
Copyright © 2009 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
I3D 2009, Boston, Massachusetts, February 27–March 1, 2009.
© 2009 ACM 978-1-60558-429-4/09/0002 $5.00

Screen Space Fluid Rendering with Curvature Flow

Wladimir J. van der Laan∗

NVIDIA
Rijksuniversiteit Groningen

Simon Green†

NVIDIA
Miguel Sainz‡

NVIDIA

Figure 1: SPH simulations as the one shown here are a powerful tool to simulate fluids, but require advanced techniques to allow realistic
renderings of the results. These images show an example of the visual results that can be achieved with our method.

Abstract

We present an approach for rendering the surface of a particle-based
fluid that is simple to implement, has real-time performance with a
configurable speed/quality trade-off, and smoothes the surface to
prevent the fluid from looking "blobby" or jelly-like. The method
is not based on polygonization and as such circumvents the usual
grid artifacts of marching cubes. It only renders the surface where
it is visible, and has inherent view-dependent level-of-detail. We
use Perlin noise to add detail to the surface of the fluid. All the
processing, rendering and shading steps are directly implemented
on graphics hardware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality; I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms

Keywords: real-time, fluid, rendering, screen-space, noise, foam,
curvature flow, GPU, SPH

1 Introduction

For interactive scenes such as those used in games, particle based
fluid simulation methods like Smoothed Particle Hydrodynamics
(SPH) [Desbrun and Gascuel 1996] are commonly preferred to Eu-
lerian fluid representations. This is because the fluid is able to flow
everywhere in the scene without the need to define a finite grid,
which is costly in terms of memory and computation. Particle meth-
ods are also more convenient to integrate into existing physics sys-
tems as particles can collide against the scene geometry just like
other rigid objects (see Figure 1). The drawback is that it is more

∗e-mail:w.j.van.der.laan@rug.nl
†e-mail:sgreen@nvidia.com
‡e-mail:msainz@nvidia.com

difficult to extract a surface for rendering. Although there are ex-
tensive contributions in the literature [Clavet et al. 2005; Bridson
2008; Liu and Liu 2003] on particle-based fluid simulations, there
is very little on rendering particle fluids. Of the methods that have
been developed, most are not suitable for real-time use in games.
Usually, the fluid surface is constructed in world-space, either as a
mesh directly [Stora et al. 1999], or as implicit surface, and then
polygonized using Marching Cubes [Lorensen and Cline 1987] or
a similar method [Rosenberg and Birdwell 2008; Williams 2008].
After this, relaxation and optimization operations can be applied to
the entire mesh to increase the smoothness of the surface, which are
both computation and memory intensive.

Implicit surface polygonization methods also suffer from grid dis-
cretization artifacts in frame-to-frame coherence [Adams et al.
2006], as the grid is static and does not move with the fluid. This
is especially visible when using low resolution grids in real-time
rendering. In [Zhang et al. 2008] an interesting point-based ren-
dering approach is presented where ray-metaball intersections are
computed entirely on the GPU in a two pass rendering approach.
This method removes the requirements for a grid discretization.

If the fluid is moving and rendering is only desired from only one, or
at most a few, viewpoints per frame, a more memory and compute
efficient method is to only construct the surface represented by the
particles that are visible to the camera in view-space like the work
presented in [Müller et al. 2007].

The main contribution of this paper is a splatting-based fluid ren-
dering method that

• Achieves real-time performance, with configurable speed to
quality trade-off.

• Does all the processing, rendering and shading steps directly
on graphics hardware.

• Smoothes the surface to prevent the fluid from looking blobby
or jelly-like.

• Is not based on polygonization, and thus does not suffer from
the associated artifacts.

• Is simple to implement, consisting of a few passes using frag-
ment shaders and intermediate render targets.

91

• Has inherent view-dependent level-of-detail, as the method is
based on a grid on screen-space.

Another novel idea that will be proposed is a way to generate noise
that moves with the particles on the surface of the fluid, which can
be used to add foam-like effects and surface detail on a smaller scale
than the particles themselves.

2 Related work

Rosenberg and Birdwell [Rosenberg and Birdwell 2008] optimized
Marching Cubes specifically in the context of particle isosurface
extraction, achieving real-time performance for up to 3000 parti-
cles. Although relatively fast, the results look quite blobby, and as
their method directly renders the resulting mesh, there is no way
to post-process the result to improve quality. Also, for SPH fluids
we typically need at least 10000 particles for the simulation to look
realistic.

