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ABSTRACT

A scan-linerendering techniquefor implicit functionswith
the Lipschitz conditionis described; it handles orthogonal
projectionsand is based on computing thecyclesinthein-
tersection of the surface and a scan-plane. Infiniteimplicit
surfaces and surfaces consisting of multiple parts are sup-
ported.

Thetechniqueisalso viablefor fast prototypingof implicit
surfaces; for thisapplicationtheobjectsare rendered as se-
riesof (partial) cycleswhich can beviewedinteractively in
3-dimensions.

1. INTRODUCTION

Implicit surface modelling (See [2] for an overview) has
become a powerful method for modelling geometric ob-
jects. Rendering techniques for implicit surfaces mostly
consist of aslow polygonization phasefollowed by astan-
dard scan-conversion of polygons. In this paper we pro-
pose atechnique for directly scan-converting implicit sur-
faces with the Lipschitz condition. Earlier resultson scan-
conversion of implicit surfacesare availablein[4] for quad-
ratic surfaces and more recent in [9] for algebraic surfaces.
These agebraic surfaces may be combined with CSG op-
erators and the rendering is based on quickly finding for
each scan-linethe x-coordinatesof thesilhouettepointsand
thex-coordinates of theintersection pointsof thebasic sur-
faces in the CSG expression. This method differs com-
pletely from the approach taken here and it is applicable
to adifferent domain of surfaces.

Both in [10] and [12] time coherence is used to facil-
itate interactive modelling of implicit surfaces. In [12] a
particle system is used for visuaisation, whilein [10] the
visualisationisdoneviaadynamic polygonizationscheme.
In section 6 we show that the scan-conversion technique
can be adapted to supply afast prototypingtool. Thetech-
nique does not use time coherence and line segments are
used for visuaisation.

In section 2 the implicit functionswe consider are in-
troduced. Inthe section 3 weintroducethe scan-conversion
algorithm and elaborate on its parts. We give some im-
provements on the basic algorithmin 4. We present some
examples in section 5 and give some conclusions and di-
rections for future work in the sections 7 and 8, respec-
tively.

2. LIPSCHITZ FUNCTIONS

Definition 1 Animplicit surfaceisthe collection of the solutions
of an equation of theform: f(p) = 0.

Animplicit volumeisthe collection of the solutions of aninequal-
ity of theform: f (p) > 0.

Definition 2 Lipschitz Function
A function f is a Lipschitz function if and only if | f (q) —
f(pl < llg— pll, foral pandg.

Note that generally a more liberal definition of Lipschitz
functionsisused namely aA existssuchthat | f (q)— f (p)|
< illg—pll, foral pandq. Replacing f (p) by 2~ f (p)
resultsin f being replaced by a Lipschitz function with
guaranteed factor 1 while the associated implicit surface
remains the same.

Animportant classof Lipschitzfunctionsisbased upon
distance-induced functions.

Definition 3 distance-induced function

A distance-induced function is afunction based on the geometric
distanceto askeleton Sand it hasthe following form (wherer >
0): f(p) =r—"minimal distance of p to any pointon S’

Property 1 A distance-inducedfunctionisaLipschitzfunction.

Proof 1 Let Sbe a skeleton object and let the distance-induced
function f begivenby f(p) =r —d(p, S), for somer > 0
whered(p,S) = min{||p — q|| : q € S}. Becauseof the tri-
angular inequality, [|p —s|| < [Ip—qll + [lg —s|| , fordls
in S. Hence, d(p, S) < |Iq — pl| + d(qg, S). And since the last
formulaissymmetricin pandq, |d(q, S) —d(p, S| < |lg9— pl|
andfinally | f (p) — f(@)| < II9 - pll.

Simple examples of distance-induced functions have
skeletonslike apoint or aline segment. In [5] it isshown
that Lipschitz functions can be combined with CSG mod-
eling and soft blending. Thesefunctionsare used here. The
unblended versions of the union, intersection, and differ-
ence operatorsare defined below. For theblended versions
werefer to theorigina article.

Definition 4 CSG function
Given two distance-induced functions f and g, we define three
CSG functions by:

i. (fUug(p):=max(f(p),g(p)
i. (fNng)(p):=min(f(p),g(p)
ii. (f\@)(p) :=min(f(p),—g(p))
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Figure 1. cross section of cube C showing scan-line vy,
scan-plane P, surface S, and intersection| = SNCN P

The observations in the following property were aready
made in [7]; both there and here the property is used to
prune avay empty regions of space. In[6] the property is
used for fast ray-implicit surface intersection.

