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ABSTRACT

We present a method to compute and visualize behavioral patterns
of trajectories by means of density. The computational model is a
skeletal convolution approach, which smoothes continuous trajec-
tories to find trends in normal behavior. Our method is to be applied
in the maritime domain to establish safety and security by coastal
surveillance systems.
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Index Terms: I.3.3 [Computer Graphics]: Picture/Image
generation—Line and curve generation.

1 CONTEXT

The sea seems an open playground, but regulations hold, and fur-
thermore, safety (collision prevention) and security (thread preven-
tion) need to be ensured. Operators monitor the coast using a Mar-
itime Safety and Security (MSS) system, which allows analysis of
multiple heterogeneous data sources. We aim at visualization meth-
ods with feedback to support operators to react on dangerous situa-
tions. To detect abnormal behavior, it has to be known what normal
behavior is. As a first step, we start with visual exploration of tra-
jectories of large vessels.

Recently, professional vessels are obliged to be equipped with an
advanced GPS tracker: Automatic Identification System (AIS) [2].
An AIS publicly broadcasts the status of a vessel, initially to pre-
vent collisions between vessels. For behavioral analysis, a network
of base stations has been setup to collect all broadcasted messages.
Messages contain vessel information (e.g., identification numbers,
name and ship dimensions) and voyage plans (e.g., destination, ex-
pected time of arrival, draught and type of vessel). Furthermore, the
actual movement (e.g., position, velocity, course) is broadcast up to
every 2 seconds, depending on the velocity. These movement mes-
sages are the data points that we use as input. A typical day consists
of 3 million messages (500MB) of nearly 1450 unique vessels.

Since vessels move slowly, and mainly in straight lines, we have
lossy compressed the actual movement using line simplification [1],
which is applied for both position and velocity dimensions. Us-
ing this approach, even with small errors (50m and 0.5knot), more
than 95% of the data can be discarded. We present a visualization
method based on continuous trajectories, which are approximated
depending on the interpretation of the attribute by interpolating data
points in either time or space.

2 PROBLEM

Currently, coastal surveillance systems display only live data on a
map by means of glyphs and text. With this approach, it is hard
to observe whether a vessel moves normally or not. Our method
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enriches these situational displays with a context of normal behav-
ior. We focus on the following aspects of normal behavior, without
prior knowledge of regulated areas:

• Shipping lanes: where does the majority sail and what is the
general course?

• Anchoring places: where do vessels drop anchor?

To estimate where the majority sails, trajectories during a period of
time [0,T ] are assumed to be normal. These trajectories are dis-
played using a density plot as an overlay on a map. Density is
the average spatial distribution of vessels during [0,T ]. Trends are
found using convolution, which smoothes the trajectories to avoids
sampling artifacts. The general course and anchoring places are
visualized by decorating the density plot.

For this kind of applications, density is usually computed by con-
volving independent data points [3]. However, a trajectory is con-
tinuous, hence between two data points a vessel does not contribute
to the density where it should do (see figure 1 left). To convolve line
segments, a skeletal convolution approach is more appropriate. Our
method extends skeletal convolution by exploiting the broadcasted
velocities to obtain a more realistic density, i.e., the contribution is
high where a vessel sails slowly, and vice versa.

Figure 1: Partial trajectory between a slow and a fast data point. Left:
point-based approach. Right: skeletal approach.

3 METHOD

Our method is composed of a density model (section 3.1) and a
visualization model (section 3.2) to display normal behavior. In the
final section, our method is exploited to present abnormal behavior.

