7M836

Animation \& Rendering

Illumination models, light sources, reflection shading

Arjan Kok, Kees Huizing, Huub van de Wetering
h.v.d.wetering@tue.nl

Graphics pipeline

Illumination

- Illumination model
- determines Illumination (= color) of a point on a surface by simulation of light in a scene
- is an approximation of real light transport
- Shading method
- determines for which points illumination is computed
- and how it is approximated for other points.

Illumination models

- Model(s) needed for
- Emission of light
- Scattering light at surfaces
- Reception on camera
- Desired model requirements
- Accurate
- Efficient to compute

Illumination models

- Local illumination
- Emission of light sources
- Direct illumination
- Scattering at surfaces
- Global illumination
- Shadows
- Refraction
- Interreflection

Light source

- $\mathrm{I}_{\mathrm{L}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \theta, \varphi, \lambda)$
- Intensity of energy
- of light source L
- arriving at point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- from direction (θ, φ)
- with wavelength λ
- Complex
- Simpler model needed

Point light source

- Emits light equally in all directions
- Parameters
- Intensity I_{0}
- Position P $\left(p_{x}, p_{y}, p_{z}\right)$
- Approximation for small light sources
- $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{0}$

Point light source

Direction light source

- Emits light in one direction
- Can be regarded as point light source at infinity
- E.g. sun
- Parameters
- Intensity I_{0}
- Direction $\mathrm{D}\left(\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right)$
- $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{0}$

Directional light source

Spot light source

- Point light source with direction
- E.g. Spot light
- Parameters
- Intensity I_{0}
- Position P $\left(p_{x}, p_{y}, p_{z}\right)$
- Direction D $\left(\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right)$
- Maximum angle φ

- $I_{L}=I_{0} \quad$ if $\cos \alpha>\cos \varphi$

Point light source

Spot light source

- Point light source with direction
- E.g. Spot light
- Decreasing intensity with increasing angle α
- Parameters
- Intensity I_{0}
- Position P $\left(p_{x}, p_{y}, p_{z}\right)$
- Direction $D\left(\mathrm{~d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right)$
- Maximum angle φ
- Exponent n

- $\mathrm{I}_{\mathrm{L}}=\cos ^{\mathrm{n}} \alpha \mathrm{I}_{0}$
if $\cos \alpha>\cos \varphi$

Spot light source

- Point light source with direction
- E.g. Spot light
- Decreasing intensity with increasing angle α
- Parameters
- Intensity I_{0}
- Position P $\left(p_{x}, p_{y}, p_{z}\right)$
- Direction $\mathrm{D}\left(\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right)$
- "Hotspot" angle θ
- Maximum angle φ
- Exponent n

Spot light source

- $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{0}$
- $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{0} \cos ^{\mathrm{n}}\left(\frac{\alpha-\theta}{\varphi-\theta} * \frac{\pi}{2}\right)$
if $\theta<\alpha \leq \varphi$
if $\varphi<\alpha$

Spot light source

Spot light source

Other light sources

- Linear light sources
- Area sources
- Spherical lights

Povray - light sources

Attenuation

- Intensity of light decreases with squared distance:

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{0} / \mathrm{d}^{2}
$$

- d is distance to light source
- scenes are often to dark
- A more practical solution:

$$
I_{L}=\frac{I_{0}}{a_{c}+a_{l} d+a_{q} d^{2}}
$$

- $\left(\mathrm{a}_{\mathrm{c}}, \mathrm{a}_{\mathrm{a}}, \mathrm{a}_{\mathrm{q}}\right)$: the attenuation factors

Surface illumination

- When light arrives at a surface, it can be
- Absorbed
- Reflected
- Transmitted

Reflection

- $\mathrm{R}_{\mathrm{s}}(\theta, \varphi, \gamma, \psi, \lambda)$
- Amount of energy,
- arriving from direction (θ, φ),
- that is reflected in direction (γ, Ψ)
- with wavelength λ
- Ideally
- Describe this function for all combinations of θ, φ, y, ψ, and λ
- Impossible, simpler model(s) needed

Reflection model

- Total intensity on point "reflected" in certain direction is determined by:
- Diffusely reflected light
- Specularly reflected light
- Emission (for light sources)
- Reflection of ambient light
- Intensity not computed for all wavelengths λ, only for R, G and B

Diffuse reflection

- Incoming light is reflected equally in all directions
- Amount of reflected light depends only on angle of incident light

Diffuse reflection

Lambert' law: Reflected energy from a surface is proportional to the cosine of the angle of direction of incoming light and normal of surface:

$$
I_{d}=k_{d} l_{L} \cos (\theta)
$$

where k_{d} is the diffuse reflection coefficient.

