7M836 Animation & Rendering

Mapping, aliasing

Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl

Mapping

- Why?
 - More detail
 - More realism
 - Simplified modeling

Mapping

- More detail by
 - Variation of diffuse and specular reflection (color), and transparency (texture mapping)
 - Variation of normals (bump mapping)
 - Variation of heights (displacement mapping)
- Mapping techniques can also be used for
 - Simulation mirroring (environment mapping)
 - Shadows (shadow mapping)

Texture mapping

- Texture mapping is the process that modifies appearance of a point on a surface
- Appearance of point determined by
 - Image
 - Function
 - Dataset

2D and 3D mapping

Texture mapping

2D mapping function

Links a 3D object with a 2D texture (image or function)

(x,y,z) to (u,v)

• Use "standard" mappings

- Planar, cylindrical, sphere, box, ...

- Some geometric descriptions contain "natural " uvvalues E.g. spline surfaces
- Define your own uv-parameterization over object

Planar mapping

• (x, y, z) to (u, v)

Planar mapping

• (x, y, z) to (u, v)

Cylindrical mapping

• (x, y, z) to (r, θ, h) to (u, v)

Cylindrical mapping

• (x, y, z) to (r, θ, h) to (u, v)

Spherical mapping

• (x, y, z) to (r, θ , ϕ) to (u, v)

Spherical mapping

• (x, y, z) to (r, θ , ϕ) to (u, v)

Box mapping

- Determine relevant side of box
- (x, y, z) to (u, v)

Box mapping

• Box texture

Box mapping

- Determine relevant side of box
- (x, y, z) to (u, v)

UV-mapping of geometry

• Parametric surfaces

Parametric surface

Parametric surface

Define uv-mapping

Mapping

- When (u,v) outside range [0, 1]
 - Decal 🛛 🔶
 - Repeat/Tile 🔶
 - Mirror
 - Clamp
 - Border

Texture combination functions

- Texture is combined with material (reflection properties) of object
- Methods
 - Replace
 - Modulate
 - Blend

 $C = C_{T}$ $C = C_{I} C_{T}$ $C = C_{I} (1 - C_{T}) + C_{B} C_{T}$

3D mapping

3D mapping function

Link a 3D object with a 3D texture (function of dataset)

3D mapping example

3D mapping example

Bump mapping

- Use texture to modify normal of point on surface
- Illumination uses modified normal

Bump mapping

Bump mapping examples

Bump mapping

- Use texture mapping to simulate reflections
 - Less accurate compared to ray tracing
 - Much faster
 - No specular-specular reflections

- Render scene 6 times from center of reflective object
- Use resulting mirrors as texture

- At visible point
 - Compute reflection direction: $r = 2 (n \cdot v)n v$
 - Use this direction to determine side in box and (u,v) values within texture

Environment mapping & ray tracing

- Aliasing is error in signal caused by limitations in system that generates or processes signal
 - Occurs when there is not enough information to represent something

Why called aliasing?

However, if sampling is too inaccurate, reconstruction is impossible.

Why called aliasing?

Sampling at pixel centers

Examples of aliasing

- Jagged edges (jaggies)
- Loss of detail
- Temporal aliasing

Aliasing in textures

Aliasing in textures

Temporal aliasing

Anti-aliasing

- Minimization of aliasing effects
- Methods
 - Pre-filtering
 - Post-filtering

Postfiltering / supersampling

- More samples per pixel
- Pixel color is average of samples

Postfiltering

3x3 jittered supersampling 5x5 weighted filter