
SCAN-CONVERSION OF IMPLICIT SURFACES WITH LIPSCHITZ CONDITION

Huub van de Wetering, Martijn de Kort, Kees van Overveld

Eindhoven University of Technology, Department of Mathematics and Computing Science
wstahw@win.tue.nl

ABSTRACT

A scan-line rendering technique for implicit functionswith
the Lipschitz condition is described; it handles orthogonal
projections and is based on computing the cycles in the in-
tersection of the surface and a scan-plane. Infinite implicit
surfaces and surfaces consisting of multiple parts are sup-
ported.
The technique is also viable for fast prototypingof implicit
surfaces; for this application the objects are rendered as se-
ries of (partial) cycles which can be viewed interactively in
3-dimensions.

1. INTRODUCTION

Implicit surface modelling (See [2] for an overview) has
become a powerful method for modelling geometric ob-
jects. Rendering techniques for implicit surfaces mostly
consist of a slow polygonization phase followed by a stan-
dard scan-conversion of polygons. In this paper we pro-
pose a technique for directly scan-converting implicit sur-
faces with the Lipschitz condition. Earlier results on scan-
conversion of implicit surfaces are available in [4] for quad-
ratic surfaces and more recent in [9] for algebraic surfaces.
These algebraic surfaces may be combined with CSG op-
erators and the rendering is based on quickly finding for
each scan-line the x-coordinates of the silhouettepoints and
the x-coordinates of the intersection points of the basic sur-
faces in the CSG expression. This method differs com-
pletely from the approach taken here and it is applicable
to a different domain of surfaces.

Both in [10] and [12] time coherence is used to facil-
itate interactive modelling of implicit surfaces. In [12] a
particle system is used for visualisation, while in [10] the
visualisation is done via a dynamic polygonizationscheme.
In section 6 we show that the scan-conversion technique
can be adapted to supply a fast prototyping tool. The tech-
nique does not use time coherence and line segments are
used for visualisation.

In section 2 the implicit functions we consider are in-
troduced. In the section 3 we introduce the scan-conversion
algorithm and elaborate on its parts. We give some im-
provements on the basic algorithm in 4. We present some
examples in section 5 and give some conclusions and di-
rections for future work in the sections 7 and 8, respec-
tively.

2. LIPSCHITZ FUNCTIONS

Definition 1 An implicit surface is the collection of the solutions
of an equation of the form: f (p) = 0.
An implicit volume is the collection of the solutions of an inequal-
ity of the form: f (p) ≥ 0.

Definition 2 Lipschitz Function
A function f is a Lipschitz function if and only if | f (q) −

f (p)| ≤ ||q − p||, for all p and q .

Note that generally a more liberal definition of Lipschitz
functions is used namely a λ exists such that | f (q)− f (p)|
≤ λ||q− p||, for all p and q . Replacing f (p) by λ−1 f (p)
results in f being replaced by a Lipschitz function with
guaranteed factor 1 while the associated implicit surface
remains the same.

An important class of Lipschitz functions is based upon
distance-induced functions.

Definition 3 distance-induced function
A distance-induced function is a function based on the geometric
distance to a skeleton S and it has the following form (where r >
0): f (p) = r−”minimal distance of p to any point on S”

Property 1 A distance-inducedfunction is a Lipschitz function.

Proof 1 Let S be a skeleton object and let the distance-induced
function f be given by f (p) = r − d(p, S), for some r > 0
where d(p, S) = min{||p − q || : q ∈ S}. Because of the tri-
angular inequality, ||p − s|| ≤ ||p − q || + ||q − s|| , for all s
in S. Hence, d(p, S) ≤ ||q − p|| + d(q, S). And since the last
formula is symmetric in p and q , |d(q, S)−d(p, S)| ≤ ||q− p||
and finally | f (p)− f (q)| ≤ ||q − p||.

Simple examples of distance-induced functions have
skeletons like a point or a line segment. In [5] it is shown
that Lipschitz functions can be combined with CSG mod-
eling and soft blending. These functionsare used here. The
unblended versions of the union, intersection, and differ-
ence operators are defined below. For the blended versions
we refer to the original article.

