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1 Introduction

Numerous reasons exist to be interested in mixing. Convective heat transfer by
mixing in fluids is, for example, of interest in thermal engineering where flows
are used to achieve a uniform temperature distribution. In astrophysics and
combustion, mixing through turbulence is studied. Understanding of viscous
and viscoelastic fluid mixing is of importance in material and food processing,
and is our main application area in this project. In most of these cases the goal is
to control the stirring process: to enhance or suppress mixing. The significance
of mixing in food preparation is obvious for every cook. The importance of
polymer mixing is illustrated by the fact that only a few percent of all new
polymers are ever commercialized. Due to the high cost of synthesizing new
materials, the much more inexpensive alternative is mixing (blending) of existing
polymers to obtain a final product with the desired properties.

Although in industry mixing of materials is carried out in static, batch, and
dynamic mixers, which can have complex geometries, theoretical analyses so
far mainly report on much simpler systems. Well-known examples of industrial
mixers are single (see Fig. 1) or twin-screw extruders. The example we will
be studying is the rectangular cavity flow and is of direct importance for these
types of mixers. We will be analyzing the mixing properties of this flow by
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Figure 1: On the left a part of a single-screw extruder is plotted. Because of
the geometrical complexities of single and twin-screw extruders, prototypical
systems like cavities are studied. This figure shows how they are related.
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Figure 2: A time-periodic flow in a rectangular cavity: during the first half
period T'/2 the upper lid is moved to the right with a velocity U and during the
second half period T'/2 the lower lid is moved to the left with a velocity of also

Figure 3: Left: streamlines in first half period; Right: streamlines in the second

half period.

tracking in time a blob of material that is passively convected by the flow. In
particular we will be studying the increase of the length of the interface between
the material of the blob and the surrounding material. In case of good mixing,

this length should grow exponentially.

2 Model problem: a time-periodic flow in a rect-
angular cavity

It is very well known that a steady incompressible flow in 2D cannot lead to
chaos and hence to effective mixing'. Therefore, moving the upper lid of a 2D
cavity as suggested in Fig. 1 with a constant velocity will not be an effective
mixing protocol. However, a time-periodic mixing protocol as shown in Fig. 2
can lead to chaotic mixing. For a Newtonian flow where inertia terms can be
neglected (Stokes flow) the streamlines have been plotted in Fig. 3. The mixing
efficiency will depend on the ratio of the height H and length L of the cavity

LA standard reference book on mixing is the book by Ottino [1].



Figure 4: The positions of two blobs at times ¢t =0, /2, T and 2T. D = 6.24

and the dimensionless displacement
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where T is the period (one upper lid movement and one lower lid movement).
In this project we will use H/L = 3/5, which leaves D as the only parameter.

When looking at the actual mixing of material blobs we will notice that the
mixing efficiency depends on the position of the blob. For example, in Fig. 4
two blobs are tracked that start from a different position in the region. The
blobs are represented by 40 points on the interface between the material in
the blobs and the outside fluid. After tracking the points it is clear that the
material of the blue (left) blob remains close together, whereas the red (right)
blob is highly stretched (and folded, which is more difficult to see). In fact, the
length of the interface hardly changes for the blue blob whereas the length of
the interface growth exponentially for the red blob, which is the blueprint of
effective mixing?.

Looking at Fig. 4, it is clear we have a numerical problem when tracking
exponentially growing interfaces with a constant number of points. We need
an adaptive interface tracking scheme that can increase the number of points
where needed. This will be the main topic of this project.

2The two blobs are positioned around so-called periodic points, i.e. points that return to
their original position after one period. The blue blob is positioned around an ‘elliptic’ point
where material only rotates and the red blob is positioned around a ‘hyperbolic’ point where
the material is highly stretched. Finding and analyzing periodic points is one of the main
methods to analyze mixing in time-periodic flows. Another method is the so-called Poincaré
map. Both methods are limited to time-periodic flows and are beyond the scope of this project.
The tracking of interfaces, which we use in this project, can be applied to any flow.



3 Particle tracking

For tracking the individual points at an interface we need to solve the following
ordinary differential equation for the position vector x:
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where @ is the initial position of the particle and u(x,t) is the velocity field.
The field u(x,t) must be known, either in an analytical form or obtained from

a numerical program that solves the flow problem. In this project we will be
using an analytical form:

first half-period (left picture in Fig. 2):
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where v is the stream function and « = (x,y) = (0,0) is the lower-left corner
of the domain. The velocity field u = (u,v) can be found by differentiating:
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0 U

u(z,y) = a—;f = —Fy sin(ﬂ'%)cos [71'(%)2}
_ O _UH nZysin (L2 ?

v(z,y) = 5~ oL cos(ﬂL)sm [W(H) ]

second half-period
0
u(x,y) = 6% =U(1- %) sin(ﬂ'%)cos [7(1 - %)2] o
6
0 UH
v(z,y) = —a—f = icos(ﬂ'%)sin [r(1 - %)Q]

Equation (2), together with Egs. (5) and (6) will be solved by a second-order
Runge-Kutta time-integration scheme:

X, 1 =xp + Atu(x,,t,)

(7)

1 *
Tpil = §At [w(@) 1, tng1) + w(@n, tn)]

where At = t,, 41 — t, is the time step.

4 Adaptive interface tracking

Before devising the algorithm for adding points on the interface we need to lay
down the ‘structure’ of how we describe the interface. We use a description as
used in the finite-element method. The points describing the interface are called
the nodes and the line connecting the nodes are the elements. In Fig. 5 we have
plotted a closed interface with eight nodes and eight elements.

