Prev Up Next

  v k λ μ rf sgcomments
? 451 130 33 39 7286 –13164 pg(10,12,3)?
    320 228 224 12164 –8286  
? 451 156 57 52 13164 –8286  
    294 189 196 7286 –14164 S(2,14,287)?
- 453 226 112 113 10.142226 –11.142226 Conf
- 456 35 10 2 1195 –3360 μ=2 (Brouwer-Neumaier)
    420 386 396 2360 –1295  
? 456 65 10 9 8208 –7247  
    390 333 336 6247 –9208  
? 456 80 4 16 4360 –1695  
    375 310 300 1595 –5360  
- 456 91 2 22 3399 –2356 Krein2
    364 294 276 2256 –4399 Krein1
? 456 104 22 24 8247 –10208  
    351 270 270 9208 –9247  
? 456 130 24 42 4380 –2275  
    325 236 220 2175 –5380  
? 456 140 40 44 8266 –12189  
    315 218 216 11189 –9266  
? 456 140 58 36 2656 –4399  
    315 210 234 3399 –2756  
? 456 175 78 60 2375 –5380  
    280 164 184 4380 –2475  
? 456 182 73 72 11208 –10247  
    273 162 165 9247 –12208  
? 456 195 74 90 5360 –2195  
    260 154 140 2095 –6360  
+ 457 228 113 114 10.189228 –11.189228 Paley(457); 2-graph\*
? 459 208 82 104 4390 –2668 pg(8,25,4)?; 2-graph\*?
    250 145 125 2568 –5390 2-graph\*?
? 460 85 18 15 10184 –7275  
    374 303 308 6275 –11184  
? 460 99 18 22 7275 –11184 pg(9,10,2)?
    360 282 280 10184 –8275  
? 460 147 42 49 7299 –14160  
    312 213 208 13160 –8299  
- 460 153 32 60 3414 –3145 Bondarenko et al.
    306 212 186 3045 –4414  
? 460 204 78 100 4391 –2668 2-graph?
    255 150 130 2568 –5391 2-graph?
? 460 216 116 88 3245 –4414  
    243 114 144 3414 –3345  
? 460 225 120 100 2569 –5390 2-graph?
    234 108 130 4390 –2669 pg(9,25,5)?; 2-graph?
+ 461 230 114 115 10.235230 –11.235230 Paley(461); 2-graph\*
! 465 58 29 4 2730 –2434 Triangular graph T(31)
    406 351 378 1434 –2830  
? 465 144 43 45 9248 –11216  
    320 220 220 10216 –10248  
? 465 192 72 84 6340 –18124  
    272 163 153 17124 –7340  
- 465 232 115 116 10.282232 –11.282232 Conf
- 469 234 116 117 10.328234 –11.328234 Conf
? 470 126 27 36 6329 –15140  
    343 252 245 14140 –7329  
- 473 236 117 118 10.374236 –11.374236 Conf
? 474 165 52 60 7315 –15158  
    308 202 196 14158 –8315  
? 475 90 25 15 15114 –5360 pg(18,4,3) does not exist (Absolute bound for line graph)
    384 308 320 4360 –16114  
+ 475 96 32 16 2075 –4399 S(2,4,76)
    378 297 315 3399 –2175 pg(18,20,15)?
? 476 133 42 35 14152 –7323  
    342 243 252 6323 –15152  
? 476 133 60 28 3534 –3441  
    342 236 270 2441 –3634  
? 477 140 31 45 5371 –19105  
    336 240 228 18105 –6371  
? 477 168 57 60 9264 –12212  
    308 199 198 11212 –10264  
? 477 238 118 119 10.420238 –11.420238 2-graph\*?
? 481 240 119 120 10.466240 –11.466240 2-graph\*?
? 483 240 118 120 10252 –12230 pg(20,11,10)?; 2-graph\*?
    242 121 121 11230 –11252 S(2,11,231)?; 2-graph\*?
! 484 42 20 2 2042 –2441 222
    441 400 420 1441 –2142 OA(22,21)?
+ 484 63 22 6 1963 –3420 OA(22,3)
    420 362 380 2420 –2063 OA(22,20)?
+ 484 84 26 12 1884 –4399 OA(22,4)
    399 326 342 3399 –1984 OA(22,19)?
? 484 92 6 20 4391 –1892  
    391 318 306 1792 –5391  
? 484 105 14 25 5363 –16120  
    378 297 288 15120 –6363  
+ 484 105 32 20 17105 –5378 OA(22,5)
    378 292 306 4378 –18105 OA(22,18)?
? 484 115 18 30 5368 –17115  
    368 282 272 16115 –6368  
? 484 126 40 30 16126 –6357 OA(22,6)?
