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The Problem

Software products (often?) suffer(ed?) from

bugs: low quality

high cost: budget overrun

late delivery: schedule overrun
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History

1968 NATO Conference: Software Crisis

Apply engineering to software development
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Goal

Make quality software, on time, within budget

large & complex systems

built by teams

exist in many versions & variants

last for many years

undergo frequent changes
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IEEE Definition of SE

Application of a systematic, disciplined, 
quantifiable approach to the development, 
operation, and maintenance of software

The IEEE develops and maintains numerous 
internationally-accepted standards for SE
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Maintenance

Most software

lives longer than planned

undergoes more changes than planned

Corrective maintenance

Adaptive maintenance

Perfective maintenance (e.g. enable reuse)
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Nature of Software

Intangible

Malleable

Intellecutally intensive

Trivial replication
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Planning Δ

Any two characteristics constrain the third:

Size

Cost (time, money)

Quality
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Metrics

Measure size

Measure cost

Measure quality
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Management Δ 

Plan: who does what, when, how; 
dependencies (use previous measurements)

Execute

Monitor: measure, adjust, handle risks
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Human Factors

Limited productivity: work in teams

Limited oversight: divide and conquer

Limited accuracy: verify work early and often

Limited communication: write documentation
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Product, Process, 
Documentation

Product

Product documentation, verification

Process (awareness)

Process documentation, verification
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Life-Cycle vs Process

Life-Cycle: various incarnations of product

Process: tasks and disciplines to do work
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Waterfall

Requirements

Design

Production

Transfer

Operation & Maintenance
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Alternatives

Incremental

Spiral

Evolutionary

2D (Unified Process)
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Management Issues

Planning

Configuration Management

Quality Assurance
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Drivers

Documentation driven

Risk driven

Customer/requirements driven
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Models & Prototypes

Formal models

Prototypes: from paper mock-up to 
executable
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What Else?

Software Qualities: Often “invisible”

Software Engineering Principles
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Keep in Mind

… that you will be applying large-scale SE 
methods in a small-scale software project

… that many software qualities focus on 
maintenance, and seem much less relevant 
when just getting something new to “work”

… that it is important, but difficult, to 
measure and predict such aspects as size, 
cost, and quality of software
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