
SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

In writing this column, I plan to discuss various topics of interest to

software professionals and managers. In general, I will write about

issues related to engineering productivity, quality, and overall

effectiveness. Occasionally, I will digress to write about a current hot

item, but generally I will be pushing the process improvement agenda.

Because my principal interest these days is getting organizations started

using the Personal Software ProcessSM (PSPSM) and Team Software

ProcessSM (TSPSM), readers should know that a not-so-hidden agenda

will be to convince them to explore and ultimately adopt these

technologies.

Why Does Software Work Take So Long?
Watts S. Humphrey

Have you ever started what you thought was a two-
or three-day job and have it stretch into a week or
two? Before deciding you are just bad at
estimating, look at how you spent your time. You
will find you spend much less time on projects than
you imagine. For example, on one project, several
engineers used time logs to track their time in
minutes. They averaged only 16 to 18 hours a week
on project tasks. They were surprised because they
all worked a standard 40-hour week.

This information soon turned out to be helpful. They were on a critical
project and were falling behind. When they looked at the data, they found
the design work took 50% longer than estimated. They knew they had a
choice: either do the tasks faster, or put in more time. While there was
pressure to race through the design, skip inspections, and rush into
coding, the team resisted. They knew this would probably result in many
errors and a lot of test time.

To meet their schedule, they needed to average 30 task hours a week.
They all tried valiantly to do this, but after Christmas, they realized that
just trying harder would not work. They went on overtime and are now
starting early in the morning, working late some evenings, or coming in
on weekends. While they now average 30 task hours a week, they have to
work over 50 hours a week to do it. They are also back on schedule.

mailto:watts@sei.cmu.edu
http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

Because this team had detailed time information, they could recognize
and address their problem in time to save the project. The data identified
the problem and pointed them toward the solution. Without good data on
where your time goes, your estimates will always be inaccurate and you
won’t know how to improve.

Working harder

When people say they are working harder, they actually mean they are
working longer hours.

Barring major technology changes, the time it takes to do most tasks is
relatively stable. The real variable is the time you spend on the tasks. But
to manage the time you spend, you have to track it, and practically
nobody does. Consider the following:
1. Our lives are filled with interruptions.

2. Software people do many kinds of tasks, and only some contribute
directly to our projects.

3. Our processes are often informal and our working practices ad hoc.

4. Even if we wanted to, it is hard to do demanding intellectual work for
long uninterrupted periods.

Interruptions

One engineer told me she had recently started to track her time and found
she was spending much more time on interruptions than on her real work.
For example, on one task of 108 minutes, her interruption time was over
300 minutes. This lost time, however, was not in big hour-long blocks
but from an incessant stream of little 5- and 10-minute interruptions.

Interruptions come from many sources:
• telephone calls

• other engineers asking for help

• a coffee or rest break

• supply problems (i.e., printer or copier out of paper)

• equipment problems (the network dies)

• a power failure or a snow storm (everybody leaves)

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

Every interruption breaks your train of thought and takes time away from
your work. With unplanned interruptions, you lose your place in the work
and, when the interruption is over, you have to reconstruct where you
were. This also causes errors.

For example, when I am in the middle of a design, I am often working on
several things at the same time. While thinking through some logical
structure, I realize that a name is misleading, a type must be changed, or
an interface is incomplete. If I am interrupted in the middle of this, I often
have trouble remembering all these details. While I have been unable to
control the interruptions, I have found that maintaining an issue log helps
me remember what I was working on when interrupted.

Non-project work

Most engineers also spend a lot of time on non-engineering tasks.
Examples are
• handling mail

• setting up or updating their computing

• systems

• going to meetings

• looking for some specification, process,

• standard, or manual

• assisting other engineers

• attending classes

Few software development groups have adequate support. No one sets up
or maintains his or her development system, few have groups to handle
product packaging and release, and there is no clerical or secretarial
support for mail, phone, or expense accounts. What is more, even when
they have such support, many engineers don't know how to use it. This
means that most of us spend more time on clerical and support work than
on our principal development tasks. And every hour spent on these tasks
is an hour we can't spend on development.

Lean and mean organizations

Often our organizations pride themselves on having very small support
staffs. An almost universally accepted management axiom is that

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

overhead is bad and should be eliminated. In the resulting lean and mean
organizations, the engineers do their own clerical work. This is not an
effective way to use scarce and expensive software talent.

By cutting overhead, management also eliminates the support staffs that
funds in the overhead budget support. While some of these groups are not
the least bit interested in supporting the engineers, many are. Eliminating
them can have enormous costs. Among these costs is the time every
engineer must spend sorting through email, answering the phone, getting
supplies, doing expense accounts, and filing mail and documents. In
addition to the lost engineering time, this also means that most mail is not
answered promptly if at all, phones go unanswered, supplies are wasted
or overstocked, and little if anything is properly filed or can be quickly
found when needed.

