
Efficient Lipschitz function evaluation for CSG implicit
surfaces

Phap Nguyen and Huub van de Wetering∗
Department of Mathematics and Computing Science

Eindhoven University of Technology

Abstract

The rendering of an implicit surface requires many
function evaluations of the underlying implicit func-
tion. The time efficiency of the rendering is domi-
nated bythe number of function evaluationstimes
the efficiency of these evaluations. If the implicit
surface is created by means of a CSG model the
function evaluations can be made more efficient if
the underlying function is a Lipschitz function. Here
implicit surfaces defined as a blended CSG model
with Lipschitz functions are considered. It is shown
how bounding volumes can be integrated in this
framework and how they can be exploited to im-
prove the evaluation efficiency.

1 Introduction

Rendering images of implicit surfaces (see [1]) re-
quires many function evaluations of the underlying
implicit function. By reduction of the number of
evaluations and by improving the evaluation effi-
ciency, the rendering cost can be reduced. In this
paper we will consider implicit functions based on
Lipschitz functions and CSG expressions as they are
defined in [3]. For these functions we give both a
method for reducing the number of evaluations by
locally replacing the Lipschitz function by a dis-
tance function to a bounding volume and a method
for increasing the evaluation speed by lazy evalua-
tion of the CSG expression. This method was origi-
nally applied in [7] to collision detection of implicit
surfaces.

In section 2 we introduce the basic concepts. In
section 3 we show how to improve a Lipschitz func-
tion, followed by section 4 where lazy evaluation is
handled. The bounding volumes we use in our im-
plementation are given in section 5. The results and
conclusion are given in section 6.

∗wstahw@win.tue.nl

2 Definitions

In this paragraph we give some definitions and prop-
erties concerning implicit functions and define the
implicit functions we consider in the rest of the pa-
per.

An implicit function f is a continuous real func-
tion on<3. With f we define both animplicit vol-
ume Vf

Vf = {
x ∈ <3

∣∣ f (x) ≥ 0
}
. (1)

and animplicit surface Sf

Sf = {
x ∈ <3

∣∣ f (x) = 0
}
. (2)

So, an implicit function is negative outside the im-
plicit volume and zero on the surface.

For each (closed) setA ⊂ <3 we define an im-
plicit function dA with A as its implicit volume as
follows

dA(x) =
{

+ inf
{‖y − x‖∣∣y 6∈ A

}
if x ∈ A

− inf
{‖y − x‖∣∣y ∈ A

}
if x 6∈ A

(3)
with x ∈ <3. The functiondA is called thesigned
distanceto A. It is easy to see that for the signed
distance the following property holds for all points
x ∈ <3 and all subsetsA andB of <3 with A ⊂ B.

dA(x) ≤ dB(x) (4)

A distance functiondVf is denoted bydf .
We introduce for each implicit functionf a

bounding volumeBf ⊃ Vf , and denote the distance
functiondBf of the bounding volume bybf . All our
results are equally valid whether we choose bound-
ing boxes, bounding spheres, or any other bound-
ing volume. We only require that the bounding
boxes are consistent; that is,Vf ⊂ Vg implies that
Bf ⊂ Bg.

1

SinceVf ⊂ Bf , for all pointsx ∈ <3, the follow-
ing holds according to equation 4

df (x) ≤ b f (x). (5)

A function f is called Lipschitz with (Lipschitz)
constantλ if for all x, y ∈ <3,∣∣ f (x) − f (y)

∣∣ ≤ λ‖x − y‖. (6)

Every Lipschitz function can be turned in a Lip-
schitz function with constant 1 by dividing byλ.
Hence, generality is not lost by only considering
Lipschitz functions with constant 1; we will do so
in the rest of this paper.

Distance functions are examples of Lipschitz
functions. They are also an upperbound for Lips-
chitz functions: for a Lipschitz functionf and for
x ∈ <3

| f (x)| ≤ |df (x)|. (7)

Geometrically this property states that the sphere
with radius| f (x)| and centerx is either completely
inside or completely outside the implicit volume of
f .