Williams, in his thesis [Williams 2008] outlines a new approach
to surfacing in particle-based fluid simulations. A generalization
of Marching Cubes, called Marching Tiles, is used which allows
constraints to be put on the quality and smoothness of the mesh.
This results in nice smooth surfaces, but the approach is designed
for offline rendering and is not real-time. It also suffers from the
same drawbacks as Marching Cubes, such as having a fixed grid.

Somewhat related to our method is the projected grid as was intro-
duced in [Johanson 2004] which transforms a displaced surface so
that it resembles a uniform grid in post-perspective space as closely
as possible. This provides spatial scalability as well as high relative
resolution without resorting to LOD schemes. Our method relies
on a uniform (per-pixel) grid in post-perspective space as well.

In [Müller et al. 2007] the authors present an approach for gener-
ating the boundary of a three-dimensional point cloud as a mesh
in screen-space, generating the surface only where it is visible. It
first computes the depth to the surface at each pixel on the screen,
smoothes this depth map using a binomial filter, then polygonizes
the depth buffer. The polygonization step is computationally very
intensive, and does not map to graphics hardware in a straightfor-
ward way. In our method, instead of generating an intermediate
mesh, the depth buffer is used for rendering directly.

Finally, in [Zhang et al. 2008] the authors present an implicit ray-
metaball algorithm that does not require an explicit metaball recon-
struction, using point based rendering techniques and assimilating
the metaballs as point based splats. First, non overlapping fluid sur-
face points are determined using a GPU based dynamic grouping
algorithm [Zhang and Pajarola 2007] and an initial ray-metaball in-
tersection is computed. In a second pass the final intersection with
the isosurface is determined for each pixel from the contributions
of disjoint sets. The advantage of this method is that it does not
require a subdivision grid for the surface reconstruction. In order
to minimize the bumpy appearance resulting from the simulations,
a fairly big metaball radius has to be used, at the cost of very thick
surfaces.

Level-sets [Malladi and Sethian 1995] have been used extensively
in fluid simulations to track the interface between fluid and air as
they provide a deformable surface representation that allows for
topology changes. We have incorporated a few ideas from level-
sets but have not applied the full method, as even efficient level-set
methods involve too much computation to be used for this purpose
in real-time.

Subsequent to our research we became aware of another publication
[Cords and Staadt 2008] that uses a similar image-space fluid ren-

(a) (b) (c)

Figure 2: Drawing the particles as spheres (a) front view (b) in
view-space and (c) after perspective projection.

dering technique but lacks the advanced smoothing and thickness-
based rendering of our method.

3 Method

In this work we will assume a SPH particle simulation has already
been carried out. The input data consists of the positions xi of
particles pi, i ∈ {0..n}, in any order. Optionally, the particles
can have an associated density ρi and velocity vi coming from the
simulation. A high level overview of the method: Starting from
the fluid particle positions, surface depth (explained in section 3.1)
and thickness (section 3.3) is written to two render targets. The
surface depth is then smoothed (section 3.2), and a dynamic noise
texture is generated on the surface of the fluid (section 3.4). Then, a
compositing pass is performed that combines the smoothed surface
depth, the noise texture and an image of the scene behind the fluid
into the final rendering of the fluid (section 3.5).

3.1 Surface depth

Before anything can be rendered the front-most surface of the fluid
from the viewpoint of the camera is determined. We do this by
rendering the particles as spheres, and retaining the closest value at
each pixel (see Figure 2). This maps naturally to the depth test in
graphics hardware.

At the beginning of the frame, the render target z(x, y) is initialized
with a special value representing a very large depth. Then every
particle is rendered using standard depth testing enabled, which will
only overwrite the current value if it is closer to the camera. After
rendering, z(x, y) will thus contain the depth to the viewer of the
nearest particle, for each pixel in the viewport.

In order to obtain a representation of the surface of the fluid from
the viewer’s point of view, we will consider the particles as spheres
using point sprites (screen oriented quads) with depth replacement
in the fragment shader. This avoids the use of complex geometry
and is a well known technique in the community. Unlike in sur-
face splatting [Botsch et al. 2005; Adams et al. 2006], we do not
explicitly splat the normal or shaded color values, but calculate the
normals from the depth values while rendering. The reason for this
is that the depth values will be manipulated by the smoothing step
which will be discussed in next section. In some cases it is desirable
to exclude stray particles from rendering as these do not form part
of any surface. This is easily accomplished by putting a thresh-
old on the density ρi obtained from the simulation. To make the
transition more smooth, the low-density particles can be rendered
separately as spray.