Definition 4 CSG function
Given two distance-induced functions f and g, we define three
CSG functions by:

i. ( f ∪ g)(p) := max( f (p), g(p))

ii. ( f ∩ g)(p) := min( f (p), g(p))

iii. ( f \ g)(p) := min( f (p),−g(p))



cube C screen

yP

S

I

Figure 1: cross section of cube C showing scan-line y,
scan-plane P, surface S, and intersection I = S ∩ C ∩ P

The observations in the following property were already
made in [7]; both there and here the property is used to
prune away empty regions of space. In [6] the property is
used for fast ray-implicit surface intersection.

Property 2 Let f be a Lipschitz function. And let p be a point
and Bp be the open ball with center p and radius | f (p)|.

i. An implicit surface S defined with f has NO overlap with
Bp if p 6∈ S

ii. An implicit volume V defined with f contains Bp if p ∈
V

iii. An implicit volume V defined with f is disjoint with Bp
if p 6∈ V

Proof 2 For all r in S ( f (r) = 0), it holds according to the Lip-
schitz condition that | f (p)| ≤ ||p − r ||. From this observation
(i) follows immediately.

If f (p) < 0 then f (Bp) contains no elements with a dif-
ferent sign than f (p) this is due to (i) and the continuity of f .
Hence, (ii) and (iii) hold.

3. SCAN-CONVERSION

We consider an implicit surface S based on the Lipschitz
function f . We generate an image of S∩C with C a given
cube. This image is formed by orthogonal projection of S
on the screen z = 0.

The image of S will be rendered scan-line by scan-line
(see algorithm 3). In order to do so the intersection I of S,
C and P is considered where P is a so-called scan-plane,
a plane orthogonal to the screen and containing a scan-line
(see figure 1). The intersection I is a set of cycles or par-
tial cycles. In order to render I it is approximated by line
segments that are ultimately rendered in a one-dimensional
z-buffer.

3.1. approximating a 2D implicit curve

Several techniques for approximating an implicit curve or
surface exist. One of the most used algorithms is Marching
Cubes [13, 8]. Here we search for an efficient algorithm
that can approximate all (partial) cycles with line segments;
the number of line segments should be preferably low and
hence the algorithm shouldbe adaptive in some way. March-
ing Cubes, however, is non-adaptive and moreover assumes

for each scanline y
P := "scanplane of scanline y"
I := C ∩ S ∩ P;
"approximate I with line segments";
"render line segments in a z-buffer"

Algorithm 1: scanline-rendering of implicit surface S in
cube C

that the object is connected. Other techniques for approx-
imating implicit curves or surfaces are based on hierarchi-
cal subdivisions [1, 7, 11]. As in [11] we will use a quadtree.
The adaptiveness is obtained by conditionally dividing the
nodes of the tree based upon local geometry of the implicit
function. The algorithm for one scan-line is shown in al-

"generate quadtree Q";
for each leaf l of Q

if l is a straddling node then
"approximate l with line segment(s)"

Algorithm 2: approximation of implicit curve with line
segments

gorithm 3.1. First a quadtree is generated and next for each
straddling leaf of the quadtree line segments are generated
for approximating the implicit curve. A straddling node is
a node with at least one side with alternating signs in its
endpoints.

In the next twosections the quadtree generation and the
approximation with line segments are explained further.

3.1.1. quadtree generation

We need subdivision criteria with which we can decide for
a (square) node N of the tree if subdivision is needed. The
length of the sides of N is r. The functionvalues from N in
its corner points are: fll , flr , fur , and ful and in its center
point fc .

maximal tree depth Do not divide when the maximal re-
cursion depth maxdepth has been reached.

Lipschitz condition From property 2 an easy criterion fol-
lows immediately. If | fc | > 1

2

√
2 r the node is either

completely inside or completely outside of the im-
plicit curve. In either case no subdivision is needed.

minimal tree depth Divide when the minimum recursion
depth mindepth has not been reached.

uncertain situation Divide when four sign alterations oc-
cur on the sides of the node: |sign( ful )−sign( fll )+
sign( flr )− sign( fur )| = 4 where sign(x) is −1 if
x < 0 and 1 otherwise.