In [3] new functions are created by combining
Lipschitz functions by CSG operators supporting
soft blending: f ∩ g, f ∪ g, and f \ g. These oper-
ators are defined by

f ∩ g = min{ f, g} − β(| f − g|)
f ∪ g = max{ f, g} + β(| f − g|) (8)

f \ g = min{ f,−g} − β(| f + g|).
The resulting functions are Lipschitz functions if
the blending functionβ, a real function on<+,
fulfills the following requirement for its derivative:
−1 ≤ β

′ ≤ 0 (see [3] for proof and examples).
Using the operators CSG expressions can be built;
the basic functions in these expressions can be, for
instance, distance functions of geometric primitives
like a box, sphere, cylinder, et cetera. We make an
extra assumption:the blending function has a finite
support; that is, for a suitableχ ≥ 0 and for all
x ≥ χ the blending function vanishes :β(x) = 0.
Due to the restrictions on the derivativeβ

′
, now also

0 ≤ β(x) ≤ χ holds on the complete domain.
Straightforward evaluation of surfaces defined by

CSG operators directly from (8) is time-consuming.
In the following we show how the evaluation effi-
ciency can be increased by enhancing the definitions
of Lipschitz functions such that they form a better
approximation of the corresponding distance func-
tion. And finally, we give methods for using these
improved functions for lazy evaluations.

3 Improving Lipschitz functions

The absolute value of a Lipschitz function value
f (x) is a lower bound for the distance of pointx
to the implicit surface. So, the sphere with radius
| f (x)| and centerx is disjoint with the implicit sur-
face. This property can be used to prune space in a
search for surface points (see [6], [5], and [8]). It is
most successfully applied if the Lipschitz function
value equals the distance to the surface. However,
thecompositefunctions as defined in (8) under cer-
tain circumstances, even if the basic functions are
distance functions, differ greatly from the surface
distance. This is illustrated in figure 1. There the
volumesVf andVg are intersected and produce the
volumeVh. The implicit functionsf ∩ g andh dif-
fer although they define the same volume. Clearly,
in the example, the valueh(x) is the preferable func-
tion value over(f ∩ g)(x)=min{ f (x), g(x)} since
its absolute value is larger. So, there is room for
improvement off ∩ g. We give a simple, yet gen-
eral, approach for (possibly) improving our Lips-
chitz functions in such a way that the absolute func-
tion values become larger while on the other hand
the implicit volumes remain the same. We define
theimprovedfunction f̄ of the Lipschitz functionf
as follows

f̄ (x) = min{ f (x), bf (x)}. (9)

Firstly, note that forx ∈ Bf , f (x) ≤ bf (x) holds;
so, in Bf , f̄ equals f and, hence,Vf̄ = Vf . Sec-

ondly, for x 6∈ Bf , f̄ (x) ≤ bf (x) ≤ 0. So, an im-
proved function gives outside its bounding volume
in absolute value at least the distance to the bound-
ing volume.

Furthermore,f̄ is again a Lipschitz function since
it is created applying one of the operators defined in
(8) (with β ≡ 0) with two Lipschitz functions as
operands.

h(x)||

|g(x)|

|f(x)|

x

Vf

Vf

Vh

Figure 1:

So, improving an implicit function results in an
implicit function with a possibly larger absolute

2

function value while maintaining the same implicit
volume.

A function f with f = f̄ , is calledacceptable.
For instance, distance functions and improved func-
tions are acceptable. After replacing the compos-
ite functions in a CSG expression by their improved
(and acceptable) versions and by using acceptable
basic functions, we only deal with acceptable func-
tions. If we consider, for instance, the union of two
acceptablefunctions we see that improving has no
effect:

f ∪ g = f ∪ g (10)

This observation results from the acceptability off
and g and the consistency of the bounding boxes:
f (x) ≤ bf (x) ≤ bf ∪g(x) and, equivalently,g(x) ≤
bg(x) ≤ bf ∪g(x).

Sometimes improving has also no effect on the
difference operator (again using acceptability of the
operands).

Bf = Bf \g ⇒ f \ g = f \ g (11)

This follows from the acceptability off : f (x) ≤
bf (x) = bf \g(x).

Improving the composite functions in a CSG ex-
pressions results in acceptable (sub)functions; this
property is used in the next section to prove the lazy
evaluation techniques we introduce there.

4 Lazy evaluation

The evaluation of our Lipschitz functions based on
CSG can be done recursively by evaluating the sub-
expressions. In evaluating these sub-expression in
a lazy manner, we attempt only to evaluate those
expressions that contribute to the final result. This
lazy evaluation is based on bounding the values of
the sub-expression and deciding on these bounds
whether or not the full expression needs to be eval-
uated. In this section we give a lazy evaluation
rule both for the union and the difference operator.
Furthermore, we give small algorithms for applying
these rules. In section 5 we give an algorithm for the
intersection operator.