3.2 Smoothing methods

It is not desirable for the particles to be visible as spheres since
this results in an unrealistic jelly-like appearance. We would like a

92

smooth, flat surface that approximates the particle positions. In our
method, we achieve this by smoothing the surface in screen-space.

An obvious approach is use a Gaussian blur or variants such as
Bilateral Gaussian filters [Aurich and Weule 1995] or more ad-
vanced filters like [Chen et al. 2007]. However, straightforward
Gaussian blurs will cause blurring over silhouette edges and can
cause plateaus of equal depth when using large kernels. Bilateral
filters preserve edges, but are non-separable and therefore expen-
sive. It is difficult to implement a blur with a variable-width kernel
efficiently on graphics hardware.

As an alternative to Gaussian smoothing, we can look at the prob-
lem in a different way: we are interested in method that smoothes
out sudden changes in curvature between the particles, forming a
smooth and continuous surface. One way to think of this is to min-
imize the curvature. This also has a natural motivation, as it is
similar to surface tension in fluids which is responsible for the for-
mation of water drops and puddles. A more general name for this
process is called curvature flow [Malladi and Sethian 1995].

Curvature flow evolves a surface along its normal direction with the
speed depending on the magnitude and sign of the mean curvature
of the surface, and is well-known from the level-set literature. In
our application we are working on a depth buffer, which means that
the surface can only be moved in the z direction perpendicular to the
view plane. However, as the viewpoint is constant we still achieve
the desired effect of smoothing the surface by moving the z value
in proportion to the curvature, thus we define

∂z

∂t
= H, (1)

in which t is a smoothing time step, and H is the mean curvature.
From now on, we will call this method screen-space curvature flow.

Mean curvature is defined as the divergence of the unit normal of a
surface,

2H = ∇ · n̂ (2)

By inverting the projection transformation, a value in the depth
buffer is mapped back to a point P in view space Vx and Vy are
the dimensions of the viewport, Fx and Fy is the focal length in the
x and y direction subsequently,

P(x, y) =

0BB@
2x
Vx

−1.0

Fx
2y
Vy

−1.0

Fy

1

1CCA z(x, y) =

0@ Wx

Wy

1

1A z(x, y) (3)

The normal is calculated by taking the cross product between the
derivatives of P in the x and y direction,

n(x, y) = ∂P
∂x

× ∂P
∂y

=

0@ Cxz + Wx
∂z
∂x

Wy
∂z
∂x

∂z
∂x

1A ×

0B@ Wx
∂z
∂y

Cyz + Wy
∂z
∂y

∂z
∂y

1CA
≈

0@ Cxz
0
∂z
∂x

1A ×

0@ 0
Cyz
∂z
∂y

1A =

0@ −Cy
∂z
∂x

−Cx
∂z
∂y

CxCyz

1A z,

in which Cx = 2
VxFx

, Cy = 2
VyFy

, we chose to ignore the terms
of the derivative of P that depend on the view position Wx, Wy

because it simplifies the computations a lot, and the difference is
negligible as the contributions are really small. The unit normal

n̂(x, y) = n(x,y)
|n(x,y)| =

“
−Cy

∂z
∂x

,−Cx
∂z
∂y

,CxCyz
”T

√
D

, (4)

in which

D = C2
y

„
∂z

∂x

«2

+ C2
x

„
∂z

∂y

«2

+ C2
xC2

yz2 (5)

is substituted in the equation for mean curvature (Eq. 2), so that H
can be derived. The z component of the divergence is always zero,
as z is a function of x, and y and thus does not change when these
are kept constant. We get

2H =
∂n̂x

∂x
+

∂n̂y

∂y
=

CyEx + CxEy

D
3
2

(6)

in which

Ex =
1

2

∂z

∂x

∂D

∂x
− ∂2z

∂x2
D, (7)

Ey =
1

2

∂z

∂y

∂D

∂y
− ∂2z

∂y2
D (8)

A simple Euler integration of Eq. 1 in time is used to modify the z
values in each iteration. The spatial derivatives of z are computed
using finite differencing.

