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Camera

• Given a 3D model, how do we project this model on 
screen?

• Camera model
• Eye/view point:

• From which point do we look at the scene?
• Target point or viewing direction:

• Where do we look at?
• Viewing angles:

• What lens do we use?
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Camera

View point

Target point

screen
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Viewing pipeline
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Viewing pipeline

• Modelling transform

• Transforms model coordinates into 3D world coordinates
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Viewing pipeline

• Viewing (camera) transform

• Transforms 3D world coordinates into 3D camera 
coordinates
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Viewing pipeline

• Clipping to view volume
• Determines which parts of objects might be visible , i.e. 

reside inside view volume
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Viewing pipeline

• Projection
• Transforms 3D camera coordinates into 2D screen 

coordinates
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Viewing pipeline

• Viewport mapping
• Transforms 2D screen coordinates to pixels
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Viewing pipeline
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Viewing transform

• Transforms world coordinates to viewing (camera) 
coordinates
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Viewing pipeline
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Clipping

• Part of geometry can reside outside window
• Clipping removes geometry outside window
• Draw only primitives (partly) inside window



  15

Clipping
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Clipping
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Near-far clipping

• Remove/clip objects closer than near plane or farther 
than far plane
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Clipping

• Point clipping
• Test on which side of  the viewing-volume planes 

a point is situated
• Line clipping

• Determine part of line within viewing volume
• Cohen-Sutherland, Liang-Barskey

• Polygon clipping
• Determine part of  polygon within viewing volume
• Sutherland-Hodgman
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Sutherland-Hodgman clipping

• Clip each polygon against each plane (4 or 6) of 
viewing volume

• For each polygon and each plane determine which 
part of polygon is on inside of viewing-volume plane
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Sutherland-Hodgman clipping
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Sutherland-Hodgman clipping

• Clip polygon against plane:
• Determine if  first vertex inside/outside volume
• If inside volume, store vertex
• For all consecutive vertices of polygon

• Determine is vertex inside/outside volume
• If from inside to outside, store intersection point
• If from outside to inside, store intersection point 

and vertex
• If from inside to inside, store vertex
• If from outside to outside, store nothing
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Sutherland-Hodgman clipping

clipping plane inside
outside
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Viewing pipeline
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Projection

• Transform 3D camera coordinates to 2D screen 
coordinates

• Parallel (orthographic) projection
• Perspective projection



  25

Parallel projection
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Parallel projection

xs = xv

ys = yv

zs = 0

P1v

P2v P2s

P1s

projection in z-directon
on z = 0.
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Perspective projection
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Perspective projection
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Simple perspective projection
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Perspective projection

• Perspective transform followed by isometric 
projection.
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Perspective projection

• Ratio of W and d 
determines strength of 
perspective

d

W
C
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Perspective projection

zview

yview

Wide angle lens
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Perspective projection

zview

yview

Tele lens
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#include "colors.inc" 
#declare d     = 10;
#declare sizeX = 4;
#declare sizeY = 3;
#declare focus = <0,1,0>;
#declare eye   = <0, 2,-15>;

camera {
   perspective  
   location   eye
   direction <0, 0, d>
   up        sizeY * y 
   right     sizeX * x 
   look_at   focus
}

light_source { <3,5,-2> color White  } 
sphere { <0,1,0>,1 texture { pigment { White }} }   // radius 1
plane { <0,1,0>, 0                                  // xz plane
   texture { pigment {checker color White color Red } }
 }

Povray – projection

eye

 focus

d

sizeY

sizeX
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#include "colors.inc" 
#declare d     = 10;
#declare sizeX = 4;
#declare sizeY = 3;
#declare focus = <0,1,0>;
#declare eye   = <0, 2,-15>;

camera {
   perspective  
   location   eye
   direction <0, 0, d>
   up        sizeY * y 
   right     sizeX * x 
   look_at   focus
}

light_source { <3,5,-2> color White  } 
sphere { <0,1,0>,1 texture { pigment { White }} }   // radius 1
plane { <0,1,0>, 0                                  // xz plane
   texture { pigment {checker color White color Red } }
 }

Povray – projection
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#include "colors.inc" 
#declare d     = 10 + 5 ;
#declare sizeX = 4;
#declare sizeY = 3;
#declare focus = <0,1,0>;
#declare eye   = <0, 2,-15>;

camera {
   perspective  
   location   eye
   direction <0, 0, d>
   up        sizeY * y 
   right     sizeX * x 
   look_at   focus
}

light_source { <3,5,-2> color White  } 
sphere { <0,1,0>,1 texture { pigment { White }} }   // radius 1
plane { <0,1,0>, 0                                  // xz plane
   texture { pigment {checker color White color Red } }
 }