For the union operator the next rule for lazy eval-
uation holds

g(x) ≥ bf (x) + χ ⇒ f ∪ g(x) = g(x). (12)

This rule can be simply applied as given in algo-
rithm 1. Note that care is taken to evaluate the most
expensive functionsf andg only if strictly neces-
sary. In fact, the above rule withf andg swapped

is also a valid rule. Care must be taken that the rule
that is most likely to apply is used. We assume that
if b f (x) < bg(x) that most likely f (x) < g(x), in
which case it is best to apply the rule as given above.
Below we give the proof of the lazy evaluation rule

union(f , g,x)
bf := b f (x);
bg := bg(x);
if bf < bg

g := g(x);
if g ≥ bf+ χ return g;
else

f := f (x);
b := β(|f-g|);
return max(f,g)+b;

else ... { swap f and g }

Algorithm 1: lazy union

for the union operator.

Proof 1 Let g(x) ≥ b f (x) + χ . Hence, using the
acceptability of f , g(x) − f (x) ≥ g(x) − bf (x) ≥
χ ≥ 0. From which follows that bothβ(| f (x) −
g(x)|) = 0 and g(x) ≥ f (x) + χ ≥ f (x) hold.
Furthermore, from the acceptability of g, it follows
that g(x) ≤ bg(x); from the consistency of the
bounding boxes follows that bg(x) ≤ b f ∪g(x) since
Bg ⊂ Bf ∪g. And finally, we see thatf ∪ g(x) =
min{max{ f (x), g(x)}, bf ∪g} = g(x).

Lazy difference evaluation can be done according to
the following rule. The resulting algorithm is shown
in algorithm 2.

b f (x) ≤ −bg(x) − χ (13)

⇒ f \ g(x) = min{ f (x), bf \g(x)}

The proof of this rule is given below.

Proof 2 Suppose bf (x) ≤ −bg(x) − χ . Using that
β(x) ≤ χ and using the acceptability of f and g, we
find that−g(x) − χ ≥ b f (x) ≥ f (x). And hence,
−g(x) − f (x) ≥ χ ≥ 0. So, under the given con-
dition, β(| f (x) + g(x)|) = 0. Furthermore, since
(again using bounding box consistency), bf \g(x) ≤
bf (x) ≤ −bg(x) − χ ≤ −g(x), we finish the proof
with f \ g(x) = min{ f (x),−g(x), bf \g(x)} =
min{ f (x), bf \g(x)}.

3

difference(f , g,x)
bfg := b f \g(x);
bf := b f (x);
bg := bg(x);
f := f (x);
if bf < -bg - χ

return min(f,bfg);
else

g := g(x);
b := β(|f+g|);
return min(f-b,-g-b,bfg);

Algorithm 2: lazy difference

5 Bounding volume computa-
tions

Both function improvement and lazy evaluation ben-
efit from bounding volumes that fit tightly. In our
implementation we use axis-aligned bounding boxes
since computations on these boxes are both simple
and efficient. Furthermore, we use the S-bounds
method as introduced in [2] for computing efficient
bounding boxes for a CSG-expression and its subex-
pressions. This method is based on processing the
CSG expression hierarchy a few times from bot-
tom to top and back, updating each time in each
node the bounding box based upon the bounding
boxes currently known of either its parent or its chil-
dren. In this way each node obtains a small and,
for our purposes, hence, efficient bound. From [2]
we know that this method converges in a limited
number of traversals through the hierarchy. The
S-bounds method requires only that initially the
bounding boxes of the basic functions in the ex-
pression are known and that the resulting bounding
box can be computed for each CSG operators given
the bounding boxes of the operands. This is in our
case not completely trivial since our operators allow
soft-blending. Because the blending functions are
bounded (0≤ β(x) ≤ χ), and because we use Lips-
chitz functions, we can give a correct bounding box
distance for each of the operators, given the bound-
ing box distances of the operators without blending
(indicated by the underlined operators), as follows

bf ∪g = bf ∪g + χ

bf ∩g = b f ∩g (14)

bf \g = bf \g.

The corresponding bounding boxes can be adapted
accordingly.