The surface may be discontinuous because of silhouettes in screen-
space. To prevent blending different patches of surface together it
is important to make sure that boundary conditions are enforced
where large changes in depth occur between one pixel and the next.
At these boundaries, and the edges of the screen, we force the spa-
tial derivatives to be 0 to prevent any smoothing from taking place.

The number of iterations is chosen depending on the smoothness
that is desired. The more iterations the smoother the surface will
be, but this will come at the expense of increased computation time.

3.3 Thickness

One expects an object to become less visible depending on the
amount of fluid that is in front of it. To accomplish this we need
to compute the amount of fluid between the camera and the nearest
opaque object for each pixel, which we refer to as the “thickness“.
When rendering, the thickness is used to attenuate the color and
transparency of the fluid.

The particles are regarded as spheres of fluid with a fixed size in
world space. The rendering process is the same as that in Section
3.1, with the difference that the fragment shader outputs the thick-
ness of the particle at that position instead of a depth value. Ad-
ditive blending is used so that the amount of fluid is accumulated
at each position on the screen. Depth test is enabled, so that only
particles in front of the scene geometry are rendered,

T (x, y) =

nX
i=0

d(
x− xi

σi
,
y − yi

σi
), (9)

where d is the depth kernel function, xi and yi are the projected
position of the particle, x and y are screen coordinates, and σi is
the projected size.

Strictly speaking this measure of thickness is only correct if the
particles do not overlap, but this is a reasonable assumption in SPH
due to repulsive inter-particle forces.

3.4 Noise

Although our method helps to hide the particle-based nature of the
fluid the result can still look artificially smooth. Surface detail and

93

foam is an important visual element in real fluids. A straightfor-
ward way to improve this would be to perturb the surface using a
noise texture and thus add small-scale detail, as in [Johanson 2004].
However, generating fixed noise in world space or eye space makes
it appear as if the noise is stuck in place. The challenge is to have
noise that is advected by the fluid, but is of a smaller scale and
higher frequency than the simulated, particle based fluid.

Instead we propose to use Perlin noise [Perlin 1985] by assigning
one octave of noise to each projected particle based on its index
value, so that a certain pattern of noise remains with each particle.
By using additive blending, this results in a Perlin noise texture in
which the octaves move relative to each other and along with the
flow.

For each particle a point sprite is rendered with a Gaussian kernel.
The resulting value is multiplied with an exponential fall-off based
on the depth below the surface, so that particles contribute less as
they submerge,

I(x, y) = noise(x, y) ∗ e−x2−y2−(pz(x,y)−d(x,y))2 , (10)

in which p is the view-space position of this pixel, d the depth as
sampled from the surface depth texture, and x and y vary between
−1 and 1. The noise texture noise is varied per particle to prevent
patterns from becoming apparent.

This noise kernel is then summed for every particle on the screen to
get a noise value at every pixel to be used for shading,

N(x, y) =

nX
i=0

I(
x− xi

σi
,
y − yi

σi
), (11)

Fluid should become more perturbed when the flow is violent, and
this is achieved by marking the fluid particles when a large change
in velocity vi happens,

|vi(t)− vi(t− 1)| > τ, (12)

where τ is a threshold value. For these particles, the noise ampli-
tude will be higher. After a while, the particles cool down and revert
to normal.

3.5 Rendering

In the final step, all the intermediate results are composited into a
final image by rendering a full-screen quad. The optical properties
of the fluid are based on the Fresnel equation, with a reflection and
refraction component and a Phong specular highlight, computing
the output color

Cout = a(1− F (n · v)) + bF (n · v) + ks(n · h)α, (13)

where F is the Fresnel function, a is the refracted fluid color, b is
the reflected scene color, ks and α are constants for the specular
highlight, n is the surface normal and h is the half-angle between
the camera and the light, and v is the camera vector. Depth test
is enabled when rendering the fluid, and the depth returned by the
fragment shader is copied from the surface depth (see section 3.1).

To shade the surface of the fluid the view-space normals n are cal-
culated using the finite differences of the surface depth d(x, y), as
in equation 4. Simply using the finite differences in one direc-
tion to calculate the normal will result in artifacts along the sil-
houettes. When a discontinuity is detected, by comparing the dif-
ference in depth to a threshold, we chose the smallest absolute fi-
nite difference (for example, the smallest of |z(x, y)− z(x + 1, y)|
and |z(x, y)− z(x− 1, y)|). In addition to this, the noise texture

(a) Without foam

(b) With foam

Figure 3: Same scene with foam enabled and disabled. Rendered
using screen-space curvature flow, with smoothing computed at half
resolution.

