(X,1) is OK in
this execution

timeout

not linearizable

R.H. Mak 2IMN10-REP 29 24-Oct-19

! � � �"#� � � ��� ! � � �"#

Read (Y)

Return 0

Write (X, 1)

Return

� � � ���!� �"#� � � ���� � � ���

Read (X)

Return 0 Write (X, 1)

Return

Write (Y, 2)

Return

Read (Y)

Return 0

Read (X)

Return 0

Single server executionInitially: $ �%� & ' � �%�

Write (X, 1)

Return

Write (Y, 2)

Return

Reordering reflects arrival time
at replica manager ! �

Can also happen without failure
Just slow propagation

R.H. Mak 2IMN10-REP 30 24-Oct-19

� � � ���!� �"#� � � ���! � � �"#� � � ��� ! � � �"#

Read (Y)

Return 2

Write (X, 1)

Return

� � � ���

Write (Y, 2)

Return

Read (X)

Return 0

XWrite (Y,2)

Write (X, 1)

Return

Write (Y, 2)

Return

Read (Y)

Return 2

Read (X)

Return 1

timeout

Initially: $ �%� & ' � �%�

Single server execution
1-out-of 6
Reordering does not help

Not sequential consistent

R.H. Mak 2IMN10-REP 31 24-Oct-19

� � � ���!� �"#� � � ���! � � �"#� � � ��� ! � � �"#

Read (Y)

Return 2

Write (X, 1)

Return

� � � ���

Write (Y, 2)

Return

Read (X)

Return 0

XWrite (Y,2)

Write (X, 1)

Return

Write (Y, 2)

Return

Read (Y)

Return 0

Read (X)

Return 0
timeout

Initially: $ �%� & ' � �%�

Single server execution
1-out-of 6
Reordering does not help

Not sequential consistent X-value ok, but
now Y-value wrong

R.H. Mak 2IMN10-REP 32 24-Oct-19

! � � �"#� � � ��� ! � � �"#

Write (Y,1)

Return

Write (X, 1)

Return

� � � ���!� �"#� � � ���� � � ���

Read (X)

Return 0

Write (X, 1)

Return

Read (X)

Return 1

Single server executionInitially: $ �%� & ' � �%�

Write (X, 1)

Return

Read (Y)

Return 0

Reordering conflicts can
only modify 1 read

Not sequential consistent

Write (Y,1)

Return

Read (Y)

Return 1

Write (Y,1)

Return

Updates from distinct clients

R.H. Mak 2IMN10-REP 33 24-Oct-19

Other forms of consistency

• Causal consistency
• Operations from different clients that are causally related (as

defined by Lamport’s happens before relation) may not be
swapped.
• are seen by all clients in the causal order.

• Determined by means of time stamps and vector clocks.
• Enforced by the delivery mechanism in the coordination phase
• Weaker than sequential consistency.

• Eventual consistency
• In the absence of further updates and system failures all replicas

eventually have the same state.
• Weaker than causal consistency.

24-Oct-192IMN10-REP page
34

R.H. Mak

! * � �"#! � � �"#� � � ��� ! � � �"#

Read (X)

Return 2

Write (X, 1)

Return

� � � ���

Read (X)

Return 1

Initially: $ �%�%�

Write (X, 1)

Return

Write (X, 2)

Return

� * � ���

Write (X, 2)

Return

Write (X, 1)

Return

Read (X)

Return 1

No causal
consistency

happens
before

X := X+1

Beware : RM ! � is superfluous.
Only present to show chain of
causal dependence

R.H. Mak 2IMN10-REP 35 24-Oct-19

� � � ���!� �"#� � � ���! � � �"#� � � ��� ! � � �"#

Read (Y)

Return 2

Write (X, 1)

Return

� � � ���

Write (Y, 2)

Return

Read (X)

Return 0

Write (X, 1)

Return

Write (Y, 2)

Return Read (Y)

Return 2
Read (X)

Return 1

Initially: $ �%� & ' � �%� Single server linear execution

Not sequential consistent.
Note that swapping to get X
right, makes Y wrong

Write (X, 1)

Return
Write (Y, 2)

Return

Finally: $ �%� & ' � +%+

So, eventually consistent

R.H. Mak 2IMN10-REP 36 24-Oct-19

Client-centric models

• Monotonic read consistency
• If a process reads the value of a data item , , any successive read

operation on , by that process will always return that same value or a
more recent one.