As a result of using S-bounds we can see that for

an intersection operator holds thatBf ∩g = Bf =
Bg since if one of these boxes is smaller it can also
be used instead of the other boxes without chang-
ing the result of the CSG expression. Consequently,
f ∩ g = min{ f, g, b f ∩g} = min{ f, g, b f } =
min{ f, g} if f is acceptable. Which leaves us with
algorithm 3 for computing the intersection.

intersection(f , g,x)
f := f (x);
g := g(x);
b := β(|f-g|);
return min(f-b,g-b);

Algorithm 3: intersection

Figure 2: bicycle model consisting of unions of 37
primitives

6 Results and conclusions

The function improvement and lazy evaluation have
been implemented in a module for the ray-tracer
POV-ray ([4]). A ray-tracer provides a good envi-
ronment for testing the techniques since many func-
tion evaluations are performed. Sphere tracing [5] is
used for the intersection computations.

We give the results on speedups for three models
given in the figures 3, 2, and 4. The first model
consists of only unions of primitives, the second
example is the difference of a cylinder and the union
of three cylinders forming a cross, the third example
is the intersection of a torus with the union of a
sphere and two cylinders. These models have been

4

Figure 3: cylinder with a cross-shaped hole sub-
tracted

rendered both with and without the optimizations
given in this paper. The models are rendered in 36
different positions with an image size of 120x120
pixels and the resulting measurements are given in
the table.

figure/ # evaluations/103 time
method toplevel total (s) gain

3 old 6769 47384 237
new 6782 18582 95 60%

2 old 5926 485944 2136
new 5914 129060 524 75%

4 old 7090 63815 245
new 7091 48074 178 27%

It shows that in all given cases the improvement
in time is significant. The column ”toplevel eval-
uations” gives the total number of times the corre-
sponding CSG expression is evaluated, the column
”total evaluations” gives the number of expression
evaluations including those of subexpressions. So,
we can see that lazy evaluation works since the total
number of evaluations drastically goes down. In all
three cases we see that the number of toplevel calls
remains more or less the same; so there is no direct
proof that improving functions results in more effi-
ciency. However, our lazy evaluation is only valid
for acceptable functions and it is by improving that
we get to work with only acceptable functions.

Lazy evaluation works better for larger expres-
sions, in which it is possible to decline on evalu-
ating large subtrees: the bicycle example has the the
greatest speedup of the given examples. For small
expressions the overhead introduced may make lazy
evaluation less effective.

Figure 4: intersection of a torus with a sphere and
two cylinders

Concluding, we can say that improving the Lips-
chitz functions allowed us to use lazy evaluation for
CSG expressions resulting in considerable speedup
of the total evaluation time.

References

[1] Jules Bloomenthal, Chandrajit Bajaj, Jim Blinn,
Marie-Paule Cani-Gascuel, Alyn Rockwood,
Brian Wyvill, and Geoff Wyvill, editors.Intro-
duction to Implicit Surfaces. Series in Computer
Graphics and Geometric Modeling. The Morgan
Kaufmann, 1997. ISBN 1-55860-233-X.

[2] Stephen Cameron. Efficient bounds in construc-
tive solid geometry.IEEE Computer Graphics
and Applications, 11(3):68–74, May 1991.

[3] Daniel Dekkers, Kees van Overveld, and
Rob Golsteijn. Combining CSG model-
ing with soft blending using Lipschitz-based
implicit surfaces. to be published; see
http://wwwcg.win.tue.nl/Papers.

[4] Persistence Of Vision development
team. Pov-ray : Persistence of vision.
http://www.povray.org.

[5] John C. Hart. Sphere tracing: a geometric
method for the antialiased ray tracing of implicit
surfaces.The Visual Computer, 12(9):527–545,
1996. ISSN 0178-2789.

[6] Devendra Kalra and Alan H. Barr. Guaran-
teed ray intersections with implicit surfaces. In

5

Jeffrey Lane, editor,Computer Graphics (SIG-
GRAPH ’89 Proceedings), volume 23, pages
297–306, July 1989.

[7] V.P. Nguyen. Collision detection of Lipschitz
implicit surfaces. Master’s thesis, Eindhoven
University of Technology, Department of Math-
ematics and Computing Science, 1998.

[8] Huub van de Wetering, Martijn de Kort, and
Kees van Overveld. Scan-conversion of implicit
surfaces with Lipschitz condition. InImplicit
Surfaces ’98 The Third International Workshop
on Implicit Surfaces, pages 39–45, June 1998.
ISSN 1024-0861.

6