+

+

-

-

+ -

- +

+

+ -

- +

-

Figure 2: line segments in straddling nodes

+

+

+

+

- -

+

+

+

+

-

Figure 3: crack problem

tolerance Divide if information of function values in cor-
ners is insufficient for accurate approximation of the
curve. We use the following heuristics: if the func-
tion value of the implicit function on more than, say
α, of the length of a side is not known to be differ-
ent from zero, the side will be subdivided. For side
ul-ll this can be formulated as: r−| ful |−| fll | > α.
Hence, details smaller than size α may be missed.

maximal normal vector deviation At places of high cur-
vature the curve needs to be sampled more accurately.
This is obtained by dividing further when the angle
between a gradient in an end point of a proposed line
segment and the normal of the line segment is larger
than a given angle φ.

3.1.2. line segments in straddling nodes

Let N be a straddling node. That means that on either two
or four sides of the node the implicit function changes its
sign. For each of the sides on which a sign change occurs
the zero point of the function is approximated. If two sign
changes occur the correspondingzero points are connected
with a line segment. If four sign changes occur the sign
of the function value in the center of the node is used to
resolve the ambiguity as is shown in algorithm 3.1.2 and
in figure 2. The function zero(p,q) returns a point on
the line segment pq where the implicit function vanishes.
The array of points p[] contains afterwards either 2 or 4
points; the line segments in the node are p[0]p[1] and if
applicable also the line segment p[2]p[3].

3.1.3. crack problem

Strictly using the subdivisioncriteria as stated above would
result in a quadtree where neighboring nodes that contain
part of the curve may have different levels of subdivision.

point p[4]; i=0;
sul=sign( ful); sur=sign( fur );
sc =sign( fc);
sul=sign( fll ); sll=sign( flr );

if sul!=sur then
p[i] := add(ul,ur); i:= i+1;

if sc!=sul then
if (sul!=sll)) then

p[i] := zero(ul,ll); i := i+1;
if (sur!=slr) then

p[i] := zero(ur,lr); i := i+1;
else

if (sur!=slr)) then
p[i] := zero(ur,lr); i := i+1;

if (sul!=sll)) then
p[i] := zero(ul,ll); i := i+1;

if (sll!=slr)) then
p[i] := zero(ll,lr); i := i+1;

Algorithm 3: generation of line segments in a leaf

This might result in so-called cracks. Cracks reveal them-
selves by missing line segments. (see figure 3). This prob-
lem can be solved by, if necessary repeatedly, traversing
the tree and subdividing nodes that form a crack with one
of their neighboring nodes.

4. IMPROVEMENTS

In this section we give some directions for improving the
scan-line algorithm and we indicate which improvements
are currently implemented and which will be implemented
later on.

The efficiency of the scan-line algorithm is determined
for a great deal by the number of function evaluation that
are needed. In order to reduce the costs involved with func-
tionevaluation two directions can be followed: faster func-
tion evaluations and less function evaluations.

faster function evaluations The scan-line algorithmgiven
above was tested with the implicit functions defined
in [5]. These functions are distance-induced func-
tions that are combined in CSG expressions using
blending operators. The resulting functions are Lip-
schitz functions with factor 1. The evaluation speed
of these functions can be greatly improved by lazy
evaluation techniques: a function value in a subex-
pression is only evaluated when it is suspected to con-
tribute to the function value of the whole expression.
For each subexpressions f is given a bounding box
B f . Let fB f be an implicit function with B f as im-
plicit volume and with fB f (p) the signed distance
from p to B f . Bounding boxes B f are constructed
such that f (p) ≤ fB f (p). Figure 4 shows an exam-
ple where lazy evaluation is applicable: the function
value in point p is to be computed; according to defi-



p

f

g

Figure 4: lazy evaluation of CSG function f ∪ g

nition4 the value is given by ( f ∪g)(p)=min( f (p),
g(p)). First g(p) is evaluated since the bounding
box of g is closer to p than the bounding box of f .
And finally, there turns out to be no need to evaluate
f (p) since g(p) ≥ fB f (p) ≥ f (p). The lazy eval-
uation technique uses axis parallel bounding boxes
for each subtree of the CSG-function. These bound-
ing boxes can be computed following some simple
rules. In this form lazy evaluation has been imple-
mented.
A further, yet unimplemented, improvement uses the
S-bounds method of [3] for finding tighter bounding
boxes.