N(x, y) is used to perturb the normals to add small, wave-like sur-
face detail to the fluid by adding the partial derivatives of the noise
texture to the calculated normals. Furthermore, a grayish color can
be added depending on the magnitude of the noise to simulate a
surface foam effect like in Figure 3.

The thickness T (x, y) is used to attenuate the refracted color of the
fluid a,

a = lerp(Cfluid, S(x + βnx, y + βny), e−T (x,y)), (14)

the thicker the fluid, the more it attenuates the background color.
Thin areas of the fluid show through the background scene. When
shading the fluid we use a slightly different exponential fall-off for
each color channel, so that the color varies in an interesting way
with the thickness. For the transparency, the scene without the fluid
is first rendered to a background texture S(x, y). The texture coor-
dinates used to sample the background scene texture are perturbed
based on the normal of the surface n to give the illusion of refract-
ing the object behind the fluid. β increases linearly with the thick-
ness,

β = T (x, y)γ, (15)

in which γ is a constant that depends on the kind of fluid, and deter-
mines how much the background is refracted. The reflected color
b is determined by sampling a cubemap texture of the environment

94

(a) Gaussian smoothing

(b) Screen-space curvature flow

(c) With surface noise

Figure 4: Comparing Gaussian, screen-space curvature flow and
surface noise for close-up view, with the smoothing computed in
quarter resolution.

based on the reflected direction, computed from the surface normal
and the view vector.

(a) Gaussian smoothing

(b) Screen-space curvature flow

(c) Screen-space curvature flow with surface Perlin noise

Figure 5: Waterfall, comparing Gaussian and screen-space curva-
ture flow with and without surface noise (smoothing computed in
quarter resolution).

3.5.1 Interpolation

As the PDE for curvature minimization is stiff, and an explicit in-
tegration scheme is used, stability issues can arise causing the sys-
tem to oscillate. For this reason, at high resolutions it takes a lot
of iterations at a small timestep to retain stability. A trade-off can

95

(a) Gaussian smoothing

(b) Screen-space curvature flow

(c) Screen-space curvature flow with surface Perlin noise

Figure 6: comparing Gaussian and screen-space curvature flow
with and without surface noise (smoothing is computed at half in-
stead of quarter resolution).

be made to sacrifice some quality for performance by using an ap-
proach like that in [Cantlay 2007], doing both the fluid rendering
and post-processing steps at a lower resolution. The scaling is a
bit tricky due to the presence of silhouettes. Inside a body of fluid,
the depth is interpolated linearly, but silhouettes are handled spe-
cially. These should not look sharp or jagged, if they look blurry

(a) Gaussian smoothing

(b) Screen-space curvature flow

Figure 7: comparing Gaussian (a) and screen-space curvature flow
(b) on NVIDIA logo (quarter resolution)

or smooth it is more acceptable. For this reason, we blend the fi-
nal shaded color, computed at low resolution, over edges instead
of the normal or depth value. This has the effect of smoothing the
silhouettes.

Interpolation has the result that high frequency features will be lost
due to the sampling. Because of the smoothness, half or quarter
resolution fluid can look better than full resolution from close up.

4 Results and discussion

All benchmarks were performed on a NVIDIA GForce 8800GTS
512 in 1024 × 768 resolution. The result of a NVIDIA PhysX
SPH fluid simulation of 64000 particles was rendered using our
method. The computation time of the simulation is not included in
the results.

Performance figures are shown in Table 1 for both the corridor
scene (Figure 6) and the NVIDIA eye logo (Figure 7). In the table,
smoothing based on a a two-pass bilateral blur using a Gaussian
kernel is compared against various settings of screen-space curva-
ture flow. This method, at quarter resolution is even a little bit faster
than the Gaussian smoothing. Half resolution is slower, and full res-
olution is much slower, because the number of iterations needs to
be increased to achieve stability.

96

(a) 0 iterations, image (b) 0 iterations, curvature

(c) 40 iterations, image (d) 40 iterations, curvature

(e) 60 iterations, image (f) 60 iterations, curvature

Figure 8: The screen-space curvature flow process. Left: rendered
images, Right: color-coded curvature. As the number of iterations
increases, the curvature decreases.