    357 260 272 5357 –17126 OA(22,17)?
- 484 135 18 45 3435 –3048 Krein2
    348 257 232 2948 –4435 Krein1
? 484 138 32 42 6345 –16138  
    345 248 240 15138 –7345  
+ 484 138 47 36 17120 –6363 S(2,6,121)
    345 242 255 5363 –18120  
? 484 147 50 42 15147 –7336 OA(22,7)?
    336 230 240 6336 –16147 OA(22,16)?
? 484 161 48 56 7322 –15161  
    322 216 210 14161 –8322  
? 484 168 62 56 14168 –8315 OA(22,8)?
    315 202 210 7315 –15168 OA(22,15)?
? 484 184 66 72 8299 –14184  
    299 186 182 13184 –9299  
? 484 189 76 72 13189 –9294 OA(22,9)?
    294 176 182 8294 –14189 OA(22,14)?
? 484 207 86 90 9276 –13207  
    276 158 156 12207 –10276  
? 484 210 92 90 12210 –10273 OA(22,10)?
    273 152 156 9273 –13210 OA(22,13)?
? 484 230 108 110 10253 –12230 RSHCD?; 2-graph?
    253 132 132 11230 –11253 2-graph?
? 484 231 110 110 11231 –11252 OA(22,11)?; RSHCD+?; 2-graph?
    252 130 132 10252 –12231 OA(22,12)?; 2-graph?
? 485 242 120 121 10.511242 –11.511242 2-graph\*?
? 486 97 16 20 7291 –11194  
    388 310 308 10194 –8291  
? 486 100 22 20 10210 –8275  
    385 304 308 7275 –11210  
- 486 165 36 66 3440 –3345 Makhnev
    320 220 192 3245 –4440  
? 486 194 67 84 5388 –2297  
    291 180 165 2197 –6388  
? 486 210 99 84 21100 –6385  
    275 148 165 5385 –22100  
- 489 244 121 122 10.557244 –11.557244 Conf
? 490 144 28 48 4414 –2475 pg(6,23,2)?
    345 248 230 2375 –5414  
? 490 165 56 55 11225 –10264  
    324 213 216 9264 –12225  
? 490 192 92 64 3249 –4440  
    297 168 198 3440 –3349 pg(9,32,6)?
? 493 246 122 123 10.602246 –11.602246 2-graph\*?
? 494 85 12 15 7285 –10208  
    408 337 336 9208 –8285  
? 495 38 1 3 5285 –7209  
    456 420 420 6209 –6285  
+ 495 78 29 9 2354 –3440 S(2,3,55)
    416 346 368 2440 –2454  
? 495 104 28 20 14143 –6351  
    390 305 315 5351 –15143  
? 495 190 53 85 3450 –3544  
    304 198 168 3444 –4450  
? 495 190 85 65 2576 –5418  
    304 178 200 4418 –2676  
? 495 208 86 88 10260 –12234  
    286 165 165 11234 –11260  
- 495 208 130 56 7610 –2484 Absolute bound
    286 133 209 1484 –7710 Absolute bound
? 495 234 93 126 3450 –3644  
    260 151 120 3544 –4450  
+ 495 238 109 119 7340 –17154 dist. 2 or 4 in J(12,4) - Mathon; O(10,2) polar graph; pg(14,16,7)?; 2-graph\*
    256 136 128 16154 –8340 2-graph\*
? 496 54 4 6 6279 –8216  
    441 392 392 7216 –7279  
! 496 60 30 4 2831 –2464 Triangular graph T(32)
    435 378 406 1464 –2931 pg(15,28,14)?
? 496 110 18 26 6341 –14154  
    385 300 294 13154 –7341  
? 496 135 38 36 11216 –9279 pg(15,8,4)?
    360 260 264 8279 –12216  
- 496 165 80 42 4130 –3465 Absolute bound
    330 206 246 2465 –4230 Absolute bound
? 496 198 80 78 12216 –10279  
    297 176 180 9279 –13216  
? 496 231 102 112 7341 –17154 2-graph?
    264 144 136 16154 –8341 2-graph?
+ 496 240 120 112 16155 –8340 2-graph
    255 126 136 7340 –17155 NO+(10,2); Goethals-Seidel(3,15); pg(15,16,8)?; 2-graph
? 497 186 55 78 4426 –2770  
    310 201 180 2670 –5426  
? 497 240 127 105 2770 –5426  
    256 120 144 4426 –2870  
- 497 248 123 124 10.647248 –11.647248 Conf
? 498 161 64 46 2383 –5414  
    336 220 240 4414 –2483  

Prev Up Next