
 1

7M836
Animation & Rendering

Viewing, clipping, projection, visible surface
determination

Arjan Kok, Kees Huizing, Huub van de Wetering

h.v.d.wetering@tue.nl

 2

Graphics pipeline

Geometric model Viewing

Camera parameters

Light sources,
materials

Shading

Visible surface determination

Rasterization

Raster display

 3

Camera

• Given a 3D model, how do we project this model on
screen?

• Camera model
• Eye/view point:

• From which point do we look at the scene?
• Target point or viewing direction:

• Where do we look at?
• Viewing angles:

• What lens do we use?

 4

Camera

View point

Target point

screen

 5

Viewing pipeline

 6

Viewing pipeline

• Modelling transform

• Transforms model coordinates into 3D world coordinates

 7

Viewing pipeline

• Viewing (camera) transform

• Transforms 3D world coordinates into 3D camera
coordinates

 8

Viewing pipeline

• Clipping to view volume
• Determines which parts of objects might be visible , i.e.

reside inside view volume

 9

Viewing pipeline

• Projection
• Transforms 3D camera coordinates into 2D screen

coordinates

 10

Viewing pipeline

• Viewport mapping
• Transforms 2D screen coordinates to pixels

 11

Viewing pipeline

 12

Viewing transform

• Transforms world coordinates to viewing (camera)
coordinates

zw

xw

yw

C

yv

zv

xv

 13

Viewing pipeline

 14

Clipping

• Part of geometry can reside outside window
• Clipping removes geometry outside window
• Draw only primitives (partly) inside window

 15

Clipping

 16

Clipping

 17

Near-far clipping

• Remove/clip objects closer than near plane or farther
than far plane

 18

Clipping

• Point clipping
• Test on which side of the viewing-volume planes

a point is situated
• Line clipping

• Determine part of line within viewing volume
• Cohen-Sutherland, Liang-Barskey

• Polygon clipping
• Determine part of polygon within viewing volume
• Sutherland-Hodgman

 19

Sutherland-Hodgman clipping

• Clip each polygon against each plane (4 or 6) of
viewing volume

• For each polygon and each plane determine which
part of polygon is on inside of viewing-volume plane

 20

Sutherland-Hodgman clipping

 21

Sutherland-Hodgman clipping

• Clip polygon against plane:
• Determine if first vertex inside/outside volume
• If inside volume, store vertex
• For all consecutive vertices of polygon

• Determine is vertex inside/outside volume
• If from inside to outside, store intersection point
• If from outside to inside, store intersection point

and vertex
• If from inside to inside, store vertex
• If from outside to outside, store nothing

 22

Sutherland-Hodgman clipping

clipping plane inside
outside

P0

P1

P2

P3

P4

P’ P’’

 23

Viewing pipeline

 24

Projection

• Transform 3D camera coordinates to 2D screen
coordinates

• Parallel (orthographic) projection
• Perspective projection

 25

Parallel projection

 26

Parallel projection

xs = xv

ys = yv

zs = 0

P1v

P2v P2s

P1s

projection in z-directon
on z = 0.

 27

Perspective projection

 28

Perspective projection

P1v

P2v

P2s

P1s

C

 29

Simple perspective projection

d

y

z

S

C=0,0,0
P= px , p y , pz

S=s x , s y , s z

S=
d
pz

P

s x=
d
pz

px

s y=
d
pz

p y

s z=d

C

P

p
z

view plane

 30

Perspective projection

• Perspective transform followed by isometric
projection.

