Prev Up Next

  v k λ μ rf sgcomments
! 153 32 16 4 1417 –2135 Triangular graph T(18)
    120 91 105 1135 –1517 pg(8,14,7)
? 153 56 19 21 584 –768 pg(8,6,3)?
    96 60 60 668 –684  
? 153 76 37 38 5.68576 –6.68576 2-graph\*?
? 154 48 12 16 498 –855 pg(6,7,2)?
    105 72 70 755 –598  
- 154 51 8 21 2132 –1521 Krein2
    102 71 60 1421 –3132 Krein1
? 154 72 26 40 2132 –1621  
    81 48 36 1521 –3132  
+ 155 42 17 9 1130 –3124 S(2,3,31); lines in PG(4,2)
    112 78 88 2124 –1230  
+ 156 30 4 6 490 –665 O(5,5) Sp(4,5); GQ(5,5)
    125 100 100 565 –590  
+ 157 78 38 39 5.76578 –6.76578 Paley(157); 2-graph\*
? 160 54 18 18 675 –684 pg(9,5,3) does not exist (no 2-graph\* for line graph)
    105 68 70 584 –775  
- 161 80 39 40 5.84480 –6.84480 Conf
? 162 21 0 3 3105 –656  
    140 121 120 556 –4105  
? 162 23 4 3 569 –492  
    138 117 120 392 –669  
? 162 49 16 14 763 –598  
    112 76 80 498 –863  
! 162 56 10 24 2140 –1621 q222=0
    105 72 60 1521 –3140 U4(3) / L3(4) - sub McLaughlin; q111=0
? 162 69 36 24 1523 –3138  
    92 46 60 2138 –1623  
+ 165 36 3 9 3120 –944 U(5,2) polar graph; GQ(4,8)
    128 100 96 844 –4120  
- 165 82 40 41 5.92382 –6.92382 Conf
! 169 24 11 2 1124 –2144 132
    144 121 132 1144 –1224 OA(13,12)
+ 169 36 13 6 1036 –3132 OA(13,3)
    132 101 110 2132 –1136 OA(13,11)
? 169 42 5 12 3126 –1042  
    126 95 90 942 –4126  
+ 169 48 17 12 948 –4120 OA(13,4)
    120 83 90 3120 –1048 OA(13,10)
? 169 56 15 20 4112 –956  
    112 75 72 856 –5112  
+ 169 60 23 20 860 –5108 OA(13,5)
    108 67 72 4108 –960 OA(13,9)
? 169 70 27 30 598 –870  
    98 57 56 770 –698  
+ 169 72 31 30 772 –696 OA(13,6)
    96 53 56 596 –872 OA(13,8)
+ 169 84 41 42 684 –784 Paley(169); OA(13,7); 2-graph\*
+ 170 78 35 36 685 –784 switch OA(13,7)+*; 2-graph
    91 48 49 684 –785 S(2,7,85)?; 2-graph
! 171 34 17 4 1518 –2152 Triangular graph T(19)
    136 105 120 1152 –1618  
? 171 50 13 15 595 –775  
    120 84 84 675 –695  
? 171 60 15 24 3132 –1238 pg(5,11,2)?
    110 73 66 1138 –4132  
+ 173 86 42 43 6.07686 –7.07686 Paley(173); 2-graph\*
+ 175 30 5 5 584 –590 GQ(6,4)
    144 118 120 490 –684  
? 175 66 29 22 1142 –4132  
    108 63 72 3132 –1242 pg(9,11,6)?
+ 175 72 20 36 2153 –1821 edges of Hoffman-Singleton graph - Haemers; pg(4,17,2) - Haemers; 2-graph\*
    102 65 51 1721 –3153 2-graph\*
? 176 25 0 4 3120 –755  
    150 128 126 655 –4120  
+ 176 40 12 8 855 –4120 pg(10,3,2) does not exist (Absolute bound for line graph)
    135 102 108 3120 –955 NU(5,2)
+ 176 45 18 9 1232 –3143 S(2,3,33)
    130 93 104 2143 –1332 pg(10,12,8)?
+ 176 49 12 14 598 –777 Higman symmetric 2-design; pg(7,6,2)?
