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Abstract

A new method for the visualization of state transition
graphs is presented. Visual information is reduced by
clustering nodes, forming a tree structure of related
clusters. This structure is visualized in three dimensions
with concepts from cone trees and emphasis on symmetry.
The resulting visualization makes it easier to relate
features in the visualization of the state transition graph
to semantic concepts in the corresponding process and
vice versa.

1. Introduction

Graphs play an important role in science with
applications ranging from biology to electronic
engineering. This paper focuses on an application in
computer science, where graphs are applied to describe
Finite State Machines [1]. The concept of a finite state
machine plays a central role in computer science, as it can
be used to model processes. Subsequent study of these
models can then reveal useful information about the
process. Although some aspects, such as deadlock states,
can be identified by computational analysis, properties
like symmetries within or similarities between processes
can be nearly impossible for a computer to find. Since the
human perceptual system is much more adept at finding
similarities between structures a good visualization is
indispensable. Such a visualization is trivial when dealing
with a small number of states, since a simple node and
link diagram can be used. In practice however, the finite
state machines under analysis often consist of thousands
of nodes, which severely limits the usefulness of the
traditional method (Fig 1). This paper presents a new
visualization method that maintains symmetry present in
the graph, while providing the user with an overview of
the entire graph’s global structure. For a quick impression,
figures 10 and 11 show visualizations of graphs with 191

and 2860 nodes, respectively.
Section 2 discusses related work and the general ideas

behind this type of visualization. Section 3 describes the
method used to construct it in more detail. Results of
applying this method to a number of sample cases are
presented in section 4. Finally, section 5 summarizes these
results and offers some recommendations for
improvements.

2. Approach

Much research has been done in the area of two
dimensional (2D) graph drawing. For an overview see for
instance [2]. The general approach for 2D visualizations
of directed graphs is to produce a pleasant looking picture
by optimizing one or two aspects of the visualization. In
the case of larger graphs however, the lack of
visualization space in 2D quickly becomes a problem. A
second problem is that optimizing only one aspect loses
its effectiveness when dealing with a large number of
nodes. Several attempts to overcome these problems have
been made by using 3D visualizations and by applying
different techniques such as hyperbolic space [9],
hierarchical node clustering [13],[4] or self organizing

Fig 1. 2D Visualization of a state transition
graph with 191 states



networks [7]. Since finding a general solution for
visualizing large directed graphs can be difficult, most
existing methods are forced to use domain-specific
information. In this case we focus on large state transition
graphs, which are automatically generated from high-level
process descriptions and generally exhibit symmetry and
regularity. The visualization method presented in this
paper relies on two principles:

1. Enable the user to identify symmetrical and
similar substructures:

By choosing to optimize only one local aspect of
the graph, such as edge crossings, many structural
symmetries or similarities are ignored. The same goes
for extracting a minimal weight spanning tree. The
visualization in figure 1, for example, obscures the
fact that the marked groups of nodes have identical
structural properties by positioning them in different
ways. A clear picture of the similarities (and to a
lesser extent the symmetries) in a graph enables users
to mentally break up large structures into smaller
similar looking pieces thus making a complex picture
easier to digest. It also facilitates analysis and
comparison of similar structures.

2. Provide the user with an overview of the global
structure of the entire graph.

A major problem in the visualization of state
transition graphs is the sheer size of the graph. No
matter the quality of the layout, it is simply
impossible for the human perceptual system to form a
schematic idea of what a graph looks like when
confronted with thousands of information elements.
A technique to drastically reduce visual complexity is
the grouping of nodes based on a common property,
also known as clustering [8]. Clustering based on the
structure of the graph is especially useful here, since
the structure of the resulting clusters generally
resembles the overall structure of the original graph,
which facilitates maintaining context. Structure based
clustering can provide a useful high-level map of the
graph, in which the user can then select an area of
interest to be inspected closer.

3. Visualization

Assuming we have a Finite State Machine consisting
of a finite set of states and an also finite set of possible
transitions (along with conditions) between these states,
we can define the corresponding state transition graph by
the graph G=(V,E), where x∈ V represents a state and axy

∈ E represents adirectededge (orarc) between the nodes
x and y. A start node s∈ V represents the finite state
machine’s initial state. We split the visualization process
for a state transition graph into four distinct steps:

1. Assign a rank (or layer) to all nodes;
2. Cluster the graph based on a structural property,

resulting in a backbone tree structure for the entire
directed graph;

3. Visualize this structure using a method related to
cone trees;

4. Position individual nodes and edges.

3.1 Ranking

In a first step nodes are assigned to a layer or rank,
comparable to the standard Sugiyama-type layout [11].
That is, all nodes are assigned a positive discrete value
that indicates their depth relative to the start node. We
found two ranking methods the most useful, since they
correspond with two types of views on processes: iterative
and cyclic (Fig 2).