Perhaps most expensive and annoying, every software engineer in such
“lean and mean organizations” must set up and maintain his or her
personal computing environment. Just because we have the skills to do
this doesn't mean we should. Most of us could repair our cars or paint our
houses if we chose to, but it would take us longer than using someone
who does this for a living. And we have other things to do. Why should
we have to handle our own computing support? The principal reasons
that engineers spend less than half their time doing the tasks they were
trained and hired to do is that, without adequate support, they have to
support themselves. What is more, few engineers enjoy or are very good
at being part-time clerks and technicians.

Ad-hoc working and planning

When no one has taken the time to define and document the
organization's practices and methods, they must be maintained
informally. When you come to a task that you haven't done before or at
least not recently, you look around to see how it should be done. It takes
time and a lot of interruptions to find someone with the right experience
and get their help. While this is vastly preferable to bulling ahead without
exploring prior experience, it does cut into the working week.

A related but slightly different problem concerns planning. When
projects don't make detailed plans, and when engineers don't know
precisely where they fit into these plans, they must do what I call
continuous planning. In continuous planning, the key tool is not the
PERT chart or Microsoft Project, it is the coffee machine. When you
finish a task, you go to your continuous planning tool to have a cup of
coffee. While there you decide what to do next. In the process, you talk to
any other engineers who are also doing continuous planning and see what

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

they think. You will usually get some good ideas, but if you don’t, you
can always interrupt someone.

The common view is that planning takes too much time. By not planning,
engineers can immediately start on their programming work. While this
immediate progress will feel good, you won’t know where you are. Like
driving in a strange country without a map, you have to stop at every turn
and decide where to go next. All these short stops will take far more total
time than a properly thought-out plan would have taken in the first place.

You also need an occasional break

Finally, creative development is hard work. When designing a product or
a system, we need uninterrupted time. But we cannot design complex
products for more than a few hours at a time. The same is true of testing,
reviewing, inspecting, coding, compiling, and many other tasks.

One laboratory decided to set up a dedicated group of experts to inspect a
large and important product in final test. Every module that had test
problems was sent to this group. For a while, they cleaned up a lot of
defect-prone modules. Then, one of them later told me, they could no
longer see the code they were inspecting. Everything began to blur. They
even saw source code in their sleep.

Designing, coding, reviewing, inspecting, and testing are intensely
difficult tasks. To have any hope of producing quality products, we must
occasionally take breaks. But, to be reasonably efficient, and to do high-
quality work, we need to control our own breaks, not take them when the
phone rings or when somebody barges into our office or cubicle. Studies
show that when engineers spend all their time on their principal job, their
performance deteriorates. Some reasonable percentage of time on other
tasks such as planning, process improvement, quality analysis, or writing
papers can improve engineering performance. You will get more and
better work done in the remaining 75% of your time than you would have
accomplished in 100% of dedicated time.1

So, keep track of your time

To manage your personal work, you need to know where your time goes.
This means you need to track your time. This is not hard, but it does
require discipline. I suggest you get in the habit of using the time
recording log, shown in Tables 1 and 2.2 When doing so, enter the tasks
and the times when you start and stop these tasks, and also keep track of

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

interruption times. If you do this, you will soon see where your time
goes. Then you can figure out what to do about it. Manage interruptions
Next, interruptions are a fact of life, but there are many ways to deal with
them. Use “DO NOT DISTURB” signs and establish an ethic where
everybody (even the managers) respects them. Forward phone calls or
even unplug or turn off the phone. Also consider getting permission to
work at home for a day or two a week.

Another way to manage interruptions is to get in the habit of using an
issue-tracking log. Then, when you think of something you need to do,
make a note of it in the log so you will remember to do it later and you
won't forget it when the phone rings. While you will still have to handle
these issues, you are less likely to forget them and you can do them at a
planned time.

Also, use this same principle with interruptions. When someone calls in
the middle of a design problem, tell them you'll get back and then make a
note on a sticky so you don't forget.

Learn to use administrative support

Learn how to use support. While few engineers have a support staff to
help them, many who do don't know how to use them. If you have a
support person, think about every clerical-type task before you do it. Can
this person do it for you? Even though it may take longer at first, use
them whenever you can. At first the result may need to be redone. But be
patient and help the support people understand your problems with their
work. It will pay off in the long run.

Plan every job

Perhaps most important, learn to plan. Plan your own work and urge your
teammates and the project leader to start planning. Proper planning takes
time, but it can save much more time than it costs. You will end up
planning anyway, but it is much better to do it in an orderly way, and not
at the coffee machine.

Vary your work

You can do demanding work only for so long. I lose my ability to do
intense creative work after an hour and a half to two hours. I need to stop
for a break or even to switch to some other kind of work. Further, during

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

these intense sessions, frequent short interruptions offer no relief. It then
takes an extra effort to reconstruct my thought process.

What I suggest is to intersperse various kinds of work throughout your
day. Do creative work when you are most fresh and productive and then
switch to your email or an administrative task. Then perhaps do a design
or code review possibly followed by a process-improvement task or data
analysis. By varying the task types, your creative work will be of higher
quality and you will actually get more done.

Define and use a personal process

When you regularly make plans, a defined process will save a lot of time.
The process provides a framework for gathering historical data and a
template for making plans. And, by using historical data, your estimates
will be more accurate.

