7M836 Animation & Rendering

Introduction, color, raster graphics, modeling, transformations

Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl

Purpose

- Understand 3D computer graphics principles
 - Terminology
 - Basic algorithms
 - Complexity
- Get better results using modern animation and rendering packages

7M836

- Lectures
- Exercises
- Assignments

http://www.ds.arch.tue.nl/7M836/

Contents

1. Introduction

Computer graphics, color, raster graphics, graphics pipeline, geometric modeling, transformation.

2. Viewing and visible surface determination *Viewing, clipping, projection, visible surface determination*

3. Illumination and shading *Light sources, reflection, shading*

4. Ray tracing

Contents

5. Radiosity

6. Mapping techniques

Texture mapping, bump mapping, environment mapping, aliasing

7. Animation

Animation process, keyframe animation, forward and inverse kinematics

8. Examples and virtual reality

Literature

- Computer Graphics Principles and Practice (second edition)
 Foley, van Dam, Feiner, Hughes
- 3D Computer Graphics A. Watt
- Advanced Animation and Rendering Techniques: Theory and Practice A. Watt, M. Watt
- 3D Graphics : A Visual Approach R.J. Wolfe
- and many more

Computer graphics

Supporting disciplines

- Computer science
 - algorithms, data structures, software engineering,
- Mathematics

. . .

- geometry, numerical, ...
- Physics
 - optics, mechanics, ...
- Psychology
 - color, perception
- Art and design

Color models

- RGB red, green, blue
- HSV hue, saturation, value

RGB-model

- 3 primary colors: red, green, and blue
- Color cube:
 - Color = point in cube
- Additive:

•
$$\overline{\mathbf{C}} = r \,\overline{\mathbf{R}} + g \,\overline{\mathbf{G}} + b \,\overline{\mathbf{B}}$$

HSV-model

- More user oriented: based on intuitive perception
 - Hue: tint (0-360°)
 - Saturation: shade (0-1)
 - Value: brightness (0-1)_{Cyan}
- Color is point in cone

Color models

- Limitation of color models, such as HSV and RGB:
 - No linear relation with perception. At some places in RGB cube a small step results in a visual change, while at other places it does not.
 - Color models describe the colors a monitor can display. That is only a subset of what a human can see.

Computer graphics

- Vector graphics
 - Image is represented by continuous geometric objects: lines, curves, etc
 - Exact, scalable
 - Diagrams, schemes, ...
 - Examples: PowerPoint, CorelDraw, ...
- Raster graphics
 - Image is represented as an rectangular grid of (coloured) squares

13

• Examples: Paint, PhotoShop, ...

Raster graphics

- Currently "standard" for computer graphics
- Screen is subdivided in grid of "squares": *picture elements* or *pixels*
- Per pixel: *n* bits information
- Resolution: size of grid and number of bits per pixel

Raster graphics hardware

Raster display – 1 bit per pixel

• 0 = black, 1 = white

Raster display – 8 bits / pixel

- 256 gray values
- 0 (black) to 255 (white)

0	200	128	
64	255	255	

Raster display – 8 bits / pixel

- 0 255: index in *color lookup table*
- Color lookup table contains 256 colors chosen from 16 million colors

code	red	green	blue
0	0	0	0
1	255	0	0
2	255	255	0
3	128	128	128
• • •	• • •	•••	•••
255	255	255	255

Raster display – 24 bits / pixel

- Per pixel: red, green, and blue
- 16 million colors at the same time

File formats

	Number of colors	Size	
		(uncompressed)	
1-bit	2 black/white	37.5 kb	
8-bit	256 gray values	307.2 kb	GIF, (PNG)
	256 color values (CLUT)		
24-bit	256x256x256 colors	921.6 kb	BMP, TGA, TIFF, JPEG
32-bit	256x256x256 colors	1228.8 kb	TGA
	8 bits alpha plane		
Vector			EPS, PS

File formats

Content image / purpose	Format
Many colors; continuous variation in colors (photo's) Storage	TIFF, TGA, BMP, PPM
Many colors; continuous variation in colors (photo's) Presentation	JPEG
Limited number of colors	GIF, PNG
Line drawings	PS, EPS

• File format conversion tool: *Irfanview*

Graphics Software

- Special-purpose packages
 - Photoshop, Powerpoint, AutoCAD, 3D Studio, Maya, ..
- Computer-graphics application programming interfaces (CG API)
 - Set of graphics functions used from programming language
 - Access to hardware
 - OpenGL, Direct3D, VRML, Java3D, ..