It is important to note that the advantage of the presented method
is that it allows to achieve a higher degree of smoothness at a lower
cost than the Bilateral Gaussian smoothing method, and in partic-
ular avoids disruptive artifacts caused by using a separable filter
approach on non-separable kernels. In Figure 9 we can see that a
similar image quality is achieved by running six iterations of the
Bilateral Gaussian, with a performance degradation. In Table 2 we
present the overall frame cost for different settings of the Bilateral
Gaussian blur filter. It shows that the most significant penalty is
paid when the number of iterations is increased to produce a simi-
lar image to the curvature flow method, presented in this paper.

When adding noise and foam the rendering becomes significantly
slower, because of the extra rendering pass that splats the noise ker-
nels. The performance could be improved by rendering only par-
ticles close to the surface, if this information is available from the
simulation. For example, the density ρi might be used, as the den-
sity is lower the closer you get to the surface.

Figure 3 shows a waterfall with and without foam. The detail added
by the foam makes the waterfall look more rough, like a real wa-
terfall, and makes it look less like a synthetic smooth fluid. Figure
4 shows a close-up of the fluid itself, with three rendering meth-
ods. With Gaussian smoothing, bumps are clearly visible, with
screen-space curvature flow the bumps are smoothed out, but the
fluid looks unnatural. By adding surface noise, the surface gets
a bit more realism. Figure 5 shows a close-up of the waterfall in
the corridor scene, comparing the three rendering methods, under
somewhat more turbulent conditions. Figure 6 shows a close-up of
fluid flowing out of a pipe for both our Curvature Flow method and
the Gaussian smoothing approach. Figure 7 shows a comparison of
our method and the Gaussian smoothing on another scene simulat-

(a) Curvature flow method

(b) Bilateral Gaussian

Figure 9: Close-up of fluid using curvature flow and the equivalent
visual results using 6 iterations of Bilateral Gaussian

ing a smooth green liquid inside a transparent container, we do not
show an image with foam for this case as the fluid is too viscous to
form foam.

Figure 8 shows the screen-space curvature flow process at work. On
the left side it displays the rendered images, and on the right side a
color-coded image of the curvature. Black is zero curvature, green
is positive curvature and red is negative curvature. As the number
of iterations increases, the curvature decreases, which can be seen
as the curvature images become darker. The number of iterations
can be freely chosen based on the desired smoothness.

Only the surface that is nearest to the camera is rendered. In most
cases this is acceptable, because the thickness-based shading gives
an illusion of volume to the fluid, but it is not entirely correct if
there are multiple layers of fluid with air in between them.

5 Conclusions and future work

In this paper we have presented a new method for rendering fluids
in real-time directly from particle based representations without the
need for intermediate triangulation, but which still produces a high-
quality fluid surface. We have also introduced new ideas to add
thickness-based shading and small-scale surface detail to fluids.

Future work may involve looking at using an implicit formulation

97

Table 1: Performance comparison (in Frames Per Second) of
screen-space curvature flow with different settings, to separable bi-
lateral Gaussian blur (Corridor and NVIDIA logo)

Corridor dataset Frame (ms)

Bilateral Gaussian smoothing 18.1
Quarter res., 15 iterations 17.5
Half res., 40 iterations 19.6
Full res., 100 iterations 50.0
Foam+noise, quarter res, 15 iterations 30.0

Logo dataset

Bilateral Gaussian smoothing 22.7
Quarter res., 15 iterations 23.3
Half res., 40 iterations 28.6
Full res., 100 iterations 50.0

Table 2: Performance degradation of the Bilateral Gaussian

Method Iterations Frame (ms)

Curvature Flow - 27.8
Bilateral Gaussian 1 25.6
Bilateral Gaussian 2 31.3
Bilateral Gaussian 4 38.5
Bilateral Gaussian 6 47.6

of the integration scheme, as this would be more stable and require
fewer time steps and thus improve performance. This might be
difficult as the PDEs for curvature flow are quadratic, not linear.
A semi-implicit [Smereka 2003] formulation of the curvature flow
could also help.

References

ADAMS, B., LENAERTS, T., AND DUTRE, P. 2006. Particle
splatting: Interactive rendering of particle-based simulation data.
Tech. Rep. CW 453, Department of Computer Science, K.U.
Leuven, July.