3.1 Trajectory density model

Consider vessels V . A vessel w ∈V sails along a continuous trajec-
tory pw(t), with t in time interval [0,T ]. For a point q, the density
Dw(q) contributed by a trajectory of vessel w is

Dw(q) =
1

T

∫ T

0
k(|pw(t)−q|)dt. (1)

Convolution is applied with an unit volume kernel k moving along
the trajectory pw(t), which distributes the relative presence of w to
the neighborhood of q during [0,T ]. The total density D(q) of all
vessels is the sum of the individual contributions

D(q) = ∑
w∈V

Dw(q). (2)

The right-hand side of figure 1 displays the densities of a partial
trajectory between two data points, in which a vessel starts slowly
in p(0) and accelerates to p(1). Convolution is applied with a fixed
size cone kernel. By using a terrestrial unit, the radius r of the
kernel k is an intuitive smoothing parameter.



Figure 2: Multiple views of the entrance of Rotterdam harbor of one day, using various settings. All views are convolved using a cone kernel with
rtotal = 1.5km, rsmall = 0.1km, T = 1 day, and use Dtotal with logarithmic scale. Live data of another day is plotted on figure a and b, where color
encodes the type of the vessels. a) Canals of Dtotal using α = −3. b) Ridges of Dtotal using α = 3. c) Etching trajectories with α = −3. At the top,
solving ambiguity of density: a slow vessel has a high total density, whereas a fast vessel has a low total density. At the bottom, anchoring zones
are visible by means of wells. d) Color coded course in etching trajectories using α = −3. e) Presenting abnormal behavior: locations where a
vessel moves less than four knots are highlighted. At the bottom, danger may occur since vessels move slowly in shipping lanes.

3.2 Visualization model

The total density Dtotal is visualized using two visual cues: color
coding and geometry of a height field H. Between shipping lanes
Dtotal may differ orders of magnitude. To emphasize less fre-
quently used shipping lanes, optionally a logarithmic scale is used
for Dtotal .

The height field H is

H(q) = α ·Dtotal(q). (3)

Canals can be taken as a metaphor to generate geometry when α <

0: the more vessels sail in a canal the deeper it gets. Details are
enhanced by scaling using α . The height field H is visualized using
a basic light illumination, with one white light source aiming from
the top right corner. In figure 2a, Dtotal is visualized with α = −3
resulting in canals, where α = 3 in figure 2b results in ridges. Live
data on top of both images explain the usage of these density plots:
none of the vessels are in thin density hinting for normally moving
vessels.

The total density Dtotal is decorated with individual trajectories
resulting in an overview+detail visualization (figure 2c). In order
to do so, density Dsmall is computed with a small kernel. Only the
geometry of H is manipulated by weighting the densities

H(q) = α ·Dtotal(q)+β ·Dsmall(q). (4)

For negative β , trajectories etch the surface of Dtotal . This makes
anchoring places visible, since stopping results in a well. If the
image is used for detailed investigation, etching trajectories solve
ambiguity of density: multiple fast vessels result in the same total
density as a slow vessel. By comparing the total density with the
number of etching trajectories, it is possible to conclude whether
vessels have moved fast or slowly. By color coding the average
course in the etching trajectories (figure 2d), the general course of
shipping lanes becomes visible. Using a continuous rainbow color
map along a wind rose, opposite directed lanes can always be dis-
tinguished due to pseudo-complementary colors.

3.3 Application

Our visualization method can also be used to highlight anomalies,
since they occur at negligible parts of the map. We use simple rules
like “velocity less than x knots” to define anomalies, where in the
future machine learning will be used. The total density is only com-
puted for those parts of trajectories that match the anomaly rules. In
figure 2e, only parts of trajectories are convolved where a ship sails
less than 4 knots. Density is displayed using a color map interpolat-
ing from blue to red and back, which creates space to display other
anomalies. In the bottom center of figure 2e, vessels move slowly
in shipping lanes hinting for dangerous situations.

4 FUTURE WORK

We will extend our visualization method by embedding more di-
mensions of data in various visual cues. Furthermore, our versatile
visualization method is work in progress that needs exploration of
optimal settings. The performance will be improved, for instance
by searching for an analytical solution for equation (1). Finally,
not all vessels are obliged to use AIS, hence radar data need to be
included to ensure safety and security.
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