Property 2 Let f beaLipschitz function. And let p be apoint
and Bp be the open ball with center p and radius | f (p)|.

i. Animplicit surface Sdefinedwith f has NO overlap with
Bpifpg S

ii. Animplicit volumeV definedwith f contains Bpif p €
\Y

iii. Animplicit volumeV defined with f isdisjoint with Bp
ifpgV

Proof 2 ForallrinS( f(r) =0), it holdsaccording to the Lip-
schitz condition that | f (p)| < ||p — r||. From this observation
(i) follows immediately.

If f(p) < Othen f(Bp) contains no elements with a dif-
ferent sign than f (p) thisis dueto (i) and the continuity of f.
Hence, (ii) and (iii) hold.

3. SCAN-CONVERSION

We consider an implicit surface S based on the Lipschitz
function f. We generate an image of SN C with C agiven
cube. Thisimageisformed by orthogonal projection of S
on the screen z = 0.

Theimage of Swill berendered scan-lineby scan-line
(seedgorithm 3). In order to do so theintersection | of S,
C and P isconsidered where P is aso-called scan-plane,
aplaneorthogonal to the screen and containing a scan-line
(seefigure 1). Theintersection | isaset of cycles or par-
tial cycles. Inorder torender | it isapproximated by line
segmentsthat are ultimately rendered in aone-dimensional
z-buffer.

3.1. approximatinga 2D implicit curve

Several techniques for approximating an implicit curve or
surfaceexist. Oneof themost used algorithmsisMarching
Cubes [13, 8]. Here we search for an efficient algorithm
that can approximateall (partia) cycleswithlinesegments;
the number of line segments should be preferably low and
hencetheal gorithm shoul d be adaptivein someway. March-
ing Cubes, however, isnon-adaptiveand moreover assumes

for each scanline y

P := "scanpl ane of scanline y"
| := CNnSNP;
"approximate | with |line segnents"”;

"render line segnents in a z-buffer"

Algorithm 1: scanline-rendering of implicit surface Sin
cube C

that the object is connected. Other techniques for approx-
imating implicit curves or surfaces are based on hierarchi-
cal subdivisions[1, 7, 11]. Asin[11] wewill useaquadtree.
The adaptivenessis obtained by conditionally dividingthe
nodes of thetree based upon local geometry of theimplicit
function. The agorithm for one scan-lineis shown in al-

"generate quadtree Q";
for each leaf | of Q
if I is a straddling node then
"approximate | with |line segnent(s)"

Algorithm 2: approximation of implicit curve with line
segments

gorithm3.1. First aquadtreeisgenerated and next for each
straddling leaf of the quadtree line segments are generated
for approximating theimplicit curve. A straddling nodeis
anode with at least one side with alternating signsin its
endpoints.

Inthe next two sectionsthe quadtree generation and the
approximation with line ssgments are explained further.

3.1.1. quadtree generation

We need subdivision criteriawith which we can decidefor
a(square) node N of thetreeif subdivisionisneeded. The
lengthof thesidesof N isr. Thefunctionvaluesfrom N in
itscorner pointsare: f, fi;, fur, and fy andinitscenter
point f.

maximal tree depth Do not dividewhen the maximal re-
cursion depth maxdepth has been reached.

Lipschitz condition From property 2 an easy criterionfol-
lowsimmediately. If | fc| > 3+/2r thenodeiseither
completely inside or completely outside of the im-
plicit curve. Ineither case no subdivisionis needed.

minimal tree depth Dividewhen theminimumrecursion
depth mindepth has not been reached.

uncertain situation Dividewhenfour signaterationsoc-
cur onthesidesof thenode: |sign( fy)—sign( fi)+
sign(fiy) —sign(fy )| = 4 wheresign(x) is—1if
X < 0and 1 otherwise.



Figure 3: crack problem

tolerance Divideif information of functionvaluesin cor-
nersisinsufficient for accurate approximation of the
curve. We use the following heuristics: if the func-
tion value of theimplicit function on more than, say
«a, of thelength of aside is not known to be differ-
ent from zero, the side will be subdivided. For side
ul-ll thiscanbeformulatedas. r — | fy | — | fii | > «.
Hence, details smaller than size « may be missed.

maximal normal vector deviation At placesof highcur-

vaturethecurve needsto be sampled moreaccurately.