Povray – projection
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#include "colors.inc" 
#declare d     = 10 + 5 ;
#declare sizeX = 4;
#declare sizeY = 3;
#declare focus = <-1,1,0>;
#declare eye   = <0, 2,-15>;

camera {
   perspective  
   location   eye
   direction <0, 0, d>
   up        sizeY * y 
   right     sizeX * x 
   look_at   focus
}

light_source { <3,5,-2> color White  } 
sphere { <0,1,0>,1 texture { pigment { White }} }   // radius 1
plane { <0,1,0>, 0                                  // xz plane
   texture { pigment {checker color White color Red } }
 }

Povray – projection
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Projections
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Projections

• Parallel projection

+ Parallel lines remain parallel in image

+ Used to measure in image

-  Less realism
• Perspective projection

+ Dimensions decrease with larger depth:
• More realism

-  Parallel lines do not remain parallel
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Viewing pipeline
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Graphics pipeline

Geometric model Viewing

Camera parameters

Light sources,
materials

Shading

Visible surface determination

Rasterization

Raster display
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Visible surface determination

• Also called: hidden surface removal

• Determine which objects, or parts of objects, are 
visible on screen, given the position and direction of 
the camera

• Display only the visible (parts of) objects

• Several algorithms
• Complexity of scene
• Type of objects
• Hardware support
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Visible surface determination

side view                                  front view

screen
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Visible surface determination

• Two approaches
• Object space

• Determine geometrical relations between 
objects and determine which parts of objects 
are not obscured by others

• E.g. backface culling, depth-sort
• Image space

• Consider each pixel in image
• Determine nearest object visible on pixel
• E.g. z-buffer, ray casting
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Backface culling

• Remove all polygons oriented away from eye, i.e. 
from which we only see backface  (backfacing)

• A polygon is backfacing if: V • N > 0
• N is polygon normal
• V is vector from eye to (point on) polygon

N

N

V

V
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Backface culling

• If 1 convex object, problem solved

• Not a complete solution for
concave objects

• Not a complete solution
if more than 1 object

• On average 50% polygons removed
• Usually performed in conjunction with other 

(complete) methods
• Easy to integrate in hardware
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Depth-sort algorithm

• Polygons close to eye hide polygons further away 
from camera

• So, draw polygons far away first, and then polygons 
close to eye

• Just like a painter: first draw horizon, then landscape, 
and finally scene in foreground
• painter’s algorithm
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Depth-sort algoritme

• Sort polygons in order of decreasing maximum depth 
(do from back to front)

• Display them in this order

front view                                 side view

screen

1

2
3
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Depth-sort algorithm

• How to solve this one?
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Depth-sort algorithm

• Sort all polygons based on maximum z-value
• If two polygons have (partly) common z-range

• Test if x- or y-range are different

• Test if polygon P completely
behind plane of polygon Q 
(or vice versa)

• Test if projections of polygons
have no overlap

• If none of these tests pass, then one of the 
polygons needs to be subdivided

P
Q

P

Q

z

x

P

Q

z

x
Q

P

P

Q
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Depth-sort algorithm

• All polygons must be available at the same time
• Sorting and subdivision of polygons is difficult and 

expensive
• Slow (#polygons2)

• Not feasible for large scenes
• No hardware support
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Z-buffer algorithm

• Z-buffer (depth-buffer) is an array with the same size 
as the framebuffer

• For each pixel the z-buffer contains depth value (z-
value) of the polygon closest to the eye
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Z-buffer algorithm

Initialization
For all pixels (x,y) do

framebuffer(x y) := “background color”
zbuffer(x,y) := “maximum depth”

Algorithm
For each polygon P do

For each  pixel (x,y)  in projection of P do
Compute depth of P for this pixel
If depth < zbuffer(x,y) then

framebuffer(x, y) := color of P at (x,y)
zbuffer(x, y) := depth
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Z-buffer example
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Z-buffer example
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Z-buffer example
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Z-buffer algorithm

• Fast and simple
• No sorting, polygons can be drawn in any order
• No object – object comparisons
• Hardware support

• Requires lots of memory : 24-32 bits per pixel
• Commonly implemented in 3D graphics cards
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Which algorithm?

• Depends on (complexity of) scene, required visual 
effects, and availability of hardware
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Which algorithm?

• Backface culling
• Always useful to reduce number of polygons
• In combination with other algorithms

• Depth sort
• Software renderer
• Slow: O(#polygons * #polygons)
• For simple scenes, with not many objects

• Z-buffer
• Hardware commonly available
• Fast  O(#polygons)
• For complex scenes with many polygons
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Graphics pipeline

Geometric model Viewing

Camera parameters

Light sources,
materials

Shading

Visible surface determination

Rasterize

Raster display
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