First we need to specify the coordinates of the nodes by an array of rank
two:
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Figure 5: Description of an interface with nodes and elements

coor(1:nnodes,1:2)

where nnodes is the number of nodes, for example coor (8,1) is the z-coordinate
of node number 8. The topology of the interface will be specified by an array
of rank two:

topology(l:nelem,1:2)

where nelem is the number of elements, for example topology(5,1:2) will give
the two node numbers element 5 is connected to. For the interface in Fig. 5 we
have

topology =
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We will also need an array which gives for each nodal point the two elements
that are connected to that point. For the interface in Fig. 5 we have for that
array

nodelem =
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Figure 6: Adding a node (and an element) to an interface

The structure is not static, since in the adaptive scheme we need the pos-
sibility to add nodes. For example, assume that some accuracy criterion (see
below) is exceeded in element number 2 in Fig. 5. We want to split this element
into two elements by adding a node and an element. This has been done in
Fig. 6. The addition of a node and an element increases the first dimension
of the arrays coor, topology and nodelem by one. The arrays topology and
nodelem now become

topology = nodelem = (10)
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The accuracy criterion for adding nodes we will be using is that

1. the length of an element h, i.e. the distance between two consecutive nodes,
must be smaller than A.y.

2. in strongly curved parts of the interface the length of the elements must
be smaller than hemax. Strongly curved means that the (absolute value
of the) angle between two consecutive elements is larger than amax (see
Fig. 7).

There is one question still unanswered: what should the position of a newly
added node be? The simplest procedure would be to just put the point halfway



Figure 7: The angle o between two consecutive elements

between the two already existing two adjacent nodes (nodes 2 and 3 in Figs. 5
and 6). However this usually leads to relatively large errors. Therefore we choose
to start from a situation where the two adjacent nodes are still sufficiently close.
Assume we divide each half period T into a number of substeps (nsteps) and
check the accuracy criterion for all nodes/elements at each substep and split
the elements that do not satisfy the criterion. We now interpolate between the
position of the two adjacent nodes at the previous step and track the new point
to the current step. This means, we need to store the coordinates of the nodes
at a previous time by an array of rank two:

coorprev(l:nnodes,1:2)

where now nnodes is the number of nodes at the previous time.

Once we have an interface defined by the adaptive procedure above we have
to compute the length of the interface. For this we simply take the length of
the polygon defining the interface, that is the sum of the lengths of the straight
lines between the nodes.

The flows we will be considering are assumed to be incompressible. This
means that, in theory, the area of the blob must remain constant. An easy way
of computing the area A by a boundary integral is given by

A:E/Va:dﬁzlfrpmcﬂ‘ (11)
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where 2 is the inner region of the blob, I' is the interface and n is the outside
normal. Since each element is straight, the integral can be performed analyt-
ically on each element. If we denote the first and second nodal point of an
element by x; and x,, respectively, the difference vector by v = &3 — 7 and
the sum vector by s = &1 + @2, then the area is given by (the absolute value of)

A:
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where N, is the number of elements. Note, that A is positive for a clockwise
nodal numbering and negative for counterclockwise. The preservation of the
area as a function of time can be used to monitor the quality of the interface
tracking.



5 Conclusion

In this paper we have described a numerical tool to analyze the mixing efficiency
of 2D flow in different parts of the flow. The analysis consists of positioning
blobs of material in different parts of the flow and monitoring the growth of the
length of the interface as a function of time. The growth should be exponential
in order to achieve efficient mixing and the rate is a measure for the efficiency.

Problems

1.

10.

11.

12.

Argue that parameter D in Eq. (1) and the ratio H/L fully determines the
mixing behavior of the time-periodic cavity flow.

Explain why for the time-periodic cavity flow the explicit time-dependence
in the right-hand size of Eq. (2) is needed.

. Summarize what variables the ‘structure’ that describes the interface must

contain and of what type they are (scalar, array, dimension and size of the
array, integer or real, ...).

Is it really necessary to keep the array nodelem? Isn’t it redundant?

. Describe the algorithm for adding a node to the structure in a general way

suitable for programming. How would it change for tracking multiple blobs?
What about a non-closed surface?

. The arrays in the structure change their size when adding nodes. How would

that best be programmed? Would you use arrays that are reallocated such
that they exactly match the number of nodes? Why not?

Show that for points on a circle we have h ~ Ra and use this to relate the
curvature of the interface to the value of a.

. Derive an expression for a (as defined in Fig. 7) for given coordinates x1, @2

and x3 that can be readily programmed.

. We have formulated a criterion for adding new nodes on page 6. If the

conditions are violated in a particular element we split the element into two
elements by adding a node. Are we always sure the conditions are fulfilled
after the split? Do we need more iterations to fulfill the conditions?

In the main text on page 6 we describe the process of adding a node, i.e.
starting from an interpolated position at a previous step. Another possibility
would be to always start from the situation at the beginning of a half period.
How would that change the algorithm? A further possibility is to always
start from the situation at the beginning (i.e. the original blob). This would
make the algorithm much more complicated. Why?

Derive an expression for the length ¢ of the interface, similar to the expression
for the area A in Eq. (12).

In theory the area of a blob should remain constant in an incompressible
flow. In practical computations this is only approximately fulfilled. What
are the sources of the error?



13. Verify Egs. (11) and (12).

14. Consider a circular interface described by m uniformly distributed points.
The approximation of the interface by piecewise straight lines in this case is
called a regular polygon. Show that the relative error in the length £ is given
by
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and the relative error in the area A is given by

)? (13)
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n
where 6 = 27 /n, the angle of a single segment of the polygon. The approxi-
mation is valid for small 6.
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