    126 90 90 677 –698  
! 176 70 18 34 2154 –1821 S(4,7,23)\S(3,6,22) - M22/Alt(7); unique by Coolsaet & Degraer; 2-graph
    105 68 54 1721 –3154 Witt 3-(22,7,4): intersection-3 graph of a quasisymmetric 2-(22,7,16) design with intersection numbers 1, 3; 2-graph
? 176 70 24 30 4120 –1055 pg(7,9,3)?
    105 64 60 955 –5120  
- 176 70 42 18 2610 –2165 Absolute bound
    105 52 78 1165 –2710 Absolute bound
+ 176 85 48 34 1722 –3153 Haemers; 2-graph
    90 38 54 2153 –1822 pg(5,17,3)?; 2-graph
- 177 88 43 44 6.15288 –7.15288 Conf
+ 181 90 44 45 6.22790 –7.22790 Paley(181); 2-graph\*
? 183 52 11 16 4122 –960  
    130 93 90 860 –5122  
+ 183 70 29 25 960 –5122 S(2,5,61)
    112 66 72 4122 –1060  
- 184 48 2 16 2160 –1623 Krein2
    135 102 90 1523 –3160 Krein1
? 185 92 45 46 6.30192 –7.30192 2-graph\*?
? 189 48 12 12 690 –698 pg(8,5,2)?
    140 103 105 598 –790  
? 189 60 27 15 1528 –3160  
    128 82 96 2160 –1628 pg(8,15,6)?
? 189 88 37 44 4132 –1156 pg(8,10,4)?; 2-graph\*?
    100 55 50 1056 –5132 2-graph\*?
- 189 94 46 47 6.37494 –7.37494 Conf
! 190 36 18 4 1619 –2170 Triangular graph T(20)
    153 120 136 1170 –1719 pg(9,16,8)?
? 190 45 12 10 775 –5114 pg(9,4,2) does not exist (Azarija-Marc for line graph)
    144 108 112 4114 –875  
? 190 84 33 40 4133 –1156 2-graph?
    105 60 55 1056 –5133 2-graph?
+ 190 84 38 36 875 –6114 S(2,6,76)
    105 56 60 5114 –975  
? 190 90 45 40 1057 –5132 2-graph?
    99 48 55 4132 –1157 pg(9,10,5)?; 2-graph?
+ 193 96 47 48 6.44696 –7.44696 Paley(193); 2-graph\*
+ 195 96 46 48 6104 –890 pg(12,7,6)?; 2-graph\*
    98 49 49 790 –7104 S(2,7,91); 2-graph\*
! 196 26 12 2 1226 –2169 142
    169 144 156 1169 –1326 OA(14,13)?
? 196 39 2 9 3147 –1048  
    156 125 120 948 –4147  
+ 196 39 14 6 1139 –3156 OA(14,3)
    156 122 132 2156 –1239 OA(14,12)?
? 196 45 4 12 3150 –1145  
    150 116 110 1045 –4150  
+ 196 52 18 12 1052 –4143 OA(14,4)
    143 102 110 3143 –1152 OA(14,11)?
+ 196 60 14 20 4135 –1060 Huang-Huang-Lin(q=8); pg(6,9,2)?
    135 94 90 960 –5135  
+ 196 60 23 16 1148 –4147 S(2,4,49); Huffman-Tonchev: intersection-3 graph of a quasisymmetric 2-(49,9,6) design with intersection numbers 1, 3
    135 90 99 3147 –1248  
+ 196 65 24 20 965 –5130 OA(14,5)
    130 84 90 4130 –1065 OA(14,10)?
? 196 75 26 30 5120 –975  
    120 74 72 875 –6120  
+ 196 78 32 30 878 –6117 OA(14,6)
    117 68 72 5117 –978 OA(14,9)?
? 196 81 42 27 1824 –3171  
    114 59 76 2171 –1924 pg(6,18,4)?
- 196 85 18 51 1187 –348 Krein2; Absolute bound
    110 75 44 338 –2187 Krein1; Absolute bound
? 196 90 40 42 6105 –890 RSHCD?; 2-graph?
    105 56 56 790 –7105 2-graph?
+ 196 91 42 42 791 –7104 OA(14,7)?; RSHCD+; 2-graph
    104 54 56 6104 –891 OA(14,8)?; 2-graph
+ 197 98 48 49 6.51898 –7.51898 Paley(197); 2-graph\*

Prev Up Next