AURICH, V., AND WEULE, J. 1995. Non-linear gaussian filters
performing edge preserving diffusion. In DAGM-Symposium,
538–545.

BOTSCH, M., HORNUNG, A., ZWICKER, M., AND KOBBELT,
L. 2005. High-quality surface splatting on today’s GPUs. In
Proceedings Eurographics/IEEE VGTC Symposium Point-Based
Graphics, IEEE Computer Society, Los Alamitos, CA, USA,
17–141.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. A
K Peters.

CANTLAY, I. 2007. High Speed, Off-Screen Particles. In GPU
Gems 3, H. Nguyen, Ed., NVIDIA.

CHEN, J., PARIS, S., AND DURAND, F. 2007. Real-time edge-
aware image processing with the bilateral grid. In SIGGRAPH
’07: ACM SIGGRAPH 2007 papers, ACM, New York, NY,
USA, 103.

CLAVET, S., BEAUDOIN, P., AND POULIN, P. 2005. Particle-
based viscoelastic fluid simulation. In Symposium on Computer
Animation 2005, 219–228.

CORDS, H., AND STAADT, O. 2008. Instant liquids. In Poster Pro-
ceedings of ACM Siggraph/Eurographics Symposium on Com-
puter Animation.

DESBRUN, M., AND GASCUEL, M.-P. 1996. Smoothed particles
: A new paradigm for animating highly deformable bodies. In
Computer Animation and Simulation ’96, 61–76.

JOHANSON, C. 2004. Real-time water rendering - introducing
the projected grid concept. Master’s thesis, Department of Com-
puter Science, Lund University.

LIU, G. R., AND LIU, M. B. 2003. Smoothed Particle Hydrody-
namics: A Meshfree Particle Method. World Scientific.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph. 21, 4, 163–169.

MALLADI, R., AND SETHIAN, J. A. 1995. Level set methods
for curvature flow, image enhancement, and shape recovery in
medical images. In In Proc. of Conf. on Visualization and Math-
ematics, Springer-Verlag, 329–345.

MÜLLER, M., SCHIRM, S., AND DUTHALER, S. 2007. Screen
space meshes. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
9–15.

PERLIN, K. 1985. An image synthesizer. SIGGRAPH Comput.
Graph. 19, 3, 287–296.

ROSENBERG, I. D., AND BIRDWELL, K. 2008. Real-time parti-
cle isosurface extraction. In SI3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, 35–43.

SMEREKA, P. 2003. Semi-implicit level set methods for curvature
and surface diffusion motion. J. Sci. Comput. 19, 1-3, 439–456.

STORA, D., AGLIATI, P.-O., CANI, M.-P., NEYRET, F., AND
GASCUEL, J.-D. 1999. Animating lava flows. In Graphics
Interface, 203–210.

WILLIAMS, B. W. 2008. Fluid Surface Reconstruction from Par-
ticles. Master’s thesis, The University Of British Columbia.

ZHANG, Y., AND PAJAROLA, R. 2007. Deferred blending: Im-
age composition for single-pass point rendering. Computers &
Graphics 31, 2, 175–189.

ZHANG, Y., SOLENTHALER, B., AND PAJAROLA, R. 2008. Adap-
tive sampling and rendering of fluids on the gpu. In In Proc. of
Symposium on Point-Based Graphics, 137–146.

98

I3D 2009

Screen Space Fluid Rendering
with Curvature Flow

Wladimir J. van der Laan Rijksuniversiteit Groningen / NVIDIA Ltd

Simon Green NVIDIA Ltd

Miguel Sainz NVIDIA Ltd

This slide shows the screen-space curvature flow process at work. On the top it shows
the rendered images, and on the bottom a color-coded image of the curvature. Black
represents zero, green is positive curvature and red is negative curvature. As the number
of iterations increases, the curvature decreases, which can be seen as the curvature images
become darker.

Iteration 0 Iteration 40 Iteration 60

Gaussian based minimization

Curvature based minimization
(our method)

Curvature based minimization
with perlin noise

Gaussian based minimization

Curvature based minimization
(our method)

Gaussian based minimization

Curvature based minimization
(our method)

Curvature based minimization
with perlin noise

Curvature based minimization takes
27.8ms to render (no Perlin noise)

Bilateral Gaussian needs 6 recursive passes
to achieve similar looks taking 47.6ms to

render (no Perlin noise)