In an iterative process view, a start node s is assigned a
rank of 0, and subsequent nodes are assigned a rank that is
equal to the length of the shortest path from the start node
to that specific node, similar to a breadth first search (see
Fig 2A). This ranking has the advantage that most arcs
between ranks point in the same direction, which creates a
natural ‘flow’ in the picture. Since most people tend to
think of processes in terms of an iterative execution of
statements, users will likely be familiar with this way of
visualizing processes. The biggest disadvantage however,
is that the few arcs that do point in the other direction are
usually longer. Thesebackpointersmay not present a
significant problem when dealing with relatively simple
processes, but when dealing with complicated processes
they tend to span several ranks and spoil the final
visualization.

In a cyclic process view, we view a process as a cyclic
execution of statements, with no clear beginning and end.
If the start node is assigned a rank of 0, other nodes are
assigned a rank that is equal to the length of the shortest
path from that node to the start node,independent of the
direction of the edges(see Fig 2B). This type of ranking
by definition eliminates any long backpointers in the
visualization, since each node is positioned at most one
rank away from any connected node. This may be
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Fig 2. Different views on the same process:
Iterative (A) and Cyclic (B)
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advantageous if users are looking for connected clusters
of nodes. The major disadvantage is that arcs between
ranks do not point in one direction, which makes it harder
to comprehend the graphs layout in detail.

From here on we refer to arcs that point from a low
ranked node to a higher ranked node as arcs pointing
down, and vice versa. Furthermore, note that horizontal
arcs connecting nodes in equal ranks can also occur.

3.2 Clustering process

In the second step nodes are clustered to reduce the
visual complexity of a graph, based on a local structural
property that we define in this section. Instead of
clustering by focusing on a single global property, such as
‘minimal edges between resulting clusters’ or a property
of a single node we propose a clustering based on an
equivalence relation between nodes.

We aim at the creation of a tree structure based on the
original graph which we then later use as a backbone to
display the complete structure of the entire graph. To this
end, we first modify the original simple directed graph
and next simplify this modified graph by clustering the
nodes.

Given a graph G consisting of a set of nodes V and a
set of arcs E and given a ranking R that maps nodes to a
positive discrete rank, we define a new set of arcs E’ by
removing any arcs spanning more than one rank from E.
Additionally, to facilitate definitions we reverse the
direction of the remaining arcs that point upward. More
formally:

E’ = { a xy | x,y∈ V ∧ axy ∈ E ∧ 0≤ R(y) – R(x)≤ 1} ∪
{ ayx | x,y∈ V ∧ axy ∈ E ∧ R(x) – R(y) = 1 }

No arcs in the graph G’=(V,E’) are pointing upward
since for all axy in E’ 0 ≤ R(y) – R(x)≤ 1 holds. Note that
this does not necessarily mean that G’ is acyclic since a
cycle consisting of nodes all having equal rank is still

possible. Let D(x) be the set of all nodes that can be
reached from x via zero or more arcs in E’. We now
define two nodes x and y to be equivalent iff a row
(x=z1,z2,...,zN=y) of nodes with equal rank exists, such
that for all 1≤ i < N D( zi ) ∩ D( zi+1 ) is not empty (see
Fig 3).

It can be fairly easily shown [6] that this is an
equivalence relation, so by definition its equivalence
classes are non-empty and disjoint, which makes them
very suitable to use as clusters.

Since all nodes in a cluster have the same rank, we can
extend the concept of rank to clusters. The rank of a
cluster containing node x is then equal to the rank of x.
We can now define a relationship between clusters, that
can be used to construct the backbone structure: A cluster
C1 is defined to be anancestorof a cluster C2 iff Rank(C1)
= Rank(C2) – 1 and there exists an arc in E’ connecting a
node in C1 with a node in C2. A cluster C2 is defined to be
a descendantof C1 iff C 1 is an ancestor of C2.

The clusters defined in this section together with their
ancestor relations have a number of interesting properties:
• Every node is in exactly one cluster;
• Cyclic ancestor relations are not possible since an

ancestor of a cluster C has a rank that is one lower
than the rank of C;

• Each cluster has at most one ancestor.