• Monotonic write consistency
• A write operation on a data item , is completed before any successive

write operation on , by the same process.

• Read your writes
• The effect of a write operation by a process on data item ,� will always

be seen by a successive read operation on ,� by the same process.

• Writes follow reads
• A write operation by a process on a data item ,� following a previous

read operation on , by the same process is guaranteed to take place
on the same or a more recent value of , than was read.

24-Oct-192IMN10-REP page 37R.H. Mak

! � � �"#� � � ��� ! � � �"# � � � #�! * � �"#

Write (X, 1)

Return

Read (X)

Return 1

Read (X)

Return 0

Write (X, 1)

Return

Write (X, 1)

Return

Initially: $ �%�% �

Client moves to
another location,
i.e., rebinds

TOO LATE
lazy propagation

Monotonic
read

violation

Client will not notice
that 0 is an old value
unless it has a time
stamp (or version
number)

R.H. Mak 2IMN10-REP 38 24-Oct-19

! � � �"#� � � ��� ! � � �"# � � � ��

Write (X, 1)

Return

Read (X)

Return 2

Read (X)

Return 1

Write (X, 2)

Return

Write (X, 1)

Return

Initially: $ �%�

Writer moves
to another
location, i.e.,
rebinds

TOO LATE
delayed propagation

Monotonic
read
violation
at � �

or written by another
client, but then
global time stamps
are needed to
determine whether it
is more recent

R.H. Mak 2IMN10-REP 39 24-Oct-19

! � � �"#� � � ��� ! � � �"# � � � #�! * � �"#

App (S, “c”)

Return

Read (X)

Return “abc”

Read (X)

Return “ab”

App (S, “c”)

Return
Write (S, “abc”)

Initially: - .�/.% .�/.% .�/.

Clients can only append,
RMs have two options
• forward the operation
• forward its result

In either case, for this
operation the mobile
client can observe that
forwarding has not been
done, because it sees a
prefix on the second read

R.H. Mak 2IMN10-REP 40 24-Oct-19

• Monotonic read consistency
• If a process reads the value of a data item , , any successive read

operation on , by that process will always return that same value or a
more recent one.

• Monotonic write consistency
• A write operation on a data item , is completed before any successive

write operation on , by the same process.

• Read your writes
• The effect of a write operation by a process on data item ,� will always

be seen by a successive read operation on ,� by the same process.

• Writes follow reads
• A write operation by a process on a data item ,� following a previous

read operation on , by the same process is guaranteed to take place
on the same or a more recent value of , than was read.

Client-centric models

24-Oct-192IMN10-REP page
41

R.H. Mak

! � � �"#� � � ��� ! � � �"#

Write (X, 3)

Return

Write (X, 3)

Return

Write (X,4)

Return

! � � �"#� � � ��� ! � � �"#

Write (X, 3, 1)

Return

Write (X,3,1)

Return

Write (X, 4, 2)

Return

Monotonic-write violation Can be prevented by versioning updates

X

Initially: $ �% �

Client
moves to
another
location,
i.e., rebinds

version number

R.H. Mak 2IMN10-REP 42 24-Oct-19

! � � �"#� � � ��� ! � � �"#

Write (X, 3)

Return

Write (X, 3)

Return

Write (X,4)

Return

! � � �"#� � � ��� ! � � �"#

Write (X, 3)

Return

Write (X, 3)

Return

Write (X, 4)

Return

[no pending Writes]

Monotonic-write violation Can be prevented by making writes atomic

! * � �"#

Write (X, 3)

Return

X

Initially: $ �% �

Client
moves to
another
location,
i.e., rebinds

R.H. Mak 2IMN10-REP 43 24-Oct-19

Client-centric models

• Monotonic read consistency
• If a process reads the value of a data item , , any successive read

operation on , by that process will always return that same value or a
more recent one.