Thisisobtained by dividing further when the angle
between agradient in an end point of aproposed line
segment and the normal of theline segment islarger
than agiven angle ¢.

3.1.2. line segmentsin straddling nodes

Let N beastraddling node. That meansthat on either two
or four sides of the node the implicit function changes its
sign. For each of the sides on which a sign change occurs
the zero point of the functionis approximated. If two sign
changes occur the corresponding zero pointsare connected
with a line segment. If four sign changes occur the sign
of the function value in the center of the node is used to
resolve the ambiguity as is shown in algorithm 3.1.2 and
in figure 2. The function zer o(p, q) returns a point on
the line segment pq where theimplicit function vanishes.
The array of pointsp[] contains afterwards either 2 or 4
points; the line segmentsinthenodeare p[ 0] p[ 1] and if
applicable adso the line segment p[ 2] p[ 3] .

3.1.3. crack problem

Strictly usingthe subdivisioncriteriaasstated abovewould
result in a quadtree where neighboring nodes that contain
part of the curve may have different levels of subdivision.

point p[4]; i=0;

sul =sign( fy); sur=sign( fy);
sc =sign( f.);

sul =sign( fy); sll=sign( f;);

if sul!=sur then

p[i] := add(ul,ur); i:=1i+1,
if sc!=sul then

if (sul!=sll)) then

p[i] := zero(ul,ll); i :=1i+1;
if (sur!=slr) then
p[i] := zero(ur,Ir); i :=i+1;
el se
if (sur!=slr)) then
p[i] := zero(ur,lr); i :=i+1;
if (sul!=sll)) then
p[i] := zero(ul,ll); i :=i+1;
if (sll!t=slr)) then
pli] := zero(ll,Ir); i :=1i+1,

Algorithm 3: generation of line segments in aleaf

Thismight result in so-called cracks. Cracks reveal them-
selvesby missing linesegments. (seefigure 3). Thisprob-
lem can be solved by, if necessary repeatedly, traversing
the tree and subdividing nodes that form a crack with one
of their neighboring nodes.

4. IMPROVEMENTS

In this section we give some directions for improving the
scan-line algorithm and we indicate which improvements
arecurrently implemented and which will beimplemented
later on.

Theefficiency of the scan-linea gorithmisdetermined
for agreat dea by the number of function evaluation that
areneeded. Inorder toreducethe costsinvol ved with func-
tioneval uationtwo directionscan befollowed: faster func-
tion evaluations and less function evaluations.

faster function evaluations Thescan-lineagorithmgiven
above was tested with theimplicit functions defined
in [5]. These functions are distance-induced func-
tions that are combined in CSG expressions using
blending operators. The resulting functionsare Lip-
schitz functionswith factor 1. The eval uation speed
of these functions can be greatly improved by lazy
evaluation techniques: a function vauein a subex-
pressionisonly evaluated when it issuspected to con-
tributeto the functionval ue of thewholeexpression.
For each subexpressions f is given a bounding box
Bf. Let fg; beanimplicitfunction with Bf asim-
plicit volume and with fg:(p) the signed distance
from pto Bf. Bounding boxes Bf are constructed
suchthat f (p) < fgt(p). Figure 4 showsan exam-
plewherelazy evaluationisapplicable: thefunction
valuein point pisto becomputed; according to defi-



Figure4: lazy evaluation of CSG function f U g

nition4thevaueisgivenby (fug)(p)=min( f (p),
g(p)). First g(p) is evaluated since the bounding
box of g iscloser to p than the bounding box of f.
Andfinally, thereturnsout to be no need to eval uate
f(p) sinceg(p) > fer(p) > f(p). Thelazy eval-
uation technique uses axis paralle bounding boxes
for each subtree of the CSG-function. These bound-
ing boxes can be computed following some simple
rules. In thisform lazy evaluation has been imple-
mented.

A further, yet unimplemented, improvement usesthe
S-boundsmethod of [3] for finding tighter bounding
boxes.

less function evaluations There are at least two waysto
reduce the number of function evauations:

i. The current algorithm does not exploit the co-
herence between successive scan-lines. Hence,
incremental ly computing thequadtreesisan op-
tion: two consecutive quadtrees are expected
to have more or less the same structure and the
functionval uesinthe computed nodesaremore
or lessthesame. Thislast remark can be clari-
fied by noting that since f isaLipschitz func-
tion| f(x,y,2— f (X, y+1, 2)| < 1. Further-
moreitisonly at thelowest leve of the quadtree
that we require exact function values.

