Implicit surfaces
CSG
Lipschitz condition
scanline rendering

Huub van de Wetering

Department of Mathematics and Computing Science
Technical University Eindhoven
The Netherlands
wstahw@win.tue.nl

June 1998
implicit surface \(\{(x, y, z) \mid f(x, y, z) = 0\} \)

implicit volume \(\{(x, y, z) \mid f(x, y, z) \geq 0\} \)

Example 1 sphere \(f(x, y, z) = x^2 + y^2 + z^2 - 41 = 0 \)

Example 2 distance-induced function (skeleton)
\[
f(x, y, z) = r - d((x, y, z), S)
\]
Implicit, CSG, Lipschitz, Scan-conversion

primitives

point

torus

cylinder

disc

line

beam

triangle

quadrilateral
CSG functions

1. \((f \cup g)(p) := \max(f(p), g(p))\)

2. \((f \cap g)(p) := \min(f(p), g(p))\)

3. \((f \setminus g)(p) := \min(f(p), -g(p))\)
CSG functions with blending

1. \((f \cup g)(p) := \max(f(p), g(p)) + f_b(|g(p) - f(p)|)\)

2. \((f \cap g)(p) := \min(f(p), g(p)) - f_b(|g(p) - f(p)|)\)

3. \((f \setminus g)(p) := \min(f(p), -g(p)) - f_b(|g(p) + f(p)|)\)
A function f has Lipschitz constant λ iff for all p and q in the domain of f

$$|f(p) - f(q)| \leq \lambda||q - p||$$

Distance-induced functions have Lipschitz constant 1.

Let f have LC λ_f and g have LC λ_g then

- $f \circ g$ has Lipschitz constant $\lambda_f \lambda_g$

- $f + g$ has Lipschitz constant $\lambda_f + \lambda_g$

- $\lambda_f^{-1} f$ has Lipschitz constant 1
For a function f with Lipschitz constant 1

$$|f(p)| \leq ||q - p||,$$

for all q with $f(q) = 0$

Hence,

$$|f(p)| \leq \text{the distance of } p \text{ to the implicit surface}.$$

Pruning property An open ball with center p and radius $|f(p)|$ is disjoint with the implicit surface.

closed The set of functions with Lipschitz constant 1 is closed under the following operators

- CSG
- blend (if f_b is chosen properly)
Sphere tracing:
• implicit surfaces with **Lipschitz condition**

• rendering

 – ray tracing

 – polygonisation

 – **scan-conversion**

 • Davis, Nagel, Guber (1968) - quadratic surfaces

 • Sederberg (1989) - algebraic surfaces
viewing volume a cube C (orthogonal projection)

scanline y

scanplane P (plane containing y ...)

implicit surface S

intersection $I := C \cap S \cap P$
Algorithm 1: scanline-rendering of surface S in cube C

Find zero points of function in scanplane by sampling.
Algorithm 2: approximation of intersection I

Generate quadtree

- maximum depth
maximum depth of quadtree: 2,3,4,6,7,8
Generate quadtree using adaptivity

- Pruning property
+ minimal tree depth
+ 4 sign alterations
+ tolerance: α
+ normal vector deviation: ϕ
Approximation of straddling nodes with line segments.

- find zero point on each edge with alternating sign
- connect zero points with line segments
Solution: find cracks and refine tree
- faster function evaluations
 - lazy evaluation of CSG expression

- less function evaluations
 - use coherence between successive scan-lines
 - use coherence by using an octree
 - generate only ‘visible’ part of quadtree

- better support for unblended primitives

- perspective projection
CSG functions:

1. \((f \cup g)(p) := \max(f(p), g(p))\)

2. \((f \cap g)(p) := \min(f(p), g(p))\)

3. \((f \setminus g)(p) := \min(f(p), -g(p))\)
Implicit, CSG, Lipschitz, Scan-conversion

partial quadtree

screen
• directly scan-converting implicit surfaces

• orthogonal projection

• infinite surfaces with multiple parts

• fast prototyping
• polygonization using contours

• use time-coherence in the generation of octree

• ...
<table>
<thead>
<tr>
<th>Implicit, CSG, Lipschitz, Scan-conversion</th>
<th>example</th>
<th>30</th>
</tr>
</thead>
</table>

![Image of a cube with a hole](image-url)
Implicit, CSG, Lipschitz, Scan-conversion

example

june 98