less function evaluations There are at least two ways to
reduce the number of function evaluations:

i. The current algorithm does not exploit the co-
herence between successive scan-lines. Hence,
incrementally computing the quadtrees is an op-
tion: two consecutive quadtrees are expected
to have more or less the same structure and the
functionvalues in the computed nodes are more
or less the same. This last remark can be clari-
fied by noting that since f is a Lipschitz func-
tion | f (x, y, z)− f (x, y+1, z)| < 1. Further-
more it is only at the lowest level of the quadtree
that we require exact function values.
An other way of exploiting spatial coherence
is by building an octree of the surface to a cer-
tain level and use this octree in order to quickly
find empty nodes in the quadtrees.
Neither of these two coherence optionshas been
implemented yet.

ii. Currently the complete intersection of the cube
with the surface and a scan plane is computed
and later projected on the screen. Instead of
using a z-buffer we can use the position of the
node from which a line segment originated to
sort line segments. It is clear that for scan con-
version then only the front part of a quadtree
needs to be generated. See figure 5 for an illus-
tration of this optimization. This optimization
is currently not implemented.

In [14] blended and unblended CSG primitivesare com-
bined. Especially unblended CSG primitives are problem-

screen

Figure 5: partially generated quadtree

atic since inaccurate rendering of the intersection curves of
two primitives is distracting. The solution for this followed
in [14] is also valid here: whenever a line segment com-
bines two points of from different primitives, care must be
taken to find a good approximation of the point of intersec-
tion of the two primitives within the node. This technique
can be used here to reduce the need for a large maximum
depth of the quadtree. In the current implementation this is
not implemented yet and hence for an accurate rendering
of unblended CSG primitives a high maximum depth has
to be used.

A final improvement replaces orthogonal projection by
perspective projection. This can be done in two ways. First-
ly, the computed line segments can be projected using a
perspective projection. This method is used in section 6.
Secondly, the entire implicit surface can be transformed
such that an orthogonal projection is the perspective pro-
jection of the original surface. In the last case care must be
taken that the resulting implicit function still has the Lips-
chitz condition. The second method is not implemented.

5. EXAMPLES

Figures 6 to 11 show some examples; all of them are 256
x 256 pixels. The figures are rendered using environment
mapping. Below a table is given with the execution times
in CPU seconds for a Sun ultra enterprise 3000.

figure seconds #primitives

intersection of 2 tori 9 3.8 2
torus 6 6.6 1

difference of 2 tori 7 8.2 2
union of two tori 8 12.3 2
cube with holes 11 13.5 4

walker 10 19.7 14

All the figures use maxdepth = 7, mindepth = 3, α = 3
and φ = 17. Reducing the maxdepth to 6 reduces the ex-
ecution times typically with a factor two, e.g. for the torus
example it takes 3.5 seconds with maxdepth = 6 with-
out any visual effect on the end result. However examples
containing details with high curvature, like the difference
of two tori, are no longer rendered accurately at these de-
tails if maxdepth = 6.



6. FAST PROTOTYPING

The scan-conversion algorithm as discussed above com-
putes a set of line segments foreach scan-plane; the seg-
ments are rendered in a z-buffer. The segments form a 3-
dimensional approximation of the implicit surface and can
easily be rendered and viewed from different directions in
a standard viewing tool. For an interactive modelling tool
of implicit surfaces, however, the generation of the approx-
imation is in general too slow. But a practical and interac-
tive modelling scheme can be imagined as follows: instead
of generating the line segments in each scan-plane, gener-
ate only line segments once in every n planes. This will
speed up the approximationproces by a factor n. Figure 12
shows a (rotated) approximation of a table where n = 4.
This 3-dimensional model was generated in approximately
2 seconds. This way of modelling turns out to be practi-
cal; when designing global effects like positioning primi-
tives the fast prototyping method is fast and mostly accu-
rate enough; when details or final results must be displayed
the aforementioned scan-conversion algorithm is used.