P(xv, yv, zv)






 −

v

v

v

v

v

v

z
dz

,
z

dy
,

z
dx

 31

Perspective projection

• Ratio of W and d
determines strength of
perspective

d

W
C

 32

Perspective projection

zview

yview

Wide angle lens

 33

Perspective projection

zview

yview

Tele lens

 34

#include "colors.inc"
#declare d = 10;
#declare sizeX = 4;
#declare sizeY = 3;
#declare focus = <0,1,0>;
#declare eye = <0, 2,-15>;

camera {
 perspective
 location eye
 direction <0, 0, d>
 up sizeY * y
 right sizeX * x
 look_at focus
}

light_source { <3,5,-2> color White }
sphere { <0,1,0>,1 texture { pigment { White }} } // radius 1
plane { <0,1,0>, 0 // xz plane
 texture { pigment {checker color White color Red } }
 }

Povray – projection

eye

 focus

d

sizeY

sizeX

 35

#include "colors.inc"
#declare d = 10;
#declare sizeX = 4;
#declare sizeY = 3;
#declare focus = <0,1,0>;
#declare eye = <0, 2,-15>;

camera {
 perspective
 location eye
 direction <0, 0, d>
 up sizeY * y
 right sizeX * x
 look_at focus
}

light_source { <3,5,-2> color White }
sphere { <0,1,0>,1 texture { pigment { White }} } // radius 1
plane { <0,1,0>, 0 // xz plane
 texture { pigment {checker color White color Red } }
 }

Povray – projection

 36

#include "colors.inc"
#declare d = 10 + 5 ;
#declare sizeX = 4;
#declare sizeY = 3;
#declare focus = <0,1,0>;
#declare eye = <0, 2,-15>;

camera {
 perspective
 location eye
 direction <0, 0, d>
 up sizeY * y
 right sizeX * x
 look_at focus
}

light_source { <3,5,-2> color White }
sphere { <0,1,0>,1 texture { pigment { White }} } // radius 1
plane { <0,1,0>, 0 // xz plane
 texture { pigment {checker color White color Red } }
 }

Povray – projection

 37

#include "colors.inc"
#declare d = 10 + 5 ;
#declare sizeX = 4;
#declare sizeY = 3;
#declare focus = <-1,1,0>;
#declare eye = <0, 2,-15>;

camera {
 perspective
 location eye
 direction <0, 0, d>
 up sizeY * y
 right sizeX * x
 look_at focus
}

light_source { <3,5,-2> color White }
sphere { <0,1,0>,1 texture { pigment { White }} } // radius 1
plane { <0,1,0>, 0 // xz plane
 texture { pigment {checker color White color Red } }
 }

Povray – projection

 38

Projections

 3 3

Projections

• Parallel projection

+ Parallel lines remain parallel in image

+ Used to measure in image

- Less realism
• Perspective projection

+ Dimensions decrease with larger depth:
• More realism

- Parallel lines do not remain parallel

 3 3

Viewing pipeline

 41

Graphics pipeline

Geometric model Viewing

Camera parameters

Light sources,
materials

Shading

Visible surface determination

Rasterization

Raster display

 42

Visible surface determination

• Also called: hidden surface removal

• Determine which objects, or parts of objects, are
visible on screen, given the position and direction of
the camera

• Display only the visible (parts of) objects

• Several algorithms
• Complexity of scene
• Type of objects
• Hardware support

 43

Visible surface determination

side view front view

screen

 44

Visible surface determination

• Two approaches
• Object space

• Determine geometrical relations between
objects and determine which parts of objects
are not obscured by others

• E.g. backface culling, depth-sort
• Image space

• Consider each pixel in image
• Determine nearest object visible on pixel
• E.g. z-buffer, ray casting

 45

Backface culling

• Remove all polygons oriented away from eye, i.e.
from which we only see backface (backfacing)

• A polygon is backfacing if: V • N > 0
• N is polygon normal
• V is vector from eye to (point on) polygon

N

N

V

V

 46

Backface culling

• If 1 convex object, problem solved

• Not a complete solution for
concave objects

• Not a complete solution
if more than 1 object

• On average 50% polygons removed
• Usually performed in conjunction with other

(complete) methods
• Easy to integrate in hardware

 47

Depth-sort algorithm

• Polygons close to eye hide polygons further away
from camera

• So, draw polygons far away first, and then polygons
close to eye

• Just like a painter: first draw horizon, then landscape,
and finally scene in foreground
• painter’s algorithm

 48

Depth-sort algoritme

• Sort polygons in order of decreasing maximum depth
(do from back to front)

• Display them in this order

front view side view

screen

1

2
3

 49

Depth-sort algorithm

• How to solve this one?

 50

Depth-sort algorithm

• Sort all polygons based on maximum z-value
• If two polygons have (partly) common z-range

• Test if x- or y-range are different

• Test if polygon P completely
behind plane of polygon Q
(or vice versa)

• Test if projections of polygons
have no overlap

• If none of these tests pass, then one of the
polygons needs to be subdivided

P
Q

P

Q

z

x

P

Q

z

x
Q

P

P

Q

 51

Depth-sort algorithm

• All polygons must be available at the same time
• Sorting and subdivision of polygons is difficult and

expensive
• Slow (#polygons2)

• Not feasible for large scenes
• No hardware support

 52

Z-buffer algorithm

• Z-buffer (depth-buffer) is an array with the same size
as the framebuffer

• For each pixel the z-buffer contains depth value (z-
value) of the polygon closest to the eye

 53

Z-buffer algorithm

Initialization
For all pixels (x,y) do

framebuffer(x y) := “background color”
zbuffer(x,y) := “maximum depth”

Algorithm
For each polygon P do

For each pixel (x,y) in projection of P do
Compute depth of P for this pixel
If depth < zbuffer(x,y) then

framebuffer(x, y) := color of P at (x,y)
zbuffer(x, y) := depth

 54

Z-buffer example

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.5 0.5 0.50.5 0.50.5 0.5

0.5 0.5 0.5 0.5 0.5

0.5

0.5

0.5

0.5

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5 0.5

empty z-buffer polygon

 55

Z-buffer example

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.5 0.5 0.50.5 0.50.5 0.5

0.5 0.5 0.5 0.5 0.5

0.5

0.5

0.5

0.5

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5 0.5

z-buffer

0.2 0.3 0.50.4 0.70.6

0.3 0.4 0.5 0.6 0.7

0.6

0.5 0.70.6

0.60.50.4

0.7

0.7

0.7

polygon

 56

Z-buffer example

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.5 0.5 0.50.5 0.50.5 0.5

0.5 0.5 0.5 0.5 0.5

0.5

0.5

0.5

0.5

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5 0.5

0.2 0.3 0.50.4 0.70.6

0.3 0.4 0.5 0.6 0.7

0.60.4 0.7

 57

Z-buffer algorithm

• Fast and simple
• No sorting, polygons can be drawn in any order
• No object – object comparisons
• Hardware support

• Requires lots of memory : 24-32 bits per pixel
• Commonly implemented in 3D graphics cards

 58

Which algorithm?

• Depends on (complexity of) scene, required visual
effects, and availability of hardware

 59

Which algorithm?

• Backface culling
• Always useful to reduce number of polygons
• In combination with other algorithms

• Depth sort
• Software renderer
• Slow: O(#polygons * #polygons)
• For simple scenes, with not many objects

• Z-buffer
• Hardware commonly available
• Fast O(#polygons)
• For complex scenes with many polygons

 60

Graphics pipeline

Geometric model Viewing

Camera parameters

Light sources,
materials

Shading

Visible surface determination

Rasterize

Raster display

	7M836 Animation & Rendering
	Graphics pipeline
	Camera
	Slide 4
	Viewing pipeline
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Viewing transform
	Slide 13
	Clipping
	Slide 15
	Slide 16
	Near-far clipping
	Slide 18
	Sutherland-Hodgman clipping
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Projection
	Parallel projection
	Slide 26
	Perspective projection
	Slide 28
	Simple perspective projection
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Projections
	Slide 39
	Slide 40
	Slide 41
	Visible surface determination
	Slide 43
	Slide 44
	Backface culling
	Slide 46
	Depth-sort algorithm
	Depth-sort algoritme
	Slide 49
	Slide 50
	Slide 51
	Z-buffer algorithm
	Slide 53
	Z-buffer example
	Slide 55
	Slide 56
	Slide 57
	Which algorithm?
	Slide 59
	Slide 60