Based on these properties we can state that the resulting
structure is a tree structure. Consequently, we can use or
modify existing visualization methods for trees to
visualize the clustered structure. The next section
discusses this step in more detail.

Fig 3. Nodes x and y are equivalent, as are
nodes a and b, while nodes x and b are not.
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Fig 4. Original graph G (left) and clustered
graph G’ with backbone tree (right)



3.3 Visualizing the backbone tree

Before making a choice for a layout, we first state our
requirements for a good layout:
1. Symmetry is important and therefore a visualization

that produces a more symmetrical picture is to be
favored. Clusters and nodes with the same structural
properties should be treated in the same way.

2. There has to be a clear visual relationship between
the backbone structure and the actual graph. It is
easier for the user to maintain context when
inspecting a small detail section if this detail looks
approximately the same in close up view as it did in
the global overview.

3. The size of the clusters has to be related to the
number of nodes in a cluster to prevent cluttering.
Clusters with a larger number of nodes have to be
visualized by larger visual elements.

Although classical 2D layouts are very predictable,
familiar and easy to use, the lack of visualization space
quickly becomes a problem when dealing with larger
graphs, especially when considering that we want to
visualize larger clusters as larger nodes in the tree. A
popular technique to deal with this problem is to move
from a 2D to a 3D layout, which gives us an extra
dimension to increase the cluster size.

We aim for a visualization that depicts clusters as
circles in a horizontal plane. A plane is reserved for each
rank, with the topmost plane containing clusters with rank
0. The backbone tree is laid out in a manner resembling
cone trees [10], with ancestor clusters positioned at the
apex of an imaginary cone and their descendant clusters
placed at the base of the cone. In other words, our clusters
have the same status as tree nodes in a cone tree. To
emphasize the hierarchy in the cluster structure, truncated
cones are drawn between related clusters. Figure 5 gives a
quick impression. The overall process adheres to the basic
concepts of cone trees but with a few alterations:
A. Clusters (the nodes in the cone tree) are visualized as

circles of different sizes.
B. Symmetry is improved by also allowing clusters to be

positioned in the center of the cone’s base.
C. The final resulting structure is given more ‘body’ and

some extra visual cues are added.

Ad A. Normal cone trees consist of a collection of
similar looking nodes. The tree nodes in our modified
cone tree however, are the clusters we defined in the
previous section. Since each cluster contains a different
number of our nodes we represent them by different sized
circles. Nodes will be placed on the circle boundary, so
we choose to keep the circle’s circumference proportional
to the number of nodes in the cluster, which results in the
same amount of visualization space for each node.

Ad B. We present a heuristic for creating symmetrical
layouts and discern the following cases for the positioning
of the N descendant clusters of a cluster A.

• N = 1: In this case the descendant cluster is
positioned directly below A.

• N > 1: We space the clusters evenly over the base of a
cone with its apex at the center of A. The base
diameter of this cone can be computed by using a
recursive method similar to the one used by [3].
However, since positioning all N descendant clusters
over the base may not always be a symmetrical
solution we make the following three exceptions:
• If there is a unique largest cluster among the

descendant clusters, we position this cluster
directly below A in the center of the cone’s base
(Fig 6A).

• If there is one unique smallest cluster among the
descendant clusters we center this cluster when
there are no largest clusters centered (Fig 6B) or
when there is a largest cluster centered and the
smallest cluster does not have any descendants.
This prevents clusters from potentially
overlapping each other.

• If after centering clusters based on the above
exceptions, only one non-centered cluster
remains, we choose not to center the largest
cluster. This produces a more balanced layout
(Fig 6C).

Fig 5. Sample visualization
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Ad C. Since nodes are positioned on the circle
boundaries most edges between nodes in a cluster and
nodes in a descendant cluster will typically run within a
section of space bounded by a truncated cone. A simple
but effective way to reduce the visual complexity of the
graph then, is to visualize these two clusters as a truncated
cone. The cone’s top radius is set equal to the radius of the
ancestor cluster and the cone’s bottom radius is equal to
the radius of the descendant cluster. If we are dealing with
multiple descendant clusters, the cone’s bottom radius is
equal to the radius of the base of the (imaginary) cone the
clusters are positioned on. Although this method provides
a good overview of the graph’s global structural
properties it suffers from some problems inherent to 3D
visualizations, the most notable being the problem of
objects occluding each other. To overcome this problem
and at the same time improve use of available
visualization space we rotate non-centered clusters (and
their descendants) slightly outward. Finally, transparency
is added which further reduces this effect and provides
extra visual clues when looking at still pictures. Fig 10
shows some sample visualizations created with a
prototype program.

