Chapter 4: Computability

Algorithmic Adventures

From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich Slides by Tom Verhoeff, TU Eindhoven

Quotation

Discuss, commit errors, make mistakes, but for God's sake think — even if you should be wrong — but think your own thoughts.

Gotthold Ephraim Lessing

How Large Is the Set of All Texts?

There are infinitely many texts, but what kind of infinity?

A text is a sequence of **symbols** from an enumerable **alphabet** A (often: from a *finite* alphabet, cf. ASCII keyboard)

Each text can be encoded in a **tuple of natural numbers**, by representing each symbol of A by a unique natural number

Juraj & Tom \rightarrow (74, 117, 72, 97, 106, 32, 38, 32, 84, 111, 109)

The number of all texts over A is equal to $|\mathbb{N}^*| = |\mathbb{N}|$ (Ch. 3)

How Large Is the Set of All Programs?

Every program is a text over some suitable enumerable alphabet A

Not every text over A is program: it must be **syntactically correct** according to the rules of the **programming language**

A **compiler** checks the syntactical correctness of a text as a program (but not *semantical* correctness: whether the text is an *algorithm*)

Construct an enumeration* of all programs from an enumeration of all texts over A by deleting all texts that are not syntactically correct:

$$P_0, P_1, P_2, \ldots, P_i, \ldots$$

where P_i denotes the *i*-th program

Every algorithm † appears in the sequence, not every P_i is an algorithm

*Each programming language gives rise to its own enumeration

[†]Provided the programming language is sufficiently expressive

Problem(c)

For real number c, **Problem**(c) is defined by

Input: a natural number $n \in \mathbb{N}$

Output: the number c up to n decimal digits

after the decimal point

Algorithm A_c solves Problem(c) when

for any given $n \in \mathbb{N}$, A_c outputs all digits of c before the decimal point and the first n digits of c after the decimal point

N.B. c is not an input of the problem, but a 'built-in' constant

E.g., $A_{\sqrt{2}}$ with input n=5 must output 1.41421

Not All Problem(c) Are Algorithmically Solvable

Because $|\mathbb{R}| > |\mathbb{N}|$, there are more algorithmic tasks than algorithms*:

There exist $c \in \mathbb{R}$ such that Problem(c) is not algorithmically solvable

Real numbers having a finite representation are exactly the numbers that can be algorithmically generated

There exist real numbers that do not possess a finite representation and so are not computable (algorithmically generable)

For these unsolvable problems, c is not explicitly specifiable

Are there other (more interesting) algorithmically unsolvable tasks? *Note that no algorithm can solve more than one Problem(c)

Decision Problem (\mathbb{N}, M **)**

For $M \subseteq \mathbb{N}$, decision problem (\mathbb{N}, M) is defined by

Input: a natural number $n \in \mathbb{N}$

Output: YES if $n \in M$

No if $n \notin M$

Example: for *primality testing* take $M := \{2, 3, 5, 7, 11, 13, 17, 19, ...\}$

Algorithm A solves decision problem (\mathbb{N}, M) when

for any given $n \in \mathbb{N}$, A outputs YES if $n \in M$ and NO if $n \not\in M$

 (\mathbb{N}, M) is called **decidable** when there exists an algorithm to solve it, and **undecidable** if no such algorithm exists

Not All Problems (\mathbb{N}, M) Are Decidable

Because $|\mathcal{P}(\mathbb{N})| > |\mathbb{N}|$, there are more problems (\mathbb{N}, M) than algorithms

There exist $M \subseteq \mathbb{N}$ such that (\mathbb{N}, M) is undecidable

Define set $DIAG = \{i \in \mathbb{N} \mid \text{program } P_i \text{ does } not \text{ output YES on input } i\}$

N.B. Each way of enumerating all programs, gives rise to its own set DIAG

Problem $(\mathbb{N}, DIAG)$ is undecidable, because

no program P_i implements an algorithm A that solves $(\mathbb{N}, DIAG)$:

```
A outputs YES on input i
\Rightarrow [by definition of "A solves (\mathbb{N}, DIAG)"]
i \in DIAG
\Rightarrow [by definition of DIAG]
P_i does not output YES on input i
```

Comparing Problems for Algorithmic Solvability

By definition, the following statements are equivalent:

- ullet Problem U_1 is easier than or as hard as problem U_2
- Problem U_1 is no harder than problem U_2
- $U_1 \leq_{\mathsf{Alg}} U_2$
- Algorithmic solvability of U_2 implies algorithmic solvability of U_1 (Note the order of U_2 and U_1 here)
- It is *not* the case that:

 U_2 is algorithmically solvable and U_1 is not algorithmically solvable

How to Prove $U_1 \leq_{\mathsf{Alg}} U_2$?

Question Can you prove $U_1 \leq_{\mathsf{Alg}} U_2$ without knowing about the algorithmic solvability of U_1 and U_2 ?

Answer Yes, via problem reduction:

Reduce algorithmic solvability of U_1 to that of U_2

Provide a solution for U_1 in terms of a hypothetic solution for U_2

 U_1 can be algorithmically reduced to $U_2 \Rightarrow U_1 \leq_{\mathsf{Alg}} U_2$

N.B. The converse implication does not necessarily hold

It is not necessary to know whether U_2 is solvable, and if U_2 is solvable, it is not necessary to know how to solve U_2

Examples for Proving $U_1 \leq_{Alg} U_2$ by Algorithmic Reduction

Example 1 U_1 : $?_x$: $a \neq 0$: $ax^2 + bx + c = 0$

 U_2 : $?_x$:: $x^2 + 2px + q = 0$

Solve U_1 by taking $p,q:=\frac{b}{2a},\frac{c}{a}$ in an algorithm for U_2 , if it exists

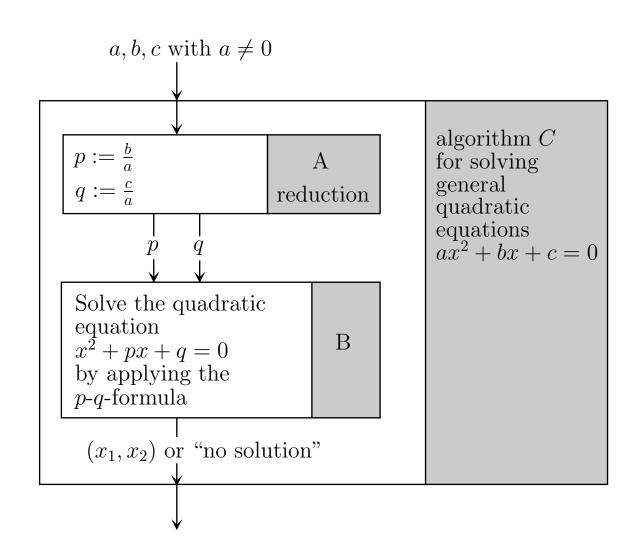
Thus, $U_1 \leq_{\mathsf{Alg}} U_2$ N.B. Also $U_2 \leq_{\mathsf{Alg}} U_1$, by reduction a, b, c := 1, 2p, q

Example 2 $U_1: ?_x: a_5 \neq 0: \sum_{i=0}^5 a_i x^i = 0$ (5-th degree equation) U_2 : $?_x$: $b_6 \neq 0$: $\sum_{i=0}^{6} b_i x^i = 0$ (6-th degree equation)

Solve U_1 by taking $b_i := a_{i-1} - a_i$ with $a_6 = a_{-1} = 0$ in an algorithm for U_2 and dropping result x = 1: $(x-1) \sum_{i=0}^{5} a_i x^i = \sum_{i=0}^{6} (a_{i-1} - a_i) x^i$

Thus, $U_1 \leq_{Alg} U_2$ (N.B. Also $U_2 \leq_{Alg} U_1$, but not by reduction)

Diagram for Problem Reduction



How to Use $U_1 \leq_{Alg} U_2$?

Assumption We know $U_1 \leq_{Alg} U_2$

i.e. solvability of problem U_2 implies solvability of problem U_1

Question How can we use that knowledge?

Answer In two ways:

- 1. If you solve problem U_2 , then you know that U_1 is solvable as well But you do not necessarily then also know how to solve U_1 If you have a *reduction* of U_1 to U_2 , you do know how to solve U_1
- 2. If you know U_1 is not solvable, then you know the same about U_2

Examples for Using $U_1 \leq_{Alg} U_2$

1. We know $?_x : a \neq 0 : ax^2 + bx + c = 0 \le_{Alg} ?_x :: x^2 + 2px + q = 0$

The second problem is solvable: $x = -p \pm \sqrt{p^2 - q}$ when $p^2 - q \ge 0$

Hence, first problem is solvable: $x = \frac{-b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

2. We know $?_x : a_5 \neq 0 : \sum_{i=0}^5 a_i x^i = 0 \le_{Alg} ?_x : b_6 \neq 0 : \sum_{i=0}^6 b_i x^i = 0$

The first problem is not solvable in radicals* (Abel, 1824)

Hence, the second problem is *not* solvable in radicals

Note that the reductions were also 'in radicals'

*'In radicals' means 'by using +, -, imes, /, and $\sqrt{}$ only'

Properties of \leq_{Ala}

Relation \leq_{Alg} is transitive :

$$U_1 \leq_{\mathsf{Alg}} U_2 \leq_{\mathsf{Alg}} U_3 \ \Rightarrow \ U_1 \leq_{\mathsf{Alg}} U_3$$

Solvability propagates from right to left across a chain of the form

$$U_1 \leq_{\mathsf{Alg}} U_2 \leq_{\mathsf{Alg}} U_3$$

Unsolvability propagates from *left to right* across the chain

Algorithmic reducibility is also transitive:

If you can reduce U_1 to U_2 and you can reduce U_2 to U_3 , then you can reduce U_1 to U_3

Problems UNIV and HALT

More interesting problems:

UNIV (the universal problem)

a program P and a natural number $i \in \mathbb{N}$ Input:

Output: YES, if P outputs YES on input i

NO, if P outputs NO or does not halt on input i

HALT (the **halting problem**)

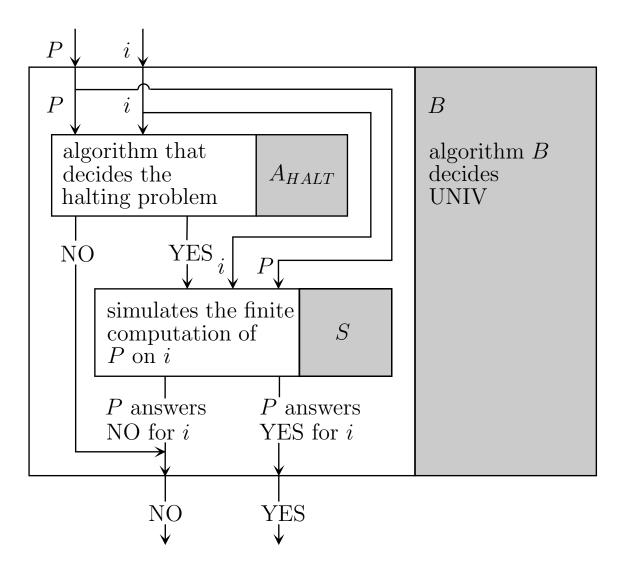
Input: a program P and a natural number $i \in \mathbb{N}$

Output: YES, if P halts on input i

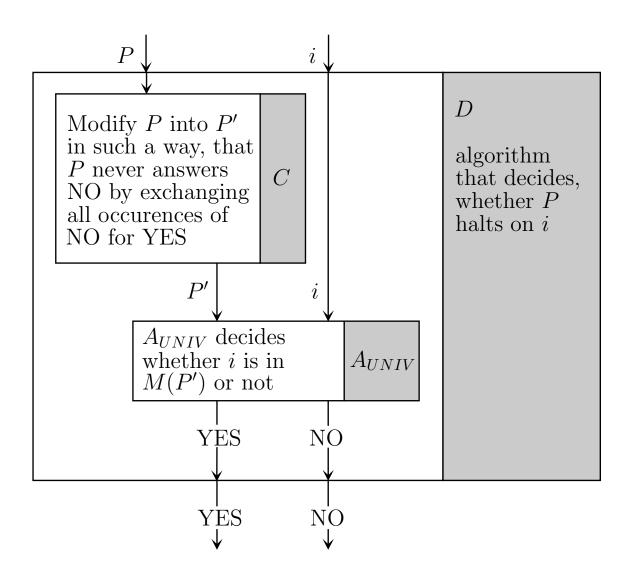
NO, if P does not halt on input i

N.B. Simulation of P will not work, because it need not terminate

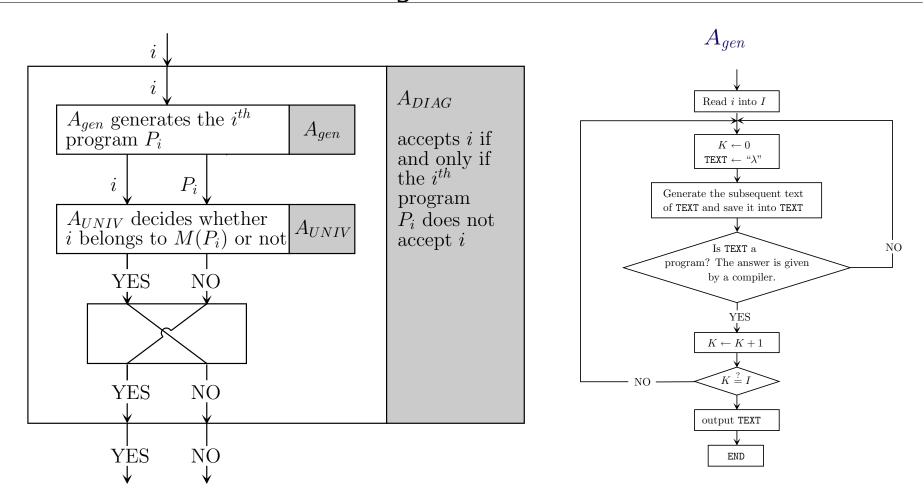
$UNIV \leq_{Alg} HALT$ by Reduction



$HALT \leq_{Alg} UNIV$ by Reduction



$(\mathbb{N}, DIAG) \leq_{Alg} UNIV$ by Reduction



Conclusion: UNIV and HALT are also not solvable by an algorithm

Summary

- There exist tasks that cannot be automatically solved.
- This claim is true independent of computer technologies.
- Algorithmic reductions help to compare problems for solvability.
- Among the algorithmically unsolvable problems, one can find:
 - Is a program correct?
 - Does a program avoid endless computations?
- **Syntactic** tasks, usually related to the correct *representation* of a program, are algorithmically solvable.
- **Semantic** questions, related to the *meaning* of a program, are not algorithmically solvable, unless trivial.