7. CONCLUSIONS

We have given an algorithm for directly scan-converting
implicit surfaces with Lipschitz condition using an orthog-
onal projection. The algorithm can handle infinite surfaces
and surfaces consisting of multiple parts. Several ways for
improving the algorithm are given. Furthermore, it can be
used for fast prototyping by producing a set of line seg-
ments approximating the implicit surface.

8. FUTURE WORK

Apart from the suggestions for improvements in section
4, we aim to work at a polygonization algorithm based on
connecting cycles, on a collision detection algorithm using
the lazy evaluation techniques combined with careful se-
lections of bounding volumes, and on enhancing the scan-
conversion algorithm and the fast prototyping using time
coherence.

9. REFERENCES

[1] J. Bloomenthal. Polygonization of implicit surfaces.
Computer Aided Geometric Design, 5(4):341–356,
1988.

[2] Jules Bloomenthal, Chandrajit Bajaj, Jim Blinn,
Marie-Paule Cani-Gascuel, Alyn Rockwood, Brian
Wyvill, and Geoff Wyvill, editors. Introduction to
Implicit Surfaces. Series in Computer Graphics and
Geometric Modeling. The Morgan Kaufmann, 1997.
ISBN 1-55860-233-X.

[3] Stephen Cameron. Efficient bounds in constructive
solid geometry. IEEE Computer Graphics and Ap-
plications, 11(3):68–74, May 1991.

Figure 6: torus

Figure 7: blended difference of two tori



Figure 8: blended union of two tori

Figure 9: blended intersection of two tori

Figure 10: walker

Figure 11: cube with three cylinders subtracted



Figure 12: a (rotated) 3-dimensional approximation with
n = 4

[4] J. Roy Davis, Roger Nagel, and Walter Guber. A
model making and display technique for 3-D pic-
tures. pages 47–72, October 1968.

[5] Daniel Dekkers, Kees van Overveld, and Rob Gol-
steijn. Combining CSG modeling with soft blending
using Lipschitz-based implicit surfaces. to be pub-
lished.

[6] John C. Hart. Sphere tracing: a geometric method for
the antialiased ray tracing of implicit surfaces. The
Visual Computer, 12(9):527–545, 1996. ISSN 0178-
2789.

[7] Devendra Kalra and Alan H. Barr. Guaranteed ray
intersections with implicit surfaces. In Jeffrey Lane,
editor, Computer Graphics (SIGGRAPH ’89 Pro-
ceedings), volume 23, pages 297–306, July 1989.

[8] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3D surface construction
algorithm. In Maureen C. Stone, editor, Computer
Graphics (SIGGRAPH ’87 Proceedings), volume 21,
pages 163–169, July 1987.

[9] Thomas W. Sederberg and Alan K. Zundel. Scan line
display of algebraic surfaces. In Jeffrey Lane, editor,
Computer Graphics (SIGGRAPH ’89 Proceedings),
volume 23, pages 147–156, July 1989.

[10] Barton T. Stander and John C. Hart. Guaranteeing the
topology of an implicit surface polygonization for in-
teractive modeling. In Turner Whitted, editor, SIG-
GRAPH 97 Conference Proceedings, Annual Con-
ference Series, pages 279–286. ACM SIGGRAPH,
Addison Wesley, August 1997. ISBN 0-89791-896-
7.

[11] Gabriel Taubin. Distance approximation for rasteriz-
ing implicit curves. ACM Transactions on Graphics,
13(1):3–42, January 1994. ISSN 0730-0301.

[12] Andrew P. Witkin and Paul S. Heckbert. Using par-
ticles to sample and control implicit surfaces. In
Andrew Glassner, editor, Proceedings of SIGGRAPH
’94 (Orlando, Florida, July 24–29, 1994), Computer
Graphics Proceedings, Annual Conference Series,
pages 269–278. ACM SIGGRAPH, ACM Press, July
1994. ISBN 0-89791-667-0.

[13] Brian Wyvill, Craig McPheeters, and Geoff Wyvill.
Data structure for soft objects. The Visual Computer,
2(4):227–234, 1986.

[14] Brian Wyvill and Kees van Overveld. Polygonization
of implicit surfaces with constructive solid geometry.
to be published.