Get and use historical data

Finally, if you don’t have administrative or technical support, use your
time log to see what this lack costs you. Then tell your managers and
show them your data. It might help them see the cost advantages of
adequately supporting their engineers. Remember that the amount of
work you produce is principally determined by two things:
1. the time the tasks will take

2. how much time you have available for these tasks

To manage your work, you must know where your time goes. Only then
can you judge how much work you can do and when you will finish it.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to
review early drafts. For this column, I particularly appreciate the helpful
suggestions I received from Dan Burton, Alan Koch, and Bill Peterson.

In closing, an invitation to readers In these columns, I plan to discuss
software issues and the impact of quality and process on engineers and
their organizations. I am, however, most interested in addressing issues
that you feel are important. So please drop me a note with your

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

comments and suggestions. I will read your notes and consider them
when I plan future columns.

Thanks for your attention and please stay tuned in.

Watts S. Humphrey
watts@sei.cmu.edu

Notes
1. For a brief discussion of this issue, see my book Managing Technical

People, Innovation, Teamwork, and the Software Process, Addison
Wesley, 1997, page 186. A more complete discussion is in Donald C.
Pelz and Frank M. Andrews, Scientists in Organizations: Productive
Climates for Research and Development, Wiley, 1966, pp. 56, 65.

2. Recording Log, see my book A Discipline for Software Engineering,
Addison Wesley, 1995. This log is also discussed in Introduction to
the Personal Software Process, also by me and published by Addison
Wesley in 1997.

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm
mailto:watts@sei.cmu.edu

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

Table 1: Time Recording Log

Engineer Date

Program Module

Date Start Stop Interruption
Time

Delta
Time

Phase Comments

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

Table 2: Time Recording Log Instructions

Purpose • Use this form to record the time spent on each
project task.

• Either keep one log and note the task and
product element for each entry or keep
separate logs for each major task.

General • Record all the time you spend on the project.

• Record the time in minutes.

• Be as accurate as possible.

If you need additional space, use another copy of
the form.

Header Enter the following:
• your name

• today's date

• the project name

• the name of the program or other

• product element

If you are working on a non-programming task,
enter the task description in the comments field.

Date • Enter the date when you made the entry.

Example • 4/13/98

Start • Enter the time when you start working on a
task.

Example • 8:20

Stop • Enter the time when you stop working on that
task.

Example • 10:56

Interruption
Time

• Record any interruption time that was not
spent on the task and the reason for the
interruption.

• If you have several interruptions, enter their
total time.

Example • 37 — took a break

Delta Time • Enter the clock time you actually spent
working on the task, less the interruption time.

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

About the author

Watts S. Humphrey founded the Software Process Program at the SEI.
He is a fellow of the institute and is a research scientist on its staff. From
1959 to 1986, he was associated with IBM Corporation, where he was
director of programming quality and process. His publications include
many technical papers and six books. His most recent books are:
Managing the Software Process (1989), A Discipline for Software
Engineering (1995), Managing Technical People (1996), and

Introduction to the Personal Software ProcessSM(1997). He holds five
U.S. patents. He is a member of the ACM, an IEEE fellow, and a past
member of the Malcolm Baldridge National Quality Award Board of
Examiners. He holds a bachelor’s degree in physics from the University
of Chicago, a master’s degree in physics from the Illinois Institute of
Technology, and a master’s degree in business administration from the
University of Chicago.

The views expressed in this article are the author’s only and do not represent directly or
imply any official position or view of the Software Engineering Institute or Carnegie
Mellon University. This article is intended to stimulate further discussion about this
topic.

Example • From 8:20 to 10:56, less 37 minutes or 199
minutes

Phase • Enter the name or other designation of the
phase or step you worked on.

Example • planning, code, test, etc.

Comments • Enter any other pertinent comments that might
later remind you of any unusual circumstances
regarding this activity.

Example • Had a requirements question and had to get
help.

Important • Record all worked time.

• If you forget to record the starting, stopping, or
interruption time for a task, promptly enter
your best estimate.

Table 2: Time Recording Log Instructions (Continued)

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

SEI Interactive, 6/98
http://www.sei.cmu.edu/interactive/Columns/1998/June/Software_Work/Software_Work.htm

Copyright © 1998 by Carnegie Mellon University.

The Software Engineering Institute (SEI) is a federally funded research and
development center sponsored by the U.S. Department of Defense and operated by
Carnegie Mellon University.

SM Capability Maturity Model, IDEAL, Personal Software Process, PSP, Team
Software Process, and TSP are service marks of Carnegie Mellon University.

® Capability Maturity Modeling, CERT, and CMM are registered in the U.S. Patent and Trademark Office.

http://www.sei.cmu.edu/interactive/Features/1998/June/COTS_Roundtable/Cots_Roundtable.htm

	Working harder
	Interruptions
	Non-project work
	Lean and mean organizations
	Ad-hoc working and planning
	You also need an occasional break
	So, keep track of your time
	Learn to use administrative support
	Plan every job
	Vary your work
	Define and use a personal process
	Get and use historical data
	Acknowledgements
	Table 1: Time Recording Log �
	Table 2: Time Recording Log Instructions (Continued)

	About the author