3.4 Positioning individual nodes

The previous two paragraphs presented a method to
reduce visual detail by clustering nodes, providing a better
global overview. The next step is to assign an optimal
position to the individual nodes in the graph, given the
fact that nodes are positioned on the circle edge. An
optimal positioning of nodes satisfies the following
requirements:

1. Short edges between nodes. A visualization is more
effective if a node is kept close to its neighbors.

2. Maximum possible distance between nodes in the
same cluster. Nodes are to be kept as far apart as
possible to reduce cluttering and may not coincide.

3. Where possible emphasize symmetry in the structure
by positioning nodes with the same properties in the
same way.

Clearly the first two requirements contradict, since
positioning two nodes in the same cluster that have the
same parentnode further apart leads to a greater total edge
length. Another problem is the computational complexity.
Although positions can be calculated by minimizing an
error function or using a force directed approach, the
number of nodes we are dealing with is generally too
large to provide visualization at an interactive level.
Another disadvantage is that two runs of the same
optimization algorithm on virtually identical graphs may
produce radically different layouts, which makes it
impossible to identify similar substructures within a
graph. We therefore select a rule-based approach, in
which the position of a node is governed by local
structural node properties.

We use a two-step heuristic to position the nodes. First,
we assign initial positions, based on the positions of nodes
in ancestor and descendant clusters, similar to [12]. In a
second step we adjust these initial positions of nodes to
increase the space between them. The following describes
these two steps in more detail.

Step 1: The position of a node is based on the positions of
connected nodes. An initial positioning is made in a
bottom-up pass (i.e. nodes with higher ranks are processed

first, so node positions depend on the position of
connected nodes in descendant clusters). This pass is
followed by a top-down and another bottom-up pass
where we resolve the positions of nodes that could not be
placed in the first pass.
Suppose a node x has N children positioned at anglesϕ1,
ϕ2,…, ϕN. We can then calculate an optimum position for
x based on the average positions of the nodes in a
descendant family. Let this position be(r, ϕx) in polar
coordinates. If r is below a thresholdτ we choose to
position node x in the center of the cluster, otherwise we
position x on the circle edge at angleϕx.

Cone base Cluster (top view)

Fig 6. Layout of individual clusters
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Fig 7. Calculating node positions (top view)
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Using this method we can calculate a positionϕx for an
individual node x in a cluster C using the following rules:
• |C| = 1: If node x is the only node in C we center it.
• |C| >1: Assuming node x has N childnodes and

cluster C has D descendants, we discern between:
• D = 1: Calculateϕx as outlined above.
• D >1: For all N childnodes in the different

clusters calculate anglesϕ1, ϕ2,…, ϕN relative to
cluster C and calculateϕx as outlined above.

• D = 0 or All N childnodes are centered and
D=1: In this case there is not enough structural
information available to position the node. Nodes
that cannot be assigned a position in the first
bottom-up pass are temporarily assigned to the
center position and marked as undecidable. In the
second pass we use exactly the same heuristic
but apply it top-down to the undecidable nodes,
basing their position on the position of their
parentnodes in the cluster’s ancestor. Nodes for
which a position still can’t be uniquely
determined are positioned in a third bottom-up
pass, in which case we make a deterministic
decision for a position based on maximizing the
distance between nodes in a cluster (Fig 8).

Step 2: After positioning nodes in a cluster based on
the above heuristic we increase space between them in a
second step. We wish to:
- Leave the (partial) order on nodes we created in the

previous step intact.
- Distribute the nodes in a balanced and symmetrical

manner over their childnode(s)
The following algorithm outline presents a simple but
effective way to accomplish this:

Fix a number of equidistant positions, called slots, on the
circle boundary;(Fig 9A)
Round each node position to the nearest slot;(Fig 9B)

for each slot Sdo
if S contains more than one nodethen

Calculate the maximum circle section
available for that slot, considering the
occupation of neighboring slots;
Distribute nodes in a balanced manner over
that section, conserving the order created in
step 1;(Fig 9C)

In the sample below we used 4 slots for tutorial purposes.
For a detailed description of the algorithm including how
to determine an optimal number of slots and how to
distribute multiple centered nodes, we refer to [6].