Specular reflection

- Models reflections of shiny surfaces

Specular reflection

- Shininess depends on roughness of the surface
- Incident light is not reflected equally in all directions
- Reflection strongest near mirror angle

very shiny

less shiny

Specular reflection / Phong

- Light intensity observed by viewer depends on angle of incident light and angle to viewer
- Phong model: $I_{s}=k_{s} I_{L} \cos ^{n}(\alpha)$
- k_{s} is specular reflection coefficient
- n is specular reflection exponent

Specular reflection

Specular reflection / Phong

Ambient light

Even though parts of the scene are not directly lit by light sources, they can still be visible because of indirect illumination.

Ambient light

- "Ambient" light I_{A} is an approach to this indirect illumination
- Ambient light is independent of light sources and viewer position
- Contribution of ambient light $\mathrm{I}=\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}$
- k_{a} is ambient reflection coefficient
- I_{a} is ambient light intensity (constant over scene)
- Indirect illumination can be computed much better: e.g. radiosity

Emission

Emission I_{e} represents light directly emitted by a surface

- Used for light sources

Total illumination Phong model

- Total intensity $\mathrm{I}_{\text {total }}$ at point P seen by viewer is

$$
\mathrm{I}_{\text {total }}=\mathrm{I}_{\mathrm{e}}+\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}+\sum_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{d}} \cos \left(\theta_{\mathrm{i}}\right)+\mathrm{k}_{\mathrm{s}} \cos ^{\mathrm{n}}\left(\alpha_{\mathrm{i}}\right)\right)
$$

Total illumination Phong model

- In previous formula $\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{d}}$ dependent on wavelength (different values for R, G and B)
- Often division into color and reflection coefficient of surface

$$
\mathrm{I}_{\text {totaal }}=\mathrm{I}_{\mathrm{e}}+\mathrm{k}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}+\sum_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{d}} \mathrm{C}_{\mathrm{d}} \cos \left(\theta_{\mathrm{i}}\right)+\mathrm{k}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}} \cos ^{\mathrm{n}}\left(\alpha_{\mathrm{i}}\right)\right)
$$

where:

- $0 \leq \mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{s}}, \mathrm{k}_{\mathrm{s}} \leq 1$
- C_{a} is ambient reflected color of surface
- C_{d} is diffuse reflected color of surface
- C_{s} is specular reflected color of surface

Only emission and ambient

Including diffuse reflection

Including specular reflection

Atmospheric effects

Atmospheric effects:

- Dust, smoke,..
- Colors are dimmed
- Objects less visible

Atmospheric effects

Perceived intensity I:

$$
I=f(d) I_{\text {object }}+(1-f(d)) I_{\text {atmosphere }}
$$

with $d=$ distance travelled through medium and

$$
f(d)=e^{-\rho d}
$$

where $\rho=$ attenuation factor, or

$$
f(d)=\left(d-d_{\min }\right) /\left(d_{\max }-d_{\text {min }}\right)
$$

$$
\square=0.25 \square+(1-0.25) \square
$$

Illumination model - summary

- Given model:
- Simple
- Effective
- Not real world
- More advanced models:
- Allows for angle between incident light and surface normal for specular reflection (Fresnel's law)
- Better models for surface roughness
- Better model for wavelength dependent reflection

Shading

- Illumination model computes illumination for a point on a surface
- But how do we compute the illumination for all points on all (visible) surfaces?
- Shading methods:
- Flat shading
- Gouraud shading
- Phong shading

Flat shading

- Determine illumination for one point on polygon
- Use this illumination for all points on polygon
- Disadvantages:
- Does not account for changing direction to light source over polygon
- Does not account for changing direction to eye over polygon
- Discontinuity at polygon boundaries (when a curved surface is approximated by a polygon mesh

Flat shading

Gouraud shading

- Based on interpolation of illumination values
- Computes illumination for the vertices of a polygon
- Algorithm
- for all vertices of a polygon
- get vertex normal
- compute vertex illumination using this normal
- for all pixels in the projection of the polygon
- compute pixel illumination by interpolation of vertex illumination

Gouraud shading

$$
\begin{array}{r}
\mathrm{I}_{\mathrm{A}}=(1-\alpha) \mathrm{I}_{1}+\alpha \mathrm{I}_{2} \\
\alpha=\frac{\mathrm{y}_{1}-\mathrm{y}_{\mathrm{S}}}{\mathrm{y}_{1}-\mathrm{y}_{2}} \\
\mathrm{I}_{\mathrm{B}}=(1-\beta) \mathrm{I}_{1}+\beta \mathrm{I}_{2} \\
\beta=\frac{\mathrm{y}_{1}-\mathrm{y}_{\mathrm{s}}}{\mathrm{y}_{1}-\mathrm{y}_{3}} \\
\mathrm{I}_{\mathrm{P}}=(1-\gamma) \mathrm{I}_{\mathrm{A}}+\gamma \mathrm{I}_{\mathrm{B}} \\
\gamma=\frac{\mathrm{x}_{\mathrm{A}}-\mathrm{x}_{\mathrm{P}}}{\mathrm{x}_{\mathrm{A}}-\mathrm{x}_{\mathrm{B}}}
\end{array}
$$