Rendering

- How do I generate a realistic image of a scene?
- Problems:
 - World is complex (shape, light, ...)
 - World is 3 dimensional, screen is 2 dimensional
 - •

Problem subdivision

- Geometric modeling
 - How do we define the shape of an object?
- Projection and hidden surface removal
 - How do we determine what is visible on screen and what is not?
- Shading
 - How do we model color, texture, and contribution of light?
- Rasterization
 - How do we determine pixel values ?

Graphics pipeline

Geometric modeling

- World contains all kind of objects
 - Trees, humans, buildings, clouds, mountains, waves, fire, plants, ...
- Describe objects in a way that
 - (user) input is easy
 - processing is easy
 - display is easy

"easy" means: simple things easy, complex things possible.

Geometric modeling

- Examples
 - Wireframe
 - Procedural
 - Polygons
 - Constructive solid geometry
 - Curved surfaces
 - Ad hoc techniques

Wireframe

- Model is sequence of lines connecting points
- No information on surface/faces available, therefore
 - No visibility information
 - no shaded images possible
- Face information cannot be deduced automatically

Wireframe

Procedural

- Shape defined by type and parameters
- Program interprets definition
- Examples
 - Type = sphere, position = [3, 4, 5], radius = 2
 - Type = oak, age = 10 years
- Compact, easy input, tailored to application
- Often internal conversion to other representation

We will use this in the exercises with PovRay.

Polygons

- Polygon consists of three or more points lying in a plane (often triangle)
- Model is collection of polygons
- Input and change of model is laborious
- Very well suited for hardware
- Often used as end representation

Polygons

Constructive solid geometry

- Model is defined by hierarchy of Boolean operations on standard shapes, such as cube, sphere, cylinder, cone, and torus
- Boolean operations
 - union, difference, intersection
- Useful for input, e.g. in mechanical engineering
- Often, conversion to other representation needed before model is rendered

Constructive solid geometry

Curved surfaces

Smooth curve defined by sequence of control points

 $p(t) = (1-t)^3 p_0 + 3(1-t)^2 t p_1 + 3(1-t)t^2 p_2 + t^3 p_3$

Curved surfaces

- Smooth surface defined by grid of control points
 - Bézier surfaces
 - NURBS

The Utah teapot

Curved surfaces

- Very useful for modeling, e.g. in car industry, but also in cartoon animation
- Often conversion to other representation (polygons) before model can be rendered

Ad hoc techniques

- Mountain shapes: wrinkled shapes (fractals)
- Firework: particles
- Plants: Lindenmayer systems
- Hair and fur
- Fabric en clothing
- Clouds
- •

Geometric modeling

- Input: Computer Aided Design (CAD) system
- Convenient for input:
 - Curved surfaces, CSG, procedural representations
- Appropriate for computer processing/display:
 - Polygons, points, lines

Modeling-transformations

- Besides shape, *position, orientation, and scale* of objects in a scene is important
- Often, model consists of several parts that are positioned relatively to each other

Coordinate systems

Modeling-transformations

- Complete model (scene) specified in world coordinates
- Objects within model specified in object coordinates
- Transformation positions object into world
- Object may contain sub-objects that are specified in their own local coordinates
- Transformation positions sub-object into object
- Hierarchical model

Example

- World contains (for instance) human figure
- Human figure is built from:
 - torso + head + arm + arm + leg + leg + ..
- Arm is built from:
 - upper arm + lower arm + hand + ..
- Etc.

Graphics pipeline

