7M836 Animation & Rendering

Global illumination, radiosity

Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl

Direct and indirect illumination

Global illumination

- Light paths
 - Complete solution: L(D|S)*E
 - Ray tracing: L(S*)DS*E
- Still missing in ray tracing:
 - Diffuse interreflection: D*
 - Diffuse/specular interreflection: (D|S)*
 - These terms approximated with ambient light

Global illumination

Diffuse interreflection

• Why specular reflection in in ray tracing and why diffuse interreflection not?

Indirect diffuse illumination

Radiosity method

- Radiosity method computes *diffuse interreflection* of objects
 - Diffuse interreflection is no longer approximated by ambient light

Radiosity method

Basic idea

- Subdivide all polygons in elements for which one energy value (~ color) must be computed
- Treat every element in scene as source of light
- Compute for each element the total amount of radiated energy

Radiosity

Radiosity effects

- Soft shadows
- Color bleeding

Radiosity example

Radiosity

 Radiosity (B) is energy per unit area that leaves surface

SO

- Radiosity is sum of energy
 - Emitted by surface (light sources)
 - Reflected by surface

Radiosity equation

$$\mathbf{B}_{i}\mathbf{A}_{i} = \mathbf{E}_{i}\mathbf{A}_{i} + \mathbf{\rho}_{i}\sum_{j}\mathbf{B}_{j}\mathbf{A}_{j}\mathbf{F}_{ji}$$

- B_i = Radiosity of element i
- E_i = Emission of element i
- ρ_i = Reflection coefficient (diffuse) of element i (k_dC_d)
- F_{ji} = Form-factor between elements j en i (= fraction of energy leaving element j that reaches element i)

•
$$F_{ij}A_i = F_{ji}A_j$$

$$\boldsymbol{B}_{_{i}}=\boldsymbol{E}_{_{i}}+\boldsymbol{\rho}_{_{i}}\sum_{_{j}}\boldsymbol{B}_{_{j}}\boldsymbol{F}_{_{ij}}$$

Form factor

• Form-factor F_{ij} is fraction of total energy of patch i that reaches patch j

$$F_{ij} = \frac{1}{A_i} \int_{A_i A_j} \frac{\cos \theta_i \cos \theta_j}{\pi r^2} V_{ij} dA_j dA_i$$

• $V_{ij} = 1$ if dA_j visible from dA_i 0 if not visible

Radiosity solution

• Solve for all elements the radiosity equation:

 $B_{_{i}}=E_{_{i}}+\rho_{_{i}}\sum_{_{j}}B_{_{j}}F_{_{ij}}$

Radiosity

 Result of radiosity: radiosity value (~ diffuse intensity) for each element

- Radiosity is viewpoint independent
 - One solution can be used to generate several images

Radiosity result – flat

Radiosity result – Gouraud

Radiosity solution

• Solve for all elements the radiosity equation:

$$\mathbf{B}_{i} = \mathbf{E}_{i} + \boldsymbol{\rho}_{i} \sum_{j} \mathbf{B}_{j} \mathbf{F}_{ij}$$

- Methods:
 - Full-matrix radiosity
 - Progressive refinement radiosity

Matrix radiosity

$$\begin{vmatrix} 1 - \rho_1 F_{1,1} & \cdot & \cdot & -\rho_1 F_{1,n} \\ -\rho_2 F_{2,1} & 1 - \rho F_{2,2} & \cdot & -\rho_2 F_{2,n} \\ \cdot & \cdot & \cdot & \cdot \\ -\rho_n F_{n,1} & \cdot & \cdot & 1 - \rho_n F_{n,n} \end{vmatrix} \begin{vmatrix} B_1 \\ B_2 \\ B_2 \\ \vdots \\ B_n \end{vmatrix} = \begin{vmatrix} E_1 \\ B_2 \\ \vdots \\ E_2 \\ \cdot \\ B_n \end{vmatrix}$$

20

Matrix radiosity

- Disadvantages of matrix method
 - High time and memory cost: $(O(n^2))$
 - *n* = number of elements
 - All form-factors have to be computed
 - Even for areas in scene where there is almost no energy exchange