• Monotonic write consistency
• A write operation on a data item , is completed before any successive

write operation on , by the same process.

• Read your writes
• The effect of a write operation by a process on data item ,� will always

be seen by a successive read operation on ,� by the same process.

• Writes follow reads
• A write operation by a process on a data item ,� following a previous

read operation on , by the same process is guaranteed to take place
on the same or a more recent value of , than was read

24-Oct-192IMN10-REP page 44R.H. Mak

! � � �"#� � � ��� ! � � �"#

Write (X, 1)

Return

Write (X, 1)

Return

Read (X)

Return 0

! � � �"#� � � ��� ! � � �"#

Write (X, 1)

Return

Read (X)

Return 1

Read-your-writes violation Can be prevented by stale notification
Can also be prevented by making writes atomic

X

Initially � %�

Client
moves to
another
location,
i.e., rebinds

X a private variable of � �

! � can be, e.g, a stale cache

Stale

Read (X)

Return 1

R.H. Mak 2IMN10-REP 45 24-Oct-19

! � � �"#� � � ��� ! � � �"#

Write (X, 1)

Return

Write (X, 1)

Return

Read (X)

Return 0

! � � �"#� � � ��� ! � � �"#

Write (X, 1)

Return

Write (X, 1)

Return

Read (X)

Return 1

[no pending Writes]

Read-your-writes violation Can be prevented by making writes atomic

! * � �"#

Write (X, 1)

Return

X

Initially � %�

Client
moves to
another
location,
i.e., rebinds

X a private variable of � �

R.H. Mak 2IMN10-REP 46 24-Oct-19

• Monotonic read consistency
• If a process reads the value of a data item , , any successive read

operation on , by that process will always return that same value or a
more recent one.

• Monotonic write consistency
• A write operation on a data item , is completed before any successive

write operation on , by the same process.

• Read your writes
• The effect of a write operation by a process on data item ,� will always

be seen by a successive read operation on ,� by the same process.

• Writes follow reads
• A write operation by a process on a data item ,� following a previous

read operation on , by the same process is guaranteed to take place
on the same or a more recent value of , than was read.

Client-centric models

24-Oct-192IMN10-REP page 47R.H. Mak

! � � �"#� � � ��� ! � � �"# � � � #�! * � �"#

App (X,m)

Return

Initially: $..% ..% ..

Write follows
read violation

Message !
has not been
read by � � , so
it does not
understand the
sequel 0+

� * � #�

App (X, m)

Return

Read (X)

Return 42

Read (X)

Return m

App (X, 42)

Return App (X, 42)

Return

X

or � � rebinds to ! � ?

Of course ! is the “Ultimate Question of Life, the Universe and Everything”!!!
See: Douglas Adams, The Hitchhikers Guide to the Universe

7.500000
years

R.H. Mak 2IMN10-REP 48 24-Oct-19

or � * is already
bound to ! �

Literature

• For the preparation of this slide set we have used material
from various sources.

• Tanenbaum, van Steen: Distributed Systems: Principles and
Paradigms,
• Chapter 7

• Coulouris, Dollimore, Kindberg, Distributed Systems:
Concepts and Design,

• Chapter 18 (basic model + gossip architecture)

• M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso,
Understanding Replication in Databases and Distributed Systems,
• basic model

• R. Ladin, B Liskov, L. Shrira, and S. Ghemawat
Providing high availability using lazy replication
• gossiping

24-Oct-192IMN10-REP page 49R.H. Mak