An other way of exploiting spatia coherence
isby building an octree of the surface to acer-
tainlevel and usethisoctreeinorder to quickly
find empty nodesin the quadtrees.

Neither of thesetwo coherence optionshas been
implemented yet.

ii. Currently thecompleteintersection of thecube
with the surface and a scan plane is computed
and later projected on the screen. Instead of
using az-buffer we can use the position of the
node from which a line segment originated to
sort linesegments. Itisclear that for scan con-
version then only the front part of a quadtree
needsto begenerated. Seefigure5foranillus-
tration of this optimization. This optimization
is currently not implemented.

In[14] blended and unblended CSG primitivesare com-
bined. Especially unblended CSG primitivesare problem-
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Figure5: partialy generated quadtree

atic sinceinaccurate rendering of theintersection curves of
two primitivesisdistracting. Thesolutionfor thisfollowed
in [14] isaso vaid here: whenever a line segment com-
binestwo pointsof from different primitives, care must be
taken to find agood approximation of the point of intersec-
tion of thetwo primitiveswithin the node. This technique
can be used here to reduce the need for alarge maximum
depth of the quadtree. Inthe currentimplementationthisis
not implemented yet and hence for an accurate rendering
of unblended CSG primitives a high maximum depth has
to be used.

A final improvement replaces orthogonal projection by
perspectiveprojection. Thiscan bedoneintwoways. First-
ly, the computed line segments can be projected using a
perspective projection. This method is used in section 6.
Secondly, the entire implicit surface can be transformed
such that an orthogonal projection is the perspective pro-
jection of theoriginal surface. Inthelast case care must be
taken that the resulting implicit function still hasthe Lips-
chitz condition. The second method is not implemented.

5. EXAMPLES

Figures 6 to 11 show some examples; al of them are 256
X 256 pixels. The figures are rendered using environment
mapping. Below atableis given with the execution times
in CPU seconds for a Sun ultra enterprise 3000.

| | figure | seconds | #primitives |

intersection of 2 tori 9 3.8 2
torus 6 6.6 1
difference of 2 tori 7 8.2 2
union of two tori 8 12.3 2
cube with holes 11 135 4
walker 10 19.7 14

All thefiguresuse maxdepth = 7, mindepth = 3, = 3
and ¢ = 17. Reducing the maxdepth to 6 reduces the ex-
ecution times typically with afactor two, e.g. for thetorus
example it takes 3.5 seconds with maxdepth = 6 with-
out any visual effect on the end result. However examples
containing detailswith high curvature, like the difference
of two tori, are no longer rendered accurately at these de-
tailsif maxdepth = 6.



6. FAST PROTOTYPING

The scan-conversion algorithm as discussed above com-
putes a set of line segments foreach scan-plane; the seg-
ments are rendered in a z-buffer. The segments form a 3-
dimensional approximation of theimplicit surface and can
easily be rendered and viewed from different directionsin
a standard viewing tool. For an interactive modelling tool
of implicit surfaces, however, thegeneration of the approx-
imation isin general too slow. But apractical and interac-
tivemodel ling scheme can beimagined asfollows: instead
of generating the line segments in each scan-plane, gener-
ate only line segments once in every n planes. Thiswill
speed up the approximati on proces by afactor n. Figure12
shows a (rotated) approximation of atable wheren = 4.
This 3-dimensional model was generated inapproximately
2 seconds. Thisway of modelling turns out to be practi-
cal; when designing globd effects like positioning primi-
tives the fast prototyping method is fast and mostly accu-
rate enough; when detailsor final resultsmust be displayed
the aforementioned scan-conversion algorithmis used.

7. CONCLUSIONS

We have given an algorithm for directly scan-converting
implicit surfaces with Lipschitz condition using an orthog-
onal projection. Theagorithm can handleinfinitesurfaces
and surfaces consisting of multipleparts. Severa waysfor
improving the algorithm are given. Furthermore, it can be
used for fast prototyping by producing a set of line seg-
ments approximating the implicit surface.

8. FUTURE WORK

Apart from the suggestions for improvements in section
4, we am to work at a polygonization algorithm based on
connecting cycles, on acollisiondetection algorithmusing
the lazy evaluation techniques combined with careful se-
lections of bounding volumes, and on enhancing the scan-
conversion algorithm and the fast prototyping using time
coherence.
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