Gouraud shading

Gouraud shading

- Advantages
- Interpolation is simple, hardware implementation
- Continuous shading
- Better results for curved surfaces
- Disadvantages
- Subtle illumination effects (e.g. highlights) require high subdivision of surface in very small polygons
- Mach banding

Phong shading

- Based on normal interpolation
- Computes illumination for each point of polygon
- Algorithm
- for each vertex of polygon
- get vertex normal
- for each pixel in projection of polygon
- compute point normal by interpolation of vertex normals
- compute illumination using interpolated normal

Phong shading

Phong shading

- Advantages
- Much better results for curved surfaces
- Nice highlights
- No Mach banding
- Disadvantages
- Computational expensive
- Normal interpolation and application of illumination model for each pixel

Shading summarized

Shading

- Flat shading
- 1x application of illumination model per polygon
- 1 color per polygon
- Gouraud shading
- $1 x$ application of illumination model per vertex
- Interpolated colors
- Phong shading
- 1x application of illumination model per pixel
- Nice highlights

Povray - material properties

```
light_source {
    <0,5,-2>
    color White
    }
sphere { <-2.30,.7,0>, .7 texture { pigment {Red}
    finish { ambient 0.0 diffuse 0.0 phong 1 phong_size 20 }}}
sphere { <-0.75,.7,0>, .7 texture { pigment {Red}
    finish { ambient 0.0 diffuse 0.4 phong 1 phong_size 10 }}}
sphere { < 0.75,.7,0>, .7 texture { pigment {Red}
    finish { ambient 0.2 diffuse 0.4 phong 1 phong_size 3 }}}
sphere { < 2.30,.7,0>, .7 texture { pigment {Red}
    finish { ambient 0.2 diffuse 0.4 reflection 0.5
}}}
plane { <0,1,0>, 0 texture { pigment {White }}}
ambient=ka, diffuse= }\mp@subsup{k}{d}{}\mathrm{ , phong = k k, phong_size = n

\section*{Grafische pijplijn}


\section*{Z-buffer \& Gouraud shading}


\section*{Z-buffer \& Phong shading}


\section*{What is still missing?}
- Shadows
- Area light sources
- "Real" mirroring
- Transparency
- Indirect diffuse reflection

\section*{Shadow}
- Illumination with shadows
\[
\mathrm{I}_{\text {totaal }}=\mathrm{I}_{\mathrm{e}}+\mathrm{k}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}+\sum_{\mathrm{i}} \mathrm{I}_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{d}} \mathrm{C}_{\mathrm{d}} \cos \left(\theta_{\mathrm{i}}\right)+\mathrm{k}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}} \cos ^{\mathrm{n}}\left(\alpha_{\mathrm{i}}\right)\right)
\]
- \(S_{i}=0\) if light of source \(i\) is blocked
\(=1\) if light of source \(i\) is not blocked
- Several methods to compute shadow
- Shadow buffer
- Ray casting
- Shadow volumes
- ..

\section*{Shadow buffer}
- Based on z-buffer algorithm
- Rendering in 2 steps
- Compute depth information
- Z-buffer from light source (= shadow buffer) to compute shadows
- During "normal" rendering, when computing illumination of point read from shadow buffer if point is lit by light source

\section*{Shadow buffer - step 1}
- "Render" scene with light source position as viewpoint and store depth results in depth buffer (no illumination)
- \(\operatorname{sbuffer}(x, y)=\) minimum \(z\)-value after projection of all polygons on ( \(x, y\) ), i,e. distance to object nearest to light source


\section*{Shadow buffer - step 2}
- At rendering, when computing illumination of point ( \(x, y, z\) ), transform point into light source coordinate system, resulting in point ( \(x^{\prime}, y^{\prime}, z^{\prime}\) )
- \(S_{i}=1\) als \(z^{\prime}<=\operatorname{sbuffer}\left(x^{\prime}, y^{\prime}\right)\)
\(=0 \quad\) als \(z^{\prime}>\operatorname{sbuffer}\left(x^{\prime}, y^{\prime}\right)\)


\section*{Shadow buffer}


\section*{What is still missing?}
- Area light sources
- "Real" mirroring
- Transparency
- Indirect diffuse reflection
- Influence of atmosphere```