- $B_j = E_j + \rho_j \sum_i B_i F_{ji}$
- Contribution B_i to B_j : $\rho_j B_i F_{ji}$
- Select an element i
- Shoot all energy from element i, and compute contribution to radiosities of all other elements j
- Initially all radiosities of all elements are 0, except radiosities of light sources

for all patches i

radiosity_i := emission value to radiosity unshot_radiosity_i := emission value

do

determine patch i with most unshot energy for all other patches j do contribution := $\rho_j B_i F_{ji}$ radiosity_j := radiosity_j + contribution unshot_radiosity_j := unshot_radiosity_j + contribution unshot_radiosity_i := 0 until convergence reached

Initialization

- B_i , $\Delta B_i = E_i$ for all light source elements
- B_i , $\Delta B_i = 0$ for all other elements

do

find element i with most "unshot" energy $\Delta B_i A_i$;

for all other elements j do
compute form-factor
$$F_{ij}$$

 $\Delta Rad = \rho_j * \Delta B_i * F_{ij} * (A_i/A_j)$
 $\Delta B_j = \Delta B_j + \Delta Rad$
 $B_j = B_j + \Delta Rad;$
 $\Delta B_i = 0;$
until convergence reached

- Advantages
 - Less memory consumption
 - Ability to inspect process
 - Ability to stop before process completely converged

Progressive radiosity + ambient

Radiosity

- Result: 1 radiosity value per element
 so 1 color per element
- Meshing:
 - Partition surfaces in scene into small elements
- Meshing conditions
 - Good representation of intensity changes
 - No more elements than necessary

Meshing

- Uniform meshing
- Adaptive meshing
 - Make (uniform) start mesh and modify mesh (more elements) where large intensity differences found
- Discontinuity meshing
 - Determine before radiosity computations where large intensity changes will occur. Mesh finer along intensity transitions

Meshing

Meshing

Uniform mesh

Reference picture & uniform mesh

Meshing problems

- A. Blocky shadows
- **B.** Missing features
- C. Mach bands
- D. Inappropriate shading discontinuities E. Unresolved discontinuities

Increase resolution

Adaptive meshing

Adaptive meshing

Shadow and light leaks

T-Vertices

Radiosity steps

- Create scene
 - Take care of accurate material and light source definitions
 - During modeling, keep in mind the problems that can occur during application of radiosity
- Make a coarse meshing, compute and inspect results
- Adapt materials and light sources
- Make a "good" meshing
- Compute radiosity results
- Use radiosity results to make one or more images

Radiosity summarized

- Computation of diffuse interreflection
- Result radiosity: intensities for patches
- Viewpoint independent
- Accuracy of results depends on meshing
- High memory and time costs

Povray - radiosity

Mug in a box with 1 red wall, 1 yellow wall, and 4 white walls.

specular 0.2

Povray - radiosity

Mug in a box with 1 red wall, 1 yellow wall, and 4 white walls.

global_settings { radiosity {} light source { < -3.75, 0, 7.> color <1,1,1>*0.7 } #include "mug.inc" object { mug **pigment** { **color** <1,1,1> } finish { diffuse 0.8 ambient 0.0 specular 0.2

- Direct use of radiosity results:
 - Radiosity results replaces diffuse computation in local illumination function
 - Gouraud shading
 - Fine meshing to get nice shadows

- Use radiosity results for indirect illumination only
 - Re-compute direct light during rendering
 - Less fine meshing required

- Use radiosity results to re-compute direct and indirect illumination
 - Use radiosity results as emission values
 - Regard all patches as light sources
 - Coarse meshing suffices

Radiosity

Ray tracing

- Viewpoint independent
- Diffuse (inter)reflections
- Color bleeding
- Area light sources
- Soft shadows
- Light paths: D* (and (D|S)*)
- High memory usage
- Meshing determines
 accuracy results
- High computation times

- Viewpoint dependent
- Real specular reflections
- Transmission + refraction
- Point light sources
- Sharp shadows
- Light paths LDS*E (and LS*DS*E)
- Low memory usage

radiosity vs ray tracing