This method of positioning nodes gives acceptable and
predictable results for graphs of low to medium
connectivity and maintains O(V) performance. Finite
state machines tend to be large and have a low
connectivity, which makes the above method well suited
for our purpose.

4. Results

We implemented the above visualisation method in a
prototype program using OpenGL in a MS Windows
environment. A number of options for interaction and
viewing were also implemented. It was tested with graphs
up to approximately 25.000 nodes and proved especially
useful in two cases that we will discuss below.

4.1 Searching for clusters with a common property

This section discusses the application of this method to
two real world cases. Figure 10 shows visualizations of
the same graph as displayed in figure 1, describing the
Alternating Bit Protocol. The most striking feature in the
cyclic visualization (10A) are the two lobes at the bottom.
Since a cyclic ranking has no backpointers and all other
edges fall within the outline given here, transitions from
one lobe to another are only possible using states in the
top part. The iterative visualization (10B) clearly shows
the 4-fold symmetry in the protocol but the (marked)
nodes in the left lobe in figure 10A are spread out over the
visualization due to the long backpointers. Although
cyclic ranking does not convey the flow in a graph as well
as iterative ranking, it keeps every node close to its
neighbors making it a useful tool to locate clusters of
related nodes. An observer will usually also want to know
what the typical characteristics of such clusters are. If he
can identify a single common value of a state variable for
the nodes in a lobe in figure 10A, he can pin higher-level
semantic concepts on different areas of the graph by using
knowledge of the state variables. We have integrated this
into our prototype by allowing the user to select a
substructure and let the system determine thecorrelation
between a set of nodes with a common property and nodes

Fig 8. Three pass heuristic. Nodes marked as
undecidable after a pass are colored gray.

Fig 9. Distributing individual nodes

CBA



in a selected region.
For each possible state variable / value combination

the Pearson correlation coefficient is calculated. This
gives us a list of correlation factors of which the ones
closest to 1 indicate which common property is present in
the nodes in the selected region.

4.2 Identifying symmetries and similarities

A clear picture of the symmetry in a graph can reduce
the amount of time needed to analyze the structure, since
one can suffice with the analysis of only one of the
symmetrical parts. A second advantage is that
symmetrical features help the user break down an initially
complex structure into more digestible chunks. Although
one could argue that symmetrical features could also be

extracted by a computer searching all nodes of the graph,
the same is not the case for similar features. In this case
the skills of the human perceptual system with respect to
pattern recognition are indispensable. Figure 11 shows a
graph consisting of 2860 nodes, depicting the
communication protocol for a modular car lift system [5]
where three hydraulic jacks support one platform. If we
compare the visualization of this graph to the one
depicting the same protocol for two jacks we can expect
to find some similarities, since both deal with the same
real-world process. Figure 12 shows a section in the
bottom right of figure 11 next to a part of the 2-jack
protocol. Both sections clearly have similar global
structures, but a more complicated detail structure in the
case of three jacks. This is also the case for many other
sections. This allows us to apply concepts obtained from
analysis of the simple version to the more complicated
version of the protocol. Such similarities are nearly
impossible for a computer to find, and it is doubtful that
even a user using the standard 2-dimensional visualization
would have picked them up, which makes this
visualization method very useful in this respect.

Fig 11. Protocol for a 3-jack car lift system
with 2860 nodes and iterative ranking

Fig 10. Alternating Bit Protocol (191 nodes) with
A) Cyclic ranking
B) Iterative ranking with backpointers shown
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5. Conclusion and recommendations

We have presented a new method for the visualization
of state transition graphs. Instead of computationally
optimizing one aesthetic, we chose a more procedurally
oriented approach, focusing on structure symmetry. The
resulting visualizations give the user an overview of the
entire graph and the ability to view the detailed node
structure if desired. The strong focus on symmetry and the
predictability of this method allow users to compare
graphs that are similar in overall structure, but have
different local properties, making it also suitable for other
types of directed graphs. Although this method performs
well for large graphs with fairly low connectivity, clusters
in highly connected graphs tend to become too large,
resulting in a less effective overview. Comprehending the
actual connections between nodes when looking at a 2D
projection of a 3D scene also proves difficult.

Further work should focus on methods to alleviate
these problems. One can think of recursively applying this
method to more complex sections of the graph, which
may split larger clusters into smaller ones or adding extra
depth or motion cues to edges in the graph. A 2D version
of this method may also be considered. Though requiring
more visualization space, a two-dimensional layout may

provide better detail views, especially for graphs of higher
connectivity.
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