
Introduction to
Software Engineering

Tom Verhoeff
TU/e

Faculty of Mathematics & Computing Science

1



The Problem

Software products (often?) suffer(ed?) from

bugs: low quality

high cost: budget overrun

late delivery: schedule overrun

2



History

1968 NATO Conference: Software Crisis

Apply engineering to software development

3



Goal

Make quality software, on time, within budget

large & complex systems

built by teams

exist in many versions & variants

last for many years

undergo frequent changes

4



IEEE Definition of SE

Application of a systematic, disciplined, 
quantifiable approach to the development, 
operation, and maintenance of software

The IEEE develops and maintains numerous 
internationally-accepted standards for SE

5



Maintenance

Most software

lives longer than planned

undergoes more changes than planned

Corrective maintenance

Adaptive maintenance

Perfective maintenance (e.g. enable reuse)

6



Nature of Software

Intangible

Malleable

Intellecutally intensive

Trivial replication

7



Planning Δ

Any two characteristics constrain the third:

Size

Cost (time, money)

Quality

8



Metrics

Measure size

Measure cost

Measure quality

9



Management Δ 

Plan: who does what, when, how; 
dependencies (use previous measurements)

Execute

Monitor: measure, adjust, handle risks

10



Human Factors

Limited productivity: work in teams

Limited oversight: divide and conquer

Limited accuracy: verify work early and often

Limited communication: write documentation

11



Product, Process, 
Documentation

Product

Product documentation, verification

Process (awareness)

Process documentation, verification

12



Life-Cycle vs Process

Life-Cycle: various incarnations of product

Process: tasks and disciplines to do work

13



Waterfall

Requirements

Design

Production

Transfer

Operation & Maintenance

14



Alternatives

Incremental

Spiral

Evolutionary

2D (Unified Process)

15



Management Issues

Planning

Configuration Management

Quality Assurance

16



Drivers

Documentation driven

Risk driven

Customer/requirements driven

17



Models & Prototypes

Formal models

Prototypes: from paper mock-up to 
executable

18



What Else?

Software Qualities: Often “invisible”

Software Engineering Principles

19



Keep in Mind

… that you will be applying large-scale SE 
methods in a small-scale software project

… that many software qualities focus on 
maintenance, and seem much less relevant 
when just getting something new to “work”

… that it is important, but difficult, to 
measure and predict such aspects as size, 
cost, and